Applied open-source Discrete Global Grid Systems
Alexander Kmoch
                                            Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
                                        
                                    Oleksandr Matsibora
                                            Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
                                        
                                    
                                            Institute of Geography, National Academy of Sciences of Ukraine, Kyiv, Ukraine
                                        
                                    Ivan Vasilyev
                                            Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
                                        
                                    Evelyn Uuemaa
                                            Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
                                        
                                    Related authors
Alexander Kmoch, Kevin Sahr, Wai Tik Chan, and Evelyn Uuemaa
                                    AGILE GIScience Ser., 6, 32, https://doi.org/10.5194/agile-giss-6-32-2025, https://doi.org/10.5194/agile-giss-6-32-2025, 2025
                            Alexander Kmoch, Benoit Bovy, Justus Magin, Ryan Abernathey, Alejandro Coca-Castro, Peter Strobl, Anne Fouilloux, Daniel Loos, Evelyn Uuemaa, Wai Tik Chan, Jean-Marc Delouis, and Tina Odaka
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 75–80, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, 2024
                            Nikita Murin, Alexander Kmoch, and Evelyn Uuemaa
                                    AGILE GIScience Ser., 4, 34, https://doi.org/10.5194/agile-giss-4-34-2023, https://doi.org/10.5194/agile-giss-4-34-2023, 2023
                            Tahmin Sitab, Oleksandr Karasov, and Alexander Kmoch
                                    AGILE GIScience Ser., 4, 43, https://doi.org/10.5194/agile-giss-4-43-2023, https://doi.org/10.5194/agile-giss-4-43-2023, 2023
                            Evelyn Uuemaa and Alexander Kmoch
                                    AGILE GIScience Ser., 3, 65, https://doi.org/10.5194/agile-giss-3-65-2022, https://doi.org/10.5194/agile-giss-3-65-2022, 2022
                            Holger Virro, Alexander Kmoch, Marko Vainu, and Evelyn Uuemaa
                                    AGILE GIScience Ser., 3, 66, https://doi.org/10.5194/agile-giss-3-66-2022, https://doi.org/10.5194/agile-giss-3-66-2022, 2022
                            Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
                                    Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
                                            
                                            
                                        Alexander Kmoch, Arno Kanal, Alar Astover, Ain Kull, Holger Virro, Aveliina Helm, Meelis Pärtel, Ivika Ostonen, and Evelyn Uuemaa
                                    Earth Syst. Sci. Data, 13, 83–97, https://doi.org/10.5194/essd-13-83-2021, https://doi.org/10.5194/essd-13-83-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We derived parameters including soil layering, soil texture (clay, silt, and sand content), coarse fragments, and rock content and aggregated and predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic carbon content, available water capacity).
                                            
                                            
                                        Alexander Kmoch, Kevin Sahr, Wai Tik Chan, and Evelyn Uuemaa
                                    AGILE GIScience Ser., 6, 32, https://doi.org/10.5194/agile-giss-6-32-2025, https://doi.org/10.5194/agile-giss-6-32-2025, 2025
                            Evelyn Uuemaa, Marco Ciolli, and Marco Minghini
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 1–2, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-1-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-1-2024, 2024
                            Alexander Kmoch, Benoit Bovy, Justus Magin, Ryan Abernathey, Alejandro Coca-Castro, Peter Strobl, Anne Fouilloux, Daniel Loos, Evelyn Uuemaa, Wai Tik Chan, Jean-Marc Delouis, and Tina Odaka
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 75–80, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, 2024
                            Nikita Murin, Alexander Kmoch, and Evelyn Uuemaa
                                    AGILE GIScience Ser., 4, 34, https://doi.org/10.5194/agile-giss-4-34-2023, https://doi.org/10.5194/agile-giss-4-34-2023, 2023
                            Tahmin Sitab, Oleksandr Karasov, and Alexander Kmoch
                                    AGILE GIScience Ser., 4, 43, https://doi.org/10.5194/agile-giss-4-43-2023, https://doi.org/10.5194/agile-giss-4-43-2023, 2023
                            Evelyn Uuemaa and Alexander Kmoch
                                    AGILE GIScience Ser., 3, 65, https://doi.org/10.5194/agile-giss-3-65-2022, https://doi.org/10.5194/agile-giss-3-65-2022, 2022
                            Holger Virro, Alexander Kmoch, Marko Vainu, and Evelyn Uuemaa
                                    AGILE GIScience Ser., 3, 66, https://doi.org/10.5194/agile-giss-3-66-2022, https://doi.org/10.5194/agile-giss-3-66-2022, 2022
                            Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
                                    Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
                                            
                                            
                                        Alexander Kmoch, Arno Kanal, Alar Astover, Ain Kull, Holger Virro, Aveliina Helm, Meelis Pärtel, Ivika Ostonen, and Evelyn Uuemaa
                                    Earth Syst. Sci. Data, 13, 83–97, https://doi.org/10.5194/essd-13-83-2021, https://doi.org/10.5194/essd-13-83-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We derived parameters including soil layering, soil texture (clay, silt, and sand content), coarse fragments, and rock content and aggregated and predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic carbon content, available water capacity).