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Abstract. Nitrogen dioxide is one of the most hazardous
pollutants identified by the World Health Organisation.
Predicting and reducing pollutants is becoming a very ur-
gent task and many methods have been used to predict
their concentration, such as physical or machine learn-
ing models. In addition to choosing the right model, it
is also critical to choose the appropriate features. This
work focuses on the spatiotemporal prediction of nitrogen
dioxide concentration using Bidirectional Convolutional
LSTM integrated with the exploration of nitrogen diox-
ide and associated features, as well as the implementation
of feature selection methods. The Root Mean Square Er-
ror and the Mean Absolute Error were used to evaluate the
proposed approach.
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mRMR, mutual information, machine learning

1 Introduction

Air pollution can have a severe effect on the environment
and health. Reducing pollution is a challenge both locally
and globally. Before applying certain measurements in or-
der to reduce pollution, it is essential to monitor and iden-
tify dynamic changes. A more efficient way can be to pre-
dict the concentration in advance and find out the future
trend before it can cause any negative consequences. Haz-
ardous pollutants vary by location, which is the result of
a combination of many factors such as topography, eco-
nomic development, etc. (Zhao et al. (2020); Yang et al.
(2020); Sun and Gu (2008)). According to the study by
Sasha Khomenko et al. (Khomenko et al. (2021)) related to
premature mortality due to air pollution in European cities,
in which pollutant particles smaller than 2.5 micrometres
in diameter (PM2.5) and nitrogen dioxide (NO2) were con-
sidered, Madrid, which is the case study of the current

work, was found to be at the top of the ranking of Euro-
pean cities with the highest NO2 mortality burden. Taking
into consideration the importance of NO2 for Madrid, it
was selected as an air pollutant for predictive analysis.

Before performing the predictive analysis, a very impor-
tant step is to conduct exploratory analyses, to identify ex-
isting relationships between NO2 and other variables, and
to select the best combination among the existing features
by applying feature selection techniques. Having many
features is not always good, as it causes many issues re-
lated to the curse of dimensionality (Altman and Krzywin-
ski (2018); Verleysen and François (2005)), runtime exe-
cution, etc. Redundant and unnecessary data can lead to
poor model performance. In addition to the above reasons,
another reason for choosing the most optimal features is to
prevent the lack of data; for example, if a certain feature is
recorded and available for the city of Madrid, it may not
be available for another case study. Thus, the ability to per-
form an analysis with a minimum number of features al-
lows us to generalise the model, expand the application’s
spatial dimension, and reduce the execution time. There-
fore, it is very important to select the minimum optimal
features.

Many authors have implemented feature selection tech-
niques in order to obtain better results. For example, Just
et al. (2020) applied recursive feature selection based on
least mean absolute SHAP values to predict PM2.5; Shah
and Mishra (2020) used correlation to predict PM2.5; Xu
and Ren (2019) used maximum relevance-minimum re-
dundancy; Zheng et al. (2020) used recursive feature elim-
ination with cross-validation for air quality health index
prediction; Masmoudi et al. (2020) used Ensemble of
Regressor Chains-guided Feature Ranking; and Liu and
Chen (2020) applied three-stage feature selection, includ-
ing Pearson’s test, mutual information and binary grey
wolf optimisation to predict the air quality index.
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These aforementioned works confirm the advantage and
importance of the implementation of feature selection
methods, but they lacked the detailed exploratory analy-
sis from the point of view of physical aspects, to which the
current work is devoted, including the exploratory analysis
and the importance of feature selection. The feature selec-
tion techniques implemented in this work are mutual in-
formation and maximum relevance-minimum redundancy
techniques.

Regarding spatiotemporal prediction of air pollution, nu-
merous studies have been conducted; in particular, with
the help of machine learning and deep learning meth-
ods, more accurate prediction becomes achievable. One of
these studies applied the STAR model based on the combi-
nation of CNN and LSTM to predict PM2.5 and PM10 us-
ing the Seoul dataset (Bui et al. (2020)). Liu et al. (2022)
implemented Support Vector Machine on the spatiotempo-
ral features extracted using a geographic information sys-
tem. Yan et al. (2021) proposed multi-time multi-site deep
learning models (LSTM, CNN, CNN-LSTM) to forecast
air quality. The model established in the scope of the cur-
rent work is the Bidirectional Convolutional LSTM (Bi-
ConvLSTM). The advantage of BiConvLSTM was con-
firmed by several applications, including violence detec-
tion (Hanson et al. (2018)) and planetary gearbox fault
diagnosis (Shi et al. (2022)). The architecture of BiCon-
vLSTM allows predictions in the spatiotemporal dimen-
sion to be made with greater accuracy. However, compared
to LSTM and ConvLSTM, BiConvLSTM takes longer to
reach data convergence (Iskandaryan et al. (2022)). It is
worth mentioning that in terms of spatial dimension, Bi-
ConvLSTM allows prediction not just for certain station
locations, but also for areas where there are no air qual-
ity monitoring stations. The latter can be achieved using
additional features and their corresponding locations.

The main objective of the current research is to use Bi-
ConvLSTM in combination with exploratory analysis and
feature selection techniques to forecast the next 6 hours
of NO2 concentration in the spatiotemporal dimension.
The following are the main questions that the ongoing
work tries to answer: Which feature extraction technique
is better: mutual information or minimum redundancy-
maximum relevance? What is the best combination of
the features causing the performance of the best model?
Which wind direction transformation affects obtaining the
best model performance?

The rest of the work has the following structure. Section
2 describes the datasets and software implemented. Sec-
tion 3 introduces exploratory analysis by revealing the ex-
isting relationships between features. Section 4 illustrates
the models and techniques used in this work. Section 5
presents the experiments and the results obtained, and sec-
tion 6 summarises and reveals the main conclusions.

2 Data and Software Availability

This section introduces the datasets that have been used
in the analyses. The datasets used in this work are NO2
(µg/m3), meteorological data and traffic data from the pe-
riod January-June 2019 (training set) and January-June
2020 (validation and testing set), and the location of the
monitoring stations in the city of Madrid. The data were
obtained from the Open Data portal of the City Council
of Madrid1. There are 24 air quality control stations, 26
meteorological control stations and more than 4,000 traf-
fic measurement points (shapefiles of measurement point
locations are also provided for each month). The datasets
include the following variables (Table 1 shows summary
statistics of each type of data of the periods used in the
analyses):

• Air Quality Data - NO2 (µg/m3).

• Meteorological Data - Ultraviolet radiation (Mw/m2),
Wind speed (m/s), Wind direction, Temperature (oC),
Relative humidity (%), Barometric pressure (mb),
Solar irradiance (W/m2), Precipitation (l/m2).

• Traffic Data - Since the attributes of the traffic data
can be specific to a certain area, the traffic attributes
selected with their definition for the city of Madrid
are shown below.

– Intensity - Intensity of the measurement point in
a period of 15 minutes (vehicles/hour).

– Occupancy time - Measurement point occupancy
time in a period of 15 minutes (%).

– Load - Vehicle loading in a 15-minute period.
This is a parameter that takes into account in-
tensity, occupation and capacity of the road and
establishes the degree of road use from 0 to 100.

– Average speed - Average speed of the vehicles
in a period of 15 minutes (km/h). Only for M30
intercity measuring points.

Although the traffic data is recorded every 15 minutes,
since the NO2 and meteorological data are at hourly rates,
the traffic data was filtered and only hourly records were
selected (for example, with entries at 13:00, 13:15, 13:30,
13:45 and 14:00, we simply selected the entries at 13:00
and 14:00 and the same logic was applied for the entire
period).

Since the monitoring stations and measurement points are
different for each dataset, the first task is to combine them
spatially and temporally. Therefore, the grid was created
in a given area, which was defined as a selected part of
Madrid with a width and height of 1,000 metres within the
following extent: Top -4,486,449.725263 metres; Bottom
-4,466,449.725263 metres; Left -434,215.234430 metres;

1Portal de datos abiertos del Ayuntamiento de Madrid: https:
//bit.ly/3FFRiQM
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Table 1. Summary statistics of the periods January-June 2019 and January-June 2020 for each data type.

Phenomena Descriptors January-June 2019 January-June 2020

Nitrogen dioxide
Mean (SD) 36.69 (30.85) 26.03 (25.35)
Median [Min,Max] 27.0 [0.0, 328] 17.0 [0.0, 326]

UV
Mean (SD) 15.83 (30.27) -
Median [Min,Max] 1.0 [0.0, 199] -

Wind speed
Mean (SD) 1.41 (1.11) 1.31 (1.05)
Median [Min,Max] 1.14 [0.0, 8.75] 1.05 [0.0, 8.97]

Wind direction
Mean (SD) 167.80 (105.72) 140.82 (98.35)
Median [Min,Max] 182.0 [0.0, 359] 135.0 [0.0, 359]

Temperature
Mean (SD) 13.38 (8.09) 13.63 (7.6)
Median [Min,Max] 12.5 [-55.0, 47.3] 12.6 [-55.0, 44.6]

Humidity
Mean (SD) 48.73 (21.60) 60.76 (22.77)
Median [Min,Max] 47.0 [-25, 100] 62.0 [-25, 100]

Pressure
Mean (SD) 943.3 (34.91) 940.62 (63.28)
Median [Min,Max] 945.0 [0.0, 962.0] 945.0 [0.0, 1073.0]

Solar irradiance
Mean (SD) 220.73 (301.06) 191.95 (279.83)
Median [Min,Max] 11.0 [0.0, 1103.0] 9.0 [0.0, 1113.0]

Precipitation
Mean (SD) 0.03 (0.41) 0.03 (0.27)
Median [Min,Max] 0.0 [0.0, 30.4] 0.0 [0.0, 13.5]

Intensity
Count_non_zero 885863 (59.98%) 892197 (60.09%)
Mean (SD) 245.69 (402.73) 161.45 (313.33)
Median [Min,Max] 63.0 [0.0, 6348.0] 34.19 [0.0, 6588.0]

Occupancy time
Count_non_zero 845031 (57.21%) 822652 (55.41%)
Mean (SD) 3.96 (6.36) 2.57 (4.9)
Median [Min,Max] 0.95 [0.0, 100.0] 0.42 [0.0, 99.0]

Load
Count_non_zero 881500 (59.68%) 884950 (59.60%)
Mean (SD) 11.65 (14.91) 7.85 (11.75)
Median [Min,Max] 4.0 [0.0, 100.0] 2.2 [0.0, 100.0]

Average speed
Count_non_zero 233415 (15.8%) 223052 (15.0%)
Mean (SD) 4.39 (13.28) 4.04 (12.96)
Median [Min,Max] 0.0 [0.0, 96.5] 0.0 [-127.0, 127.0]

Right -451,215.234430 metres (Figure 1). There are 340
cells (20 by 17), which cover 56.27% of the total area of
the city of Madrid. The logic behind selecting this area was
to have a minimum extension to include all the air quality
control stations so as to obtain higher accuracy. The value
of each cell includes the values of NO2, meteorological
and traffic attributes recorded from assigned stations at a
particular time. The value of the cells that do not contain
any stations was set to zero, and in the case of several sta-
tions, the average value was set. The procedure described
above was repeated for each hour of the selected period.
The source code can be accessed at the GitHub reposi-
tory2.

The following software was used to process the data: Ar-
cGIS Pro3 with ArcPy package4 for combining air quality,
meteorological and traffic data both spatially and tempo-
rally (the data generated are available at the Zenodo repos-

2GitHub repository: https://github.com/Ditsuhi/
ExploratoryAnalysis_FeatureSelection

3ArcGIS Pro: https://pro.arcgis.com/en/pro-app/latest/
get-started/get-started.htm

4ArcPy package: https://pro.arcgis.com/en/pro-app/2.8/
arcpy/get-started/what-is-arcpy-.htm

itory5), and for creating maps; WRPLOT VIEW platform6

for generating wind roses; Openair R package7 for gen-
erating polar plots; Plotly Python Graphing Library8 for
generating graphs; and Google Colab cloud service9 for
running the models.

3 Exploratory Analysis

This step illustrates the results of observing features in the
defined area. Examining features makes it possible to take
a deep look at the data and, by correlating with NO2, to un-
derstand which features are the most important for predict-
ing NO2, as well as selecting these features as a subset and
using them as input for further predictive analyses. The
exploratory analysis includes comparative analysis, which

5Zenodo repository: https://doi.org/10.5281/zenodo.6076631
6WRPLOT VIEW: https://www.weblakes.com/software/

freeware/wrplot-view/
7Openair R package: https://bookdown.org/david_carslaw/

openair/polar-plots.html
8Plotly Python Graphing Library: https://plotly.com/python/
9Google Colab: https://colab.research.google.com/

notebooks/intro.ipynb
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Data source: OpenStreetMap contributors
Madrid city layer, air quality stations layer, meteorological stations layer and
traffic measurement points: Open Data portal of the City Council of Madrid
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Madrid City
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Traffic Measurement Points

Meteorological Stations

Air Quality Stations Map data © OpenStreetMap contributors, Microsoft, Esri
Community Maps contributors, Map layer by Esri
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contributors, Microsoft, Esri

Community Maps contributors,
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Figure 1. Air quality stations, meteorological stations, traffic measurement points (January 2019) and grid cells segments on the defined
area of the city of Madrid.

was performed for January and June 2019, to explore the
variables’ behaviour during two different seasonal periods.

First of all, a wind rose was created for each station, and
it turned out that out of 26 meteorological stations, only
ten stations provide data on wind speed and direction.
Then, based on the wind roses obtained, a map was gener-
ated showing the dominant wind directions at each station,
marked with different colours (Figure 2).

The output showed that in January we had the following
dominant directions with the station’s id, respectively -
North: 173, 217; Northeast: 214, 96; East: 72; Southwest:
138; South: 42; West: 242, 47, 5 - and in June: South:
42, 214; Southwest: 72, 138, 173, 217, 242; West: 5, 47,
96. Wind speed was classified based on the Beaufort scale
(Delmar-Morgan (1959); Huler (2007)).

After generating a wind rose for each station, it was found
that higher wind speed does not always coincide with the
dominant direction. For example, Figure 3 shows that at

the station with id=96 during January, which had calm
winds 3.63%, the predominant direction is northeast, but
a higher wind speed was found in the westerly direction.

To reveal a relationship between concentration and wind
speed, the time series of those variables were plotted to see
how they change over time. For example, Figure 4 shows
a time series of NO2 and wind speed during January for
the station with id=5. It can be observed that these two
variables are inversely proportional; particularly, increas-
ing wind speed assumes lower concentration due to in-
creased dilution through advection and increased mechan-
ical turbulence. This finding can also be seen in the scat-
ter plot, which was plotted by taking the y-axis for NO2
and the x-axis for wind speed (Figure 5). The trendline is
based on locally weighted scatter plot smoothing (Cleve-
land (1979)). Also, in Figure 6, which shows the time se-
ries of NO2 and wind speed of a typical day during January
(a typical day is a day on which hourly data is the average
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Wind Direction Cluster during January and June
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Figure 2. Wind direction cluster during January (left) and June (right) 2019 in the city of Madrid.

Figure 3. Wind Rose at the station with id=96 during January
2019 in the city of Madrid.

of all the records for a given hour over a specified period).
Again, it can be seen that the concentration decreases with
increasing wind speed.
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Figure 4. Time series of NO2 and wind speed during January
2019 at the station with id=5 in the city of Madrid.

Another analysis was performed to generate polar plots us-
ing the openair R package to show the relationship of con-
centration, wind speed and wind direction. Figure 7 and
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Figure 5. Scatter plot of NO2 and wind speed during January
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Figure 6. Time series of NO2 and wind speed of a Typical Day
during January 2019 at the station with id=5 in the city of Madrid.

Figure 8 show polar plots at the station with id=47 during
January and during June. It can be seen that in the central
part with a lower wind speed, the concentration is higher,
and at the edges with a higher wind speed, the concentra-
tion is lower. In the polar plots obtained using the average
NO2, it is noticeable that the concentration is lower in June
than in January, which can be explained by domestic heat-
ing.

An additional analysis was carried out to determine the
relationship between non-dimensional concentration and
non-dimensional wind speed. The formula to calculate
the non-dimensional concentration (Eq. (1)) and non-
dimensional wind speed (Eq. (2)) are illustrated below
(Stull (2015)).

C_ADIM = C ∗U ∗L ∗H/EMISSIONS (1)

U_ADIM = U/U_arp (2)

where,

Figure 7. Polar plot of wind speed, wind direction and mean con-
centration of NO2 during January 2019 at the station with id=47
in the city of Madrid.

Figure 8. Polar plot of wind speed, wind direction and mean con-
centration of NO2 during June 2019 at the station with id=47 in
the city of Madrid.

• C_ADIM – Non-dimensional concentration,

• C – Concentration (µg/m3),

• U – Wind speed (m/s),

• L – Road length (km) in a certain cell (it was calcu-
lated using ArcGIS Pro software),

• H – Planetary boundary layer height (m) in the
Adolfo Suárez Madrid–Barajas Airport, which was
generated by the ERA5 model (European Centre for
Medium-Range Weather Forecasts10),

• EMISSIONS – Nitrogen Oxides (NOx),

• U_ADIM – Non-dimensional wind speed,

10ECMWF: https://www.ecmwf.int/en/about
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• U_arp – Wind speed [10m] in the Adolfo Suárez
Madrid–Barajas Airport (m/s), which was obtained
from the ERA5 model.

Figure 9 and Figure 10 show the scatter plots of the
non-dimensional concentration and non-dimensional wind
speed. In those plots the relationship is not clear.

Figure 9. Scatter plot of the non-dimensional NO2 concentration
and non-dimensional wind speed during January 2019 at the sta-
tion with id=72 in the city of Madrid.

Figure 10. Scatter plot of the non-dimensional NO2 concentra-
tion and non-dimensional wind speed during June 2019 at the
station with id=72 in the city of Madrid.

Overall, observing the plots related to concentration and
wind speed, it was found that the concentration in the sta-
tion with id=72 is higher and wind speed is lower for Jan-
uary and June; the concentration in the station with id=138
in January is the lowest; concentration and wind speed are
more correlated during winter than in summer.

The above mentioned analyses were performed between
NO2 and other variables, although it was challenging to
reveal a certain correlation from the plots. All plots gen-
erated during the exploratory analyses are available in the
GitHub repository11.

For future selection, several points must be considered.
First, the following variables can be excluded for future

11GitHub repository: https://github.com/Ditsuhi/
ExploratoryAnalysis_FeatureSelection

predictive analysis: UV and precipitation. Regarding UV,
it was observed that in January it was recorded only in
three stations that have NO2 records (station: id=47, id=38,
id=217), and June has no UV records; moreover, there
were no records for the period from January to June 2020.
Regarding precipitation, it was found that around 99% of
data were 0. Another feature that may be excluded is aver-
age traffic speed. This is because the average traffic speed
is available only for the M30 road, which is 15.8% of the
case study. (Figure 11 shows average traffic speed for a pe-
riod of one week). However, it will be included in further
analyses in order to track the results after implementing
feature selection methods.

Overall, from all these observations and analyses, it can be
summarised that the most correlated feature with NO2 is
wind speed, and the features that definitely have to be ex-
cluded are UV and precipitation. Further analysis will be
performed based on features without the aforementioned
excluded features.

Average Traffic Speed

D. Iskandaryan, S. Di Sabatino, F. Ramos, S. Trilles

Traffic measurement points layer and average traffic
speed: Open Data portal of the City Council of Madrid
Roads layer: MapCruzin

2 840 Km

Roads

Grid Cells

more than 80.0

60.0 - 80.0

40.0- 60.0

20.0 - 40.0

less than 20.0

Average Speed (Km/h)

Figure 11. Average traffic speed for the period 1-7 January 2019
in the city of Madrid.

4 Methodology and Evaluation Metrics

This section describes the methods used for feature selec-
tion and predictive analysis, and the metrics used to eval-
uate model performance.
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4.1 Feature Selection Techniques

Feature selection should be implemented to select the best
combination of features, which will prompt the model
to generalise data efficiently. In this work, the follow-
ing feature selection techniques were used: Mutual Infor-
mation (MI) and Maximum Relevance-Minimum Redun-
dancy (mRMR) (Peng et al. (2005); Zhao et al. (2019)).

Mutual information: This technique calculates the mutu-
ality between additional features and the target feature
(NO2). The formula to calculate mutual information is pre-
sented below (Eq. (3)).

MI(x;y) =

∫∫
P (xi,y)log

P (xi,y)

P (xi)P (y)
dxi dy

=H(x)−H(x|y)
(3)

where P (xi,y) is the joint probability distribution of
two variables, P (xi) and P (y) are marginal distributions,
H(x) is the entropy for x, and H(x|y) is the conditional
entropy.

Maximum Relevance-Minimum Redundancy: mRMR se-
lects the features that are the most relevant to the target
also considering minimum redundancy concerning the fea-
tures that have already been selected. The equation of the
mRMR is the following (Eq. (4)).

scorei(f) =
F (f,target)∑

s∈features selected until i−1 |corr(f,s)|/(i− 1)

(4)

where i is the i-th iteration, f is the feature that is being
evaluated, F is the F-statistic and corr is the Pearson cor-
relation.

4.2 Bidirectional Convolutional LSTM

Bidirectional Convolutional LSTM (BiConvLSTM) was
chosen as the machine learning method for predicting NO2
and comparing results obtained with different feature se-
lection techniques. BiConvLSTM is an advanced version
of ConvLSTM, which is able to preserve spatiotemporal
information. It combines the LSTM unit (responsible for
temporal information) and the convolutional layer (respon-
sible for spatial information), and adding a bidirectional
factor captures more information in the time dimension.
Below is the mathematical expression of BiConvLSTM
(Eq. (5)) (Song et al. (2018)).

Yt = tanh(WHf
y ∗Hf

t +WHb
y ∗Hb

t−1) (5)

where Hf is the hidden state from the forward ConvLSTM
unit, Hb is the hidden state from the backward ConvLSTM

unit, and Yt is the final output. The ConvLSTM can be for-
mulated with the following equations (Eq. (6)) (Shi et al.
(2015); Song et al. (2018)):

it = σ(WX
i ∗Xt +WH

i ∗Ht−1)

ft = σ(WX
f ∗Xt +WfH ∗Ht−1)

ot = σ(WX
o ∗Xt +WH

o ∗Ht−1)

Ct = ft ⊗Ct−1 + it ⊗ tanh(WX
c ∗Xt

+WH
c ∗Ht−1)

Ht = ot ⊗ tanh(Ct)

(6)

where it is the input gate, ft is the forget gate, and ot is
the output gate (these gates control the flow of informa-
tion through the cell), W is the weight matrix in the for-
ward ConvLSTM cell, Xt is the current input data, ht−1

is the previous hidden output, Ct is the cell state, "∗" rep-
resents the convolution operation and "⊗" represents the
Hadamard product.

4.3 Evaluation Metrics

To evaluate the model performance, Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) were cho-
sen as evaluation metrics. RMSE measures the geometric
difference between estimated and actual values and it is
very sensitive to large errors (Eq. (7)), and MAE measures
the average magnitude of the errors (Eq. (8)).

RMSE =

(
1

n

n∑
i=1

(Ei −Ai)
2

)1/2

(7)

MAE =
1

n

n∑
i=1

|Ei −Ai| (8)

where n is the number of instances, and Ei and Ai are the
estimated and actual values. The lower the value, the better
the prediction.

5 Experiments and Results

This section describes the experiments and the results ob-
tained. It should be mentioned that this work is the ex-
tension of the following work (Iskandaryan et al. (2022)).
Therefore, the detailed description of data generation, data
preprocessing steps and model development can be found
in the aforementioned work. The main focus of the cur-
rent work is feature selection and data transformation. The
workflow is illustrated in Figure 12.

In this stage, the BiConvLSTM will be applied to the
selected subsets obtained using the feature selection
methods, including mutual information and maximum
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Figure 12. The workflow of the analysis focusing on the two
components of feature engineering, including feature selection
and transformation.

relevance-minimum redundancy. It should also be pointed
out that based on the fact that wind direction is a cyclical
feature, extra preprocessing steps must be implemented in
order to transform wind direction data. Based on the trans-
formation mechanism, the experiments were carried out
with the following scenarios:

First scenario: Wind direction was converted to the fol-
lowing categories: north, east, south, west, southwest,
northeast, southeast, northwest, and later it was included
in the analysis by implementing One Hot Encoder12.

Second scenario: Wind direction was converted to u and v
components using the following equations (Eq. (9))13.

u= ws ∗ cos(θ)
v = ws ∗ sin(θ)

(9)

where ws is the wind speed, θ is the wind direction us-
ing mathematical direction (mathematical wind direction
= 270-meteorological wind direction).

Feature selection techniques were implemented for each
scenario. Figure 13 and Figure 14 show the results of
both scenarios based on the mutual information technique.
The features selected were those with a score higher than
0.005. In Figure 13 it can be observed that among 17 fea-
tures the following 6 were selected: intensity, occupancy
time, wind speed, pressure, load and average traffic speed.
In Figure 14, of 11 features the following 8 were selected:
intensity, occupancy time, wind speed, pressure, load, av-
erage traffic speed, u component and v component.

After extracting the relative features using mutual infor-
mation, the next step is to run BiConvLSTM. Table 2
shows the results. First of all, it can be seen that on includ-
ing all the features the results of the first scenario outper-

12One Hot Encoder: https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.OneHotEncoder.html

13Wind: u and v Components: http://colaweb.gmu.edu/dev/
clim301/lectures/wind/wind-uv
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Figure 13. Feature selection using the mutual information tech-
nique (Wind direction with One Hot Encoder).
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Figure 14. Feature selection using the mutual information tech-
nique (Wind direction with u and v components).

formed the second scenario. However, the results of mu-
tual information do not maintain the same trend. In partic-
ular, for the first scenario, mutual information deteriorated
the results, but in the second scenario, mutual information
improved the overall results. Considering also that after
the implementation of mutual information in the second
scenario two components, u and v, were chosen, and in the
first scenario no category of wind direction was included,
it can be concluded that wind direction is one of the im-
portant features for predicting NO2. An additional finding
is that, with all features included, the conversion of wind
direction into categories and the subsequent implementa-
tion of One Hot Encoder outperformed the conversion to u
and v components.

Table 2. RMSE and MAE of Scenarios I and II using BiConvL-
STM (units in µg/m3).

All Features Selected Features (MI)
RMSE MAE RMSE MAE

Scenario I 18.99 12.89 26.92 20.00
Scenario II 24.87 16.49 22.32 16.89
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Regarding mRMR, the results are illustrated in Table 3
(first scenario) and Table 4 (second scenario). It can be
seen that the results are significantly reduced. In the case
of the first scenario, the best combination of the features
is obtained when K=7 (RMSE–3.44, MAE–2.87). The se-
lected features are: load, northwest direction, pressure,
wind speed, average traffic speed, occupancy time and
north direction. In the case of the second scenario, the best
result was obtained when K=5 (RMSE–4.20, MAE–3.65).
The selected features are load, pressure, wind speed, aver-
age traffic speed and occupancy time.

Table 3. RMSE and MAE of extracted features based on mRMR
(K is the number of features) using BiConvLSTM (scenario I).

RMSE (µg/m3) MAE (µg/m3)
K=3 6.81 5.97
K=4 5.61 5.18
K=5 3.55 3.07
K=6 4.90 4.37
K=7 3.44 2.87
K=8 19.91 15.51

Table 4. RMSE and MAE of extracted features based on mRMR
(K is the number of features) using BiConvLSTM (scenario II).

RMSE (µg/m3) MAE (µg/m3)
K=3 5.60 4.84
K=4 5.26 4.69
K=5 4.20 3.65
K=6 23.51 14.05
K=7 33.48 21.29
K=8 31.80 21.77

Following the outcome, it can be concluded that mRMR
outperformed mutual information since this latter selects
the most relevant features, while mRMR selects the rel-
evant features with minimal redundancy. In addition, it
is important to see which features were chosen and what
these results are related to. In both cases, after implement-
ing mRMR, the load was selected. Taking into account
the definition of load (load is a combination of intensity,
time of use and road capacity) and given the importance
of traffic data for NO2 production, the choice of this fea-
ture is obvious. The other features that yield better results
are pressure, wind speed, average traffic speed and occu-
pancy time. The last two features, as already mentioned,
are chosen because of the importance of traffic data for
NO2 production. Regarding wind speed, as mentioned in
the exploratory analysis, there is a strong correlation be-
tween wind speed and NO2. Regarding the wind direction
transformation, the u and v components were not included
in the selected subsets after applying mRMR, although the
northwest and north directions were included. The best
subsets of the first scenario outperformed the second sce-
nario, improving RMSE by 18.1% and MAE by 21.37%.

Therefore, also in the case of implementing mRMR, it can
be seen that wind direction conversion to categories sur-
passed the u and v conversion.

Regarding the overall results, it should be noted that 2020
was a year with certain peculiarities, namely the coron-
avirus (COVID-19) pandemic and its consequences, in-
cluding traffic restrictions and self-isolation. It would be
ideal to choose a period other than 2020 in order to avoid
the impact of COVID-19 on the analyses.

6 Conclusions

NO2 prediction is a critical task. Numerous factors influ-
ence the formation of NO2. Among all the factors, it is
very important to choose the best minimum factors that
will help to predict the concentration faster and more accu-
rately. There are many methods for feature selection. The
results showed that combining machine learning methods
with domain knowledge can produce better results.

This work has focused on the application of mutual in-
formation and maximum relevance-minimum redundancy,
obtaining the most relevant features related to NO2, and
comparing the results of both methods. Another direction
was the preprocessing of wind direction data. Two conver-
sion methods have been implemented: converting the wind
direction into u and v components or into categorical data.
The results show that the conversion of the wind direction
in One Hot Encoder is superior to the conversion to the u
and v components. Regarding feature selection methods, it
was found that the implementation of mRMR yields better
results compared to mutual information, given the fact that
mRMR, in addition to selecting relevant features, tries to
select the next relevant feature that has a minimum corre-
lation with already selected features.
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