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Abstract. Discrete Global Grid Systems (DGGS) are spa-
tial reference systems that use a hierarchical tessellation of
cells to partition and address the globe and provide alter-
native spatial data format and indexing methods as com-
pared to traditional vector and raster spatial data. In or-
der to effectively use DGGS, functional software needs to
be available and data needs to be indexed into a DGGS.
We compare the software APIs of the 5 main open-source
DGGS implementations - Uber H3, Google S2, rHEALPix
by Landcare Research New Zealand, RiskAware Ope-
nEAGGR, and DGGRID by Southern Oregon University
- and present exemplary workflows for converting spatial
and vector and raster datasets into DGGS-indexed format.
We summarize, that Uber H3 and Google S2 provide more
mature software library functionalities and DGGRID pro-
vides excellent functionality to construct grids with de-
sired geometric properties and to load point data but does
not provide functions for traversal and navigation within a
grid after its construction.

Keywords. Coordinate Reference Systems; Spatial In-
dexing; software API; DGGS

1 Introduction

Two main approaches have arisen for the creation of the
Digital Earth: Discrete Global Grid Systems (DGGS), and
data cubes (Purss et al., 2019; Alderson et al., 2020). In a
DGGS, the surface of the Earth is tessellated into a set of
highly regular cells. These cells can then be addressed by
using an indexing mechanism that is used to assign and re-
trieve data. Data cubes are n-dimensional arrays that are
used to store query-ready spatial-temporal data ordered
according to various attribute/coordinate axes, which can
be spatial or non-spatial in nature (Alderson et al., 2020).
DGGS theory has been discussed for decades in the scien-
tific community, but the interest among wider public has
gained momentum in recent years including emergence of
practical implementations, as demonstrated by the recent

OGC abstract specification (Open Geospatial Consortium,
2017). Consequently, DGGS are increasingly considered
as the globally applicable reference system and spatial data
model for congruent hierarchical data cubes and spatial
data in general (Goodchild, 2018; Purss et al., 2019). The
discretization of the sphere (or ellipsoid) is derived from
the faces of a platonic base solid (Fig.1), the most com-
monly implemented base solids are the cube and the icosa-
hedron.

Figure 1. Different platonic base solids and their spherical rep-
resentations (left to right, top to bottom): tetrahedron, cube, oc-
tahedron, dodecahedron, icosahedron (Source: Lei et al., 2020)

Li and Stefanakis (2020) have summarized advantages of
DGGS against traditional GIS. However, cell divisions of
DGGS implementations have different geometric proper-
ties due to the choice of the base solid, tessellation scheme,
and geographic referencing or projection method for the
cells. A DGGS software needs to implement a set of core
steps, 1) select base solid as a partition surface, 2) choose
an orientation of the base solid relative to the Earth, 3)
define the hierarchical spatial partitioning method (tessel-
lation) on the faces of the base solid, 4) project the planar
partition face to the corresponding spherical or ellipsoidal
surface, and 5) provide a method of indexing and address-
ing grid cells. The majority of tessellation types used in the
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literature and in available software are based on a) the cube
as the base solid with rectangular congruent refinements,
b) quaternary triangular meshes, c) or hexagonal systems.
The aperture of a tessellation system describes the rela-
tionship of a parent cell to the children cells of the next
higher resolution. For example, a square (or any quadrilat-
eral) or a triangle can be subdivided in 4 equal children,
thus an aperture of 4. For hexagons, there are several aper-
tures known, 3,4 and 7. Only in aperture 7 hexagonal sys-
tems we can speak of an almost congruent parent-child
relationship. Fig.2 shows widely used tessellations.

Figure 2. Most widely implemented tessellation schemes (left to
right, top to bottom): aperture 7 hexagons (7H), 3H, 4H, aper-
ture 4 triangles (4T), aperture 9 mixed (rHEALPix), aperture 4
squares. The last two instances have a cube as a base solid, the
former ones use an icosahedron.

Classic GIS services such as gazetteers are rediscovered
for geo-referencing geoscience articles (Adams, 2017).
DGGS-based GIS analyses are already being conducted
across a variety of domains, including crime analy-
sis (Jendryke and McClure, 2019), wildfire modelling
(Robertson et al., 2020), characterisation of coastal envi-
ronments (Bousquin, 2021), risk analysis for marine traf-
fic (Rawson et al., 2021), or flood mapping (Chaudhuri
et al., 2021). Other Various large-scale GIS challenges are
being reevaluated on DGGS, including watershed delin-
eation, land use / land cover change statistics, and gen-
eral earth system modelling (Liao et al., 2020). Such stud-
ies rely on available open-source DGGS implementations
and authors state unanimously that DGGS are favourable
geospatial frameworks for data integration and large scale
environmental modelling and analysis.

In this short paper we want to provide an overview of avail-
able free and open-source DGGS software, their function-
alities and how to use them in a conceptual workflows of
indexing spatial data. We conclude the article with a dis-
cussion on current perceived shortcomings and a call to
action to improve the tooling and interoperability around
open-source DGGS software.

2 Available free and open-source DGGS software

2.1 Data and Software Availability

Although predominantly developed in the C/C++ pro-
gramming languages, all free and open-source DGGS soft-
ware have some support for the Python programming lan-
guage. This facilitates a comparative analysis of their func-
tionality.

• Uber H3 (Uber Technologies Inc, 2018): base C-
libary, with many implementations, including a
Python API, also installable from on PYPI and
CONDA https://h3geo.org/;

• rHEALPix (Gibb et al., 2016): a pure Python library
depending on Numpy and Scipy, available on PYPI
https://github.com/manaakiwhenua/rhealpixdggs-py;

• DGGRID (Sahr, 2019): a C++ based command-
line tool, need to be self-compiled, there are wrap-
pers for DGGRID https://www.discreteglobalgrids.
org/software/;

• Google S2 (Veach et al., 2017): a C++ library, needs
to be compiled with SWIG to make use of Python
bindings https://s2geometry.io/;

• OpenEaggr DGGS (Bush, 2017): an often compared
C++ DGGS, with Python bindings, however, public
development has not continued though https://github.
com/riskaware-ltd/open-eaggr/.

We developed a Jupyter/Binderhub notebook-based repos-
itory for exploratory work with open-source Discrete
Global Grid System implementations https://github.com/
allixender/dggs_t1 (Kmoch, 2021).

In order to include DGGRID into Python compatible
workflows we developed a Python wrapper tool named dg-
grid4py, also available on PYPI (Kmoch, 2020). This still
requires DGGRID to be compiled and installed, but then
integrates with the geospatial Python libraries ecosystem
including Shapely, Fiona and Geopandas.

2.2 Functionality and API comparison

2.2.1 rHEALPix

The rearranged Hierarchical Equal Area isoLatitude Pix-
elization (rHEALPix) DGGS is based on the NASA
HEALPix system (Gorski et al., 1998; Gibb et al., 2016).
In contrast to other DGGS it is based on a ellipsoid and
not a sphere. rHEALPix uses a cube as the base solid and a
symmetric hierarchical partitioning of the cube faces with
4 different shape variations depending on the latitude - a
quad cell (quadrilateral), a dart cell (triangular), a skew-
quad cell (quadrilateral), and a cap cell (circular). All 4
shapes are congruent and form an aperture 9 refinement.
The rHEALPix projection method is non-conformal, but
achieves that the area of each cell is equal throughout each
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resolution. For indexing, Z (Morton) space-filling curves
are used for every face of the cube. Table 1 lists central
rHEALPix implementation details, which include conver-
sion to and from geographic coordinates and grid travers-
ing. The ellipsoid as well as rotation of the base solid can
be freely defined (Bowater and Stefanakis, 2018).

Table 1. rHEALPix API highlights

Description API details

DGGS object rddgs = rhealpixdggs.dggs.WGS84_003
cell from suid rdggs.cell(suid)
cell from point rdggs.cell_from_point()
get outline cell.boundary(n=2, plane=False)

cell.vertices(plane=False)
get centroid cell.centroid()
region filler cells = rdggs.cells_from_region(res, se, nw)

(returns a nested list indicating topology)
coordinates cell.centroid(plane=False)

rdggs.cell_from_point(coords, resolution)
child access cell.subcells()
neighborhood cell.neighbor, cell.neighbors

2.2.2 OpenEAGGR

RiskAware developed and published the Open Equal Area
Global Grid (OpenEAGGR) library in 2017 (Bush, 2017).
The OpenEAGGR library implements an fixed orienta-
tion icosahedron as the base solid and uses the ISEA pro-
jection. It provides two different tesselations: 1) a fully
congruent and functional hierarchical triangle tesselation
(ISEA4T), and 2) an non-congruent aperture 3 hexago-
nal DGGS (ISEA3H), which only supports offset index-
ing, but not hierarchical or unique identifier-based index-
ing. The API provides functions to convert to and from
geographic coordinates, grid traversing and methods for
spatial analysis such as intersections, proximity (Table 2).
OpenEAGGR uses an accuracy concept, which does not
seem to allow direct access to a hierarchical resolution
level configuration.

Table 2. OpenEAGGR API highlights

Description API details

DGGS object dggs = Eaggr(Model.ISEA4T)
cell dggs.convert_point_to_dggs_cell(lat, lon, acc)
cell to point convert_dggs_cell_to_point()
outline convert_dggs_cell_outline_to_shape_string()
parent cell(s) get_dggs_cell_parents()
child cells get_dggs_cell_children()
sibling cells get_cell_siblings()
BBOX cell get_bounding_dggs_cell()

2.2.3 H3

The Hexagonal Hierarchical Geospatial Indexing System
(H3) was developed at Uber as a grid system for optimiza-
tion of ride pricing and dispatch, for visualizing and ex-
ploring spatial data (Uber Technologies Inc, 2018). H3 is
internally used in different business processes to aggregate
and analyze geographic information to set dynamic prices
and make other decisions on a city-wide level. The H3
DGGS is based on an aperture 7 hexagonal tessellation of
the icosahedron. The orientation of the base icosahedron is
fixed with all vertices located in the ocean to minimize dis-
tance distortions in cities. Two indexing method provides
flexible and computationally efficient methods for neigh-
boring and hierarchical traversing. Table 3 only shows a
small excerpt of the user-fiendly H3 functionalities.

Table 3. H3 API highlights

Description API details

DGGS object fixed, not necessary
cell geoToH3(lat, lng, res)
cell to point h3ToGeo(h3Index)
outline h3ToGeoBoundary(h3Index)
parent cell(s) h3ToParent(h3Index, res)
child cells h3ToChildren(h3Index, res)
sibling cells kRing(h3Index, ringSize)

hexRing(h3Index, ringSize)
hexRing(h3Index, ringSize)

region filler polyfill(coordinates, res)

2.2.4 Google S2

S2 is an advanced library for computational geometry and
spatial indexing on the sphere. S2 uses the cube as the
base polyhedron, with a fixed orientation. Two faces are
located with their centroids on the poles, one face hav-
ing its centroid on the intersection of the prime meridian
and the equator, and the other faces evenly surrounding
the equator. The chosen partition shape for the cube is the
square with a fully congruent aperture 4 refinement. For
indexing, Hilbert space-filling curve is used to recursively
index the cells for all resolutions on the 6 faces of the cube.
S2 provides methods for the conversion from geographic
coordinates to cells and back, but its strength lies in com-
putational geometry (point indexing, great circle distances,
areas and angles). Table 4 demonstrates that the S2 API
logic varies from the above mentioned DGGS in that as-
pect.

2.2.5 DGGRID

DGGRID is an open-source command-line application
written in C++(Sahr, 2019) to construct icosahedral DG-
GSs and allows to define set of design parameters such
as tessellation shape (triangles, diamonds, hexagons), ori-
entation, and projection method (ISEA or Fuller-Gray), a
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Table 4. S2 API highlights

Description API details

DGGS object fixed, not necessary
LatLon obj S2LatLng.FromDegrees(lat, lon)
cell cell_id = S2CellId(LatLon)

cell = S2Cell(S2CellId.FromToken(cell_id)
cell to point .ToPoint()
outline cell.GetS2LatLngVertex(pos 0 - 4)

(or) polygon = S2Polygon(cell)
parent cell cell.parent(res)
child cells cell.child(0-3)
region filler rect = S2LatLngRect(ll, ur)

S2RegionCoverer().GetCovering(rect)
neighborhood latLngToNeighborKeys()
S2 point index S2 points (not cells yet)

can be in-memory indexed

resolution and area of interest (Sahr, 2011). DGGRID only
operates with the icosahedron as the base polyhedron and
its core functionality revolves around binning point data
into DGGS cells at a chosen resolution. DGGRID allows
to export generated DGGS to standard GIS formats. To
programmatically utilize the potential of the tool several
software packages provide convenient wrappers, the most
prominent being dggridR for the R Statistical language
(Barnes, 2018). Several Python packages are available as
well (Hojati, 2019; Correndo, 2019; Kmoch, 2020). The
rather high-level functionalities around the DGGRID tool
can be summarized as follows:

• region filler, i.e. constructing are grid with given pa-
rameters, incl. tessellation shape, resolution, rotation
for either the whole globe or a bounding box;

• retrieve either full geometries, centroids or cell iden-
tifiers for the parameterized grid;

• reversely, generate full cells from either cell ids or
points for a parameterized grid definition;

• sample/aggregate point data into dggs cells, i.e. bin-
ning

3 Conceptual workflows to convert spatial data into
DGGS

The most important functionality for any DGGS imple-
mentation is to index and convert data into a DGGS (in-
gestion). We describe considerations for ingesting generic
raster data, and point and polygon vector data. Once in-
dexed, data values can be hierarchically aggregated to-
wards lower resolution parent cells by the cell indexes
using preferential statistical aggregation method (mean or
median in case of numerical or mode in case of categorical
values).

3.1 Raster

For ingestion of raster data several strategies can be used.
The most straightforward approach is to use coordinates
of raster pixels centroids to get corresponding DGGS cells
indexes on desired resolution. This method allows to avoid
expensive vector geometry generation for point query for
zonal statistic. The downside of this method is the neces-
sity to assure that sampling DGGS resolution will match
resolution of the ingested raster. A coarser DGGS resolu-
tion will lead to data loss due to less frequent sampling
points (cells centroids) distribution than raster pixels. In
case of significantly finer resolution, there will be an un-
necessary overhead during sampling process and loss in
performance of the algorithm. To provide decision sup-
port, a simple pseudo algorithm is suggested. First, the in-
put raster pixel size is retrieved from the metadata. Then
for a range of DGGS resolutions average cell edge size is
calculated and compared with raster pixel size. If a cell
area is less than a given desired pixel size then this DGGS
resolution can be chosen for the data ingestion. If this ratio
is about 1/2 or 1/3, all input raster pixels will be sampled
by DGGS cell centroids and no data loss occurs. The pro-
cedure needs to be conducted band by band in case the
raster file contains multiple bands.

Another option is to use cell polygons with a raster zonal
statistic algorithms. This method will be more computa-
tionally expensive as it is necessary first to construct full
cell geometries for the region extent of the raster. An ad-
vantage of this approach is the possibility to use any lower
desired resolution of DGGS for ingestion with any desired
statistical aggregation method of raster data into DGGS
cell.

3.2 Points

The ingestion of vector points is the simplest scenario as
all DGGS implementations have methods for conversion
of geographic coordinates to cells indexes. The procedure
is the same as raster pixels centroids ingestion scenario
described above. However, vector data can have many at-
tributes with different data types.

Independently of their quantity, attributes types and other
characteristics, the input source will be converted into ar-
ray of DGGS indexes and stored as table rows. The value
of the optimal resolution is more difficult. Potentially,
nearest neighbour or Voronoi polygon generation could
provide hints to smallest distances that could be consid-
ered unique cells. However, depending on the data occur-
rences at very close or identical location might be accept-
able. Value of optimal resolution can also be calculated
by processing of all objects in a loop, where features are
converted to DGGS indexes and duplicates are counted.
With each new loop the level of resolution will increase
by one unit until there are no duplicates or the resolution
value is at a defined maximum. Defining field types for
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the ingested DGGS data table is based on the recognition
of attributes types of the input features.

3.3 Polygons

Polygonal vector data ingestion is more complicated due
to necessity in careful selection of DGSS resolution level
to avoid data loss due to undersampling. A basic strategy
is to get DGGS cell centroids on a manually defined fine
enough resolution and use spatial intersections to assign
desired polygon attributes to cells. To automatically select
an appropriate resolution the following pseudo algorithm
might be used: First, calculate an area of the smallest poly-
gon in the input vector dataset. Then, calculate an average
cell area of a range of DGGS resolutions. If the cell ra-
tio of polygon area/cell area is smaller than the desired
value, then the corresponding resolution is appropriate for
ingestion. Depending on the aperture of the DGGS type,
each next higher resolution already decreases the DGGS
cell size by a factor of 4, 7 or even 9, which will quickly
reduce the area discrepancy of the filling cells versus the
original size of the converted polygon. In most cases we
will have to process not only a single polygon but often
it is required to deal with multipolygons, i.e. collection of
polygons. The conversion of single polygons should then
be done in a loop of conversion of each subpolygon inside
parent polygons.

4 Discussion and Conclusions

The H3 system is very popular and has been widely
adopted, including support for H3 cell indices in vari-
ous sofwtare such as Deck.gl and Kepler.gl and the FME
software (Safe Software, 2022). DGGS software started
out as point location indexing and aggregation systems,
in particular DGGRID, H3 and S2. However, for aggre-
gating and area-true statistical analysis of environmental
variables they are less suitable than true “raster-type” al-
ternatives. rHEALPix on the other side, and ISEA-based
DGGS (Snyder equal area projection in DGGRID and
OpenEAGGR), are ideal candidates for gridded repre-
sentation of continuous phenomena (like in GeoTIFF or
NetCDF formats). For example, H3 is an aperture 7 hexag-
onal grid that use the Gnomonic projection which is not
equal area. Google S2 builds on a cube-sphered projection
which only guarantees area variations to stay within a fac-
tor of 1.5 (Veach et al., 2017). Thus, H3 and S2 should not
be considered in environmental modelling or equal-area
DGGS-based data cubes, because they do not have equal
area cells across the globe. For example, when intending
to aggregate large scale landuse, forest cover, soils and cli-
matologies and calculate area-based statistics, rHEALPix
and ISEA-based grids should be used.

DGGSs like H3, S2 OpenEAGGR have useful and mostly
straight-forward indexing systems that provide practical
neighborhood functions, and hierarchical cell access. This

is a particular DGGS semantic that the same cell id is al-
ways at the same location. Passing that cell ID to another
program or platform enables to exactly identify location
and resolution under the assumption the DGGS type is
known.

There are a few core opportunities to suggest:

• improving access and installation for these tools, S2
and DGGRID are for example still hard to compile
and install on windows systems;

• this would support seamless uptake with other open-
source communities around Osgeo and Pangeo;

• there is currently no equal-area congruent hierarchi-
cal hexagonal DGGS in a library module comparable
to the functionalities of H3, S2 or rHEALPix;

• developing a portable C-compatible base library for
rHEALPix, so the DGGS can be used across lan-
guages, including the web (JavaScript)

We believe that it will be very typical to use these sorts of
grids in 10 years. The challenge is adapting our analysis
software so that the user experience is as seamless as it is
with traditional raster, i.e. rectangularly gridded data.
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