Exploratory Analysis and Feature Selection for the Prediction of Nitrogen Dioxide
Ditsuhi Iskandaryan
Institute of New Imaging Technologies (INIT), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Silvana Di Sabatino
Department of Physics and Astronomy, University of Bologna, Via Irnerio 46, 40127 Bologna, Italy
Francisco Ramos
Institute of New Imaging Technologies (INIT), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Sergio Trilles
Institute of New Imaging Technologies (INIT), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Related authors
No articles found.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Arianna Valmassoi, Jimy Dudhia, Silvana Di Sabatino, and Francesco Pilla
Geosci. Model Dev., 13, 3179–3201, https://doi.org/10.5194/gmd-13-3179-2020, https://doi.org/10.5194/gmd-13-3179-2020, 2020
Short summary
Short summary
Irrigation affects the atmosphere and models are required to understand its full impact. However, there is no agreed procedure to describe irrigation within regional models. The present study introduces three new methods to integrate this process into the models and validates it for the Po Valley in northern Italy. All the tests done show that the results are improved with the new irrigation techniques when compared against some measures (e.g., temperature, potential evapotranspiration).
Laddaporn Ruangpan, Zoran Vojinovic, Silvana Di Sabatino, Laura Sandra Leo, Vittoria Capobianco, Amy M. P. Oen, Michael E. McClain, and Elena Lopez-Gunn
Nat. Hazards Earth Syst. Sci., 20, 243–270, https://doi.org/10.5194/nhess-20-243-2020, https://doi.org/10.5194/nhess-20-243-2020, 2020
Short summary
Short summary
This article aims to provide a critical review of the literature and indicate some directions for future research based on the current knowledge gaps in the area of nature-based solutions (NBSs) for hydro-meteorological risk reduction. The final full analysis was performed on 146 closely related articles. A review showed that many advancements related to NBSs have been made to date, but there are still many challenges that will play an important role in extending knowledge in the coming years.
C. Granell, D. Bhattacharya, S. Casteleyn, A. Degbelo, M. Gould, C. Kray, M. Painho, and S. Trilles
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W8, 61–68, https://doi.org/10.5194/isprs-archives-XLII-4-W8-61-2018, https://doi.org/10.5194/isprs-archives-XLII-4-W8-61-2018, 2018