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Abstract. After reviewing the existing facility location 
problems, we discuss the issues arising from uncertainty 
when applying the optimal solution to actual planning. To 
address this problem, we propose a method that can 
increase the degree of flexibility of the facility location 
planning by finding alternative solutions (facility 
locations obtained by setting an acceptable tolerance for 
the value of the objective function). Next, we conduct 
numerical analysis using hypothetical data and 
demonstrate the characteristics of facility location 
problems. Furthermore, the characteristics of the optimal 
solution and the alternative solutions are examined using 
numerical analysis in which the proposed method is 
applied to an actual urban space, and the potential of the 
proposed method is discussed. 
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1 Introduction 

In planning service facilities, it is important to set the 
purpose of facility establishment while reflecting the 
needs of residents, and to plan the facility size, location, 
service contents, management and operation style, and so 
on. One of the most important issues to be considered is 
the location of the facility. For instance, Caprioli and 
Bottero (2021) pointed out that it is becoming 
increasingly important to integrate variety kinds of 
aspects using Multicriteria Decision Analysis (MCDA) 
for identifying suitable locations for urban infrastructures. 
For example, the locating problem of new healthcare 

facilities is very complex because it requires 
consideration of many aspects, including technical 
factors, social factors, location factors, and environmental 
factors. Therefore, they argued that spatial multi-criteria 
analysis is important to identify the appropriate location 
of urban facilities. 

One of the viewpoints to determine the appropriate 
location of the facility is the accessibility to the facility. 
For this reason, there have been many studies using 
mathematical models on the "facility location problem," 
which determines the locations of facilities using the 
distance traveled from locations of users to the facilities 
as an evaluation index. For example, the facility location 
problem has been formulated as various optimization 
problems such as the Weber problem, minimax problem, 
median problem, center problem, and coverage problem 
(Jacobsen, 1981; Karatas et al., 2017). As examples of the 
application of the facility location problem in the field of 
urban planning, there have been many studies on the 
location planning of regional facilities for municipalities. 
Turkoglu and Genevois (2020) pointed out that service 
facility related location science has attracted great interest 
in recent years and showed that service facility location 
problems were classified according to their application 
areas. Furthermore, Sahin and Sral (2007) reviewed 
hierarchical facility location models. They classified 
hierarchical facility problems based on the flow pattern, 
availability of services at each hierarchical level, and 
spatial configuration of services, in addition to the 
objective of locating facilities. They further reported 
applications of location problems, mixed integer 
programming models, and solution methods.  

In most of the conventional facility location problems 
proposed so far, the objective function for optimization is 
composed of travel distances (Kishimoto, 1999). The 
reason behind this is that it is not only an important factor, 
but also relatively easy to deal with travel distance 
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quantitatively, although there are differences among 
Euclidean distance, network distance, and time distance. 
In urban and regional planning, however, many events are 
uncertain and difficult to predict at the planning stage. For 
example, we might discover historical remains in a 
potential construction site, or a construction site might not 
be acquired due to lack of consensus with local residents. 
The factors that are uncertain and difficult to predict 
cannot be directly evaluated by incorporating them into 
the optimization model. If the occurrence of such 
uncertain factors is ignored and a facility planning is 
drafted based solely on the optimal solution obtained from 
quantifiable factors, not only will a great deal of time, 
effort, and mentality be lost, but it will also become more 
difficult to obtain consensus among decision makers for 
alternative planning, and the initial plan that was 
cancelled may become a kind of obstacle for following 
discussion. 

In order to deal with these issues, it is desirable to consider 
from the outset not only the optimal solution (optimal 
location), but also alternative feasible solutions that are 
close to the optimal solution (alternative locations whose 
evaluated values are close to the optimal solution). Blanco 
(2019) introduced a new variant of the p-median facility 
location problem, which assumes that the exact locations 
of potential facilities are unknown. In this problem, we 
need to determine the locations of potential facilities to 
satisfy customer demand that minimizes global costs, 
while considering the locations of nearby established 
facilities. He formulated several mixed-integer nonlinear 
programming methods for objective functions common in 
location analysis, and developed two mathematical 
heuristic approaches to solve the problem. His research is 
based on similar perspectives and has been highly 
valuable in shaping our new approach in this study. 
Tirkolaee et al. discussed a robust green location-
allocation-inventory problem (LAIP) to design an 
efficient municipal solid waste (MSW) management 
system. As the exact quantities of MSW composition in 
different regions were unknown and uncertain, a robust 
optimization technique was applied to formulate the 
problem as a mixed integer linear programming (MILP) 
model. Also, a real data-based problem was used to 
validate the proposed model. 

Studies focusing on uncertain factors and robustness of 
facility planning can be roughly divided into two kinds; 
studies from the side of users of facilities (demand-side) 
and studies from the side of suppliers of facilities (supply-
side). Kubota and Suzuki (2005) is focused on the demand 
side and discussed facility location-allocation problems 
when demand is uncertain. The first step in facility 
planning is to estimate the future population in the target 
area. Therefore, the errors in population estimation were 
considered to follow a probability distribution, and the 

optimal location is analyzed as a single facility allocation 
using an index that statistically takes into account the 
errors in the optimal location. Studies focusing on the 
supply-side include those by Osawa (1996) and 
Miyagawa et al. (2004). Osawa (1996) compared 
sequential placement, in which multiple facilities are 
located sequentially or located simultaneously, in the p-
median problem, and demonstrated that there was no 
significant difference between the two. Miyagawa et al. 
(2004) examined how the total distance traveled by users 
changes when facilities are closed sequentially, assuming 
the decrement of the number of facilities. Sadahiro (2009) 
applied the method of analyzing the relationship between 
location distributions to analyze the problem of school 
consolidation and closure. He proposed a method to 
extract all solution sets that satisfy the objective function 
and constraints for school consolidation, and to visually 
understand the relationship among multiple solution sets. 

The studies mentioned above mainly focused on 
optimization methods, while the following research has 
specifically examined the impact of uncertainty on 
optimization problems. Aerts et al. (2003) analyzed how 
uncertainty in spatial input data propagates through 
optimization models in Spatial Decision Support Systems 
(SDSSs) and affects their outcomes. Additionally, they 
explored the feasibility of routinely incorporating 
uncertainty propagation methodologies into SDSSs. 
Furthermore, Wei and Murray (2012) developed an 
integrated approach to address data uncertainty in spatial 
optimization. Their study demonstrated that by 
constructing a novel multi-objective model that explicitly 
incorporates data uncertainty, it is possible to characterize 
its impact and evaluate it with statistical reliability. 
Hildemann et al. (2023) investigated the influence of 
uncertainty in spatial data—specifically, soil and water 
conservation measures—within a multi-objective 
optimization problem that considered both soil runoff 
rates and labor costs. 

Previous research on spatial optimization under 
uncertainty has primarily focused on quantitatively 
assessing the degree to which uncertainty affects 
optimization solutions. In contrast, this study assumes that 
uncertainty cannot be quantified and instead explores the 
research question: "Is it possible to propose an alternative 
solution when the optimal solution cannot be adopted?" 
Specifically, this study aims to develop a method for 
identifying candidate locations that serve as viable 
alternative solutions in cases where uncertainty is too 
significant to allow for the adoption of the optimal 
solution. This approach represents the unique contribution 
of this research. More specifically, in order to deal with 
the unpredictable uncertainty in the facility location 
problem, we consider the facility location problem in 
which redundancy is expected in the objective function 

AGILE: GIScience Series, 6, 8, 2025 | https://doi.org/10.5194/agile-giss-6-8-2025 2 of 11



for optimization, so that the obtained solution also has 
redundancy (higher degrees of flexibility) and, as a result, 
the robustness of the proposed facility planning can be 
improved. 

2 Facility Location Problem Considering 
Multiple Location Alternatives 

2.1 Overview of p-median Problem 

Consider the p-median problem, one of the 
representatives of the facility location problem, where t is 
the number of locations where facility users are located 
(hereinafter called demand locations) and u is the number 
of locations where facilities can be located (hereinafter 
called candidate facility locations). The set I = {1, ..., i, ..., 
t} and the set J = {1, ..., j, ..., u} be the sets of indices 
representing demand locations and candidate facility 
locations. The p-median problem is the problem of 
determining the location set of the p facilities, M, and the 
allocation of users to the facilities so that the total distance 
traveled by facility users to the facilities (total cost: sum 
of travel distances weighted by the number of users) is 
minimized. This problem is formulated as a combinatorial 
optimization problem, where p locations are selected from 
u candidate facility locations, as follows. This 
optimization problem can be solved by minimizing the 
total cost, ZM. The set of facility locations, M, that 
minimizes the value of ZM represents the optimal solution, 
which will hereafter be denoted as M∗. 
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In addition to the p-median problem, the p-center and the 
maximal covering location problems are also problems of 
determining p locations from u candidate facility 
locations, and although these three problems have 
different objective functions, they are the same type of 
combinatorial optimization problem. The p-center 
problem is a problem of minimizing the distance from a 
facility to the furthest demand location, and the maximal 
covering location problem (MCLP) is to maximize the 

amount of demand entering a certain area from the 
facility. 

2.2 Methods for Obtaining Multiple Facility Location 
Alternatives 

In order to find multiple alternative locations, it is 
necessary to simultaneously consider the combination of 
locations where the facilities are to be located and the 
value of the objective function (total cost) under the 
combination of sites. Therefore, we formulate a p-median 
problem that takes these two pieces of factors into 
account. The basic idea is to find an exact optimal solution 
(optimal locations and minimized total cost) in advance, 
set an "allowable cost" by setting a "tolerance value" that 
represents the degree of deviation from the optimal 
solution, and find a set of combinations of locations that 
fall within this allowable cost. Specifically, as in the usual 
facility location problem, all sets consisting of 
combinations of p locations are considered from the set J 
of candidate facility locations, and the set M* (the optimal 
solution) of the p locations with the lowest total cost is 
obtained. The total cost of this optimal solution multiplied 
by the allowable value α (≧100) is defined as α % cost 
(allowable cost), and the set of locations (alternative 
solution) whose total cost is less than or equal to α % cost 
no matter which combination of locations is used is 
obtained as the set M. The set M that is the alternative 
solution is called the “α % set.” 

The proposed method is unique in that the allowable cost 
is a constraint condition, whereas the conventional facility 
location problem attempts to minimize the total cost by 
using the total cost as the objective function. In addition, 
the degree of flexibility of the facility locations 
(robustness of the facility planning) and the number of 
candidate locations (the number of locations in the set M 
or the number of combinations of locations) are used as 
the objective function for optimization. In other words, 
the problem is formulated as a problem of finding a larger 
number of candidate viewpoints under the constraint of 
satisfying the allowable cost, although somewhat more 
than the optimal total cost. In the following, we formulate 
the problem of finding the α % set from following two 
viewpoints. 

2.3 Formulation of K-set Problem 

The K-set problem is a problem to extract the alternative 
solutions from a set of Q candidate locations. Specifically, 
the set of locations for which the total cost is less than or 
equal to α % no matter how p locations are selected from 
among Q locations is extracted as the alternative solution. 
Here, the objective function is the number of locations Q, 
and the optimal solution is obtained by maximizing Q. 
The reason for this is that it is desirable to have a large 
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number of locations Q in the K-set when considering 
multiple location alternatives. The problem is formulated 
as follows. The constraints state that the number of 
candidate locations consisting of p locations in the K-set 
must be less than or equal to α % cost. 
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2.4 Formulation of R-set Problem 

The R-set problem is different from the K-set problem in 
that we extract a single K-set as candidate locations, while 
the R-set as the union of multiple subsets Rm. Specifically, 
it is formulated as a problem of setting p subsets Rm (a set 
of Tm locations) and finding a R-set such that the total cost 
is less than or equal to α % cost no matter how the 
locations are combined (p in total) by selecting one 
location from each subset Rm. The objective function here 
is the number of combinations of the number of locations 
in each subset. The reason for this is that a large number 
of combinations of locations is desirable when 
considering multiple layout alternatives, as it allows for 
greater flexibility in formulating the facility planning. The 
problem is formulated as follows. 
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The constraints state that the R-set consists of subsets Rm, 
and that one location can be arbitrarily extracted from a 
corresponding subset Rm, so that a total of p locations 
constitutes the solution set M. 

These three solutions to the p-median problem can be 
summarized as follows: in a conventional p-median 
problem, the facility locations are uniquely determined as 
the optimal solution (Fig. 1(a)). One of the alternative 

solutions can be obtained, by arbitrarily selecting p 
locations from the K-set (Fig. 1(b)). Similarly, by 
selecting locations (p in total) from the corresponding 
subset Rm that constitutes the R-set, another alternative 
solution can be obtained (Fig. 1(c)). 

 

3 Case Studies using Hypothetical Data Set 

3.1 Optimal Facility Locations of p-median Problem 

Figure 2(1) shows a hypothetical data set in which the 
population (demand) is randomly assigned to a two-
dimensional space consisting of 20 x 20 cells (cell size: 
500 m). Figure 2(2) shows the results of solving a p-
median problem by conventional optimization method 
with 2 facilities for this hypothetical space. The total cost 
to the consumer is minimized when the facilities are 
located at these two locations (optimal solution). 
However, as mentioned above, it is not always possible to 
construct facilities at the optimal locations when actual 
facility planning is assumed.  

 

3.2 Alternative Solutions by K-set 

Figure 3(1) shows the results of obtaining the K-set with 
α = 120 in the hypothetical space of Fig. 2(1). It can be 
seen that the candidate locations, which are the elements 
of the K-set, are dispersed in the central part. In addition, 
the K-set does not include the optimal locations obtained 
by the conventional method. This indicates that even the 
optimal locations that minimize the total cost deteriorates 
significantly when combined with other locations that are 

Original p-median problem

Optimal solution Alternative solutions by K-set Alternative solutions by R-set

In a general p-median problem, 
the facility locations are 
uniquely determined as the 
optimal solution

By arbitrarily selecting p
locations from the K-set, one of 
the alternative solutions can be 
obtained

By selecting one location from 
the correspondent subset Rm
that constitute the R-set, one of 
the alternative solutions can be 
obtained

K-set = {K}

R1 R2

R3

R-set = {R1, R2, R3}

K

(a) (b) (c)

Amount of
demand
(Pi)
Large

Small (1) Distribution of demand      (2) Optimal placement (set M*)

Figure 1. Concept of optimal solution and alternative solutions. 

Figure 2. Optimal facility locations of p-median problem. 
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not members of optimal locations. In other words, the 
optimal solution obtained by solving the conventional p-
median problem shows that when one of the locations is 
forced to change, the total cost increases significantly and 
the value of objective function becomes larger. Hence, the 
robustness of the facility planning based on the optimal 
solution in this numerical example is not high. Then, is K-
set superior? K-set does not include the optimal location, 
which is undesirable because it means that the optimal 
locations are abandoned from the beginning. In other 
words, the K-set does not provide a satisfactory solution 
for the purpose of optimization. 

 

3.3 Alternative Solutions by R-set 

Figure 3(2) shows the result of obtaining the R-set in the 
hypothetical space of Fig. 2(1) with α =120. The total cost 
of selecting one location from each of the subsets R1 and 
R2 is guaranteed to be less than or equal to 120% of the 
minimum cost. Although there is a restriction that one 
location must be selected from subsets R1 and R2 
respectively, this solution is superior to the K-set in that 
the number of location combinations is much larger 
(greater degree of flexibility). This example is also 
superior in that it is a set that includes the optimal solution 
(set M* of optimal locations) obtained by solving the 
conventional p-median problem. Compared to the K-set, 
it may contribute to the process of developing a facility 
planning that is more robust. 

Figure 4 shows the α % set when the value of α is varied 
from 105 to 120 in 5% increments based on the R-set. 
Figure 5 shows the results of these superimpositions. The 
spatial characteristics of each subset can also be seen, 
such as the greater degree of flexibility of R1 (greater 
number of locations) compared to subset R2. 

 

 

 

4 Case Studies for Tokyo Metropolitan Area 

4.1 Characteristics of Facility Location Problems 

The following case study is based on the Tokyo 
metropolitan area. Specifically, we will examine the 
location of core facilities, such as advanced emergency 
medical centers, where proximity to residential areas is 
crucial for accessibility. In this case study, we consider 
the facility location problem in a network space in order 
to take into account spaces where there are obstacles that 
hinder spatial movement (transportation). Specifically, 
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(1) Set K (2) Set R

Number: number of element of Rm
C: number of combinations
N: number of locations
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C=4312 N=133

α=115
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Figure 3. Alternative solutions based on K-set and R-set 
problems (α = 120). 

Figure 4. Alternative solutions based on the R-set (α = 
105~120). 

Figure 5. Inclusion relationship of alternative solutions 
based on the R-set. 
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optimal solutions and alternative solutions (α % set based 
on the R-set) of the p-median, p-center, and maximal 
covering location problems are obtained, and similarities 
and differences between three facility location problems 
are discussed from the viewpoint of not only optimal 
solutions but also alternative solutions. 

The p-median, p-center and maximal covering location 
problems are the combinatorial optimization problems, 
each defined by a distinct objective function. The 
objective function of p-median problem is to minimize the 
total cost from the demand locations to the facilities, while 
p-center problem is to minimize the distance of the 
furthest demand location from the facility. The maximal 
covering location problem maximizes the amount of 
demands that falls within a radius of X (in this case, 20 
km) centered on the facilities. 

The maximal covering location problem is highly similar 
to the p-median problem, and the optimal solution of the 
maximal covering location problem can provide good 
values in the objective function of the p-median problem. 
For this reason, the p-median problem is often used in 
general case studies of regional facility allocation. 
However, for facilities for which a certain service area is 
important, such as special facilities such as firefighting 
facilities or emergency hospitals, the maximal covering 
location problem is often used. On the other hand, the p-
center problem is often used to plan the layout of relay 
facilities in communication networks, etc. The p-center 
problem is unique in that it is often applied to the layout 
planning of facilities where the maximum distance 
between the demand location and the facility is important, 
without considering the demand volume.  

4.2 Target Area and Data 

The area to be analyzed is the cities, wards, towns, and 
villages in the Tokyo metropolitan area (TMA) located 
within a radius of 70 km around the Imperial Palace. The 
population of the municipalities in the Tokyo 
metropolitan area was obtained from the national census 
(2004), and its spatial distribution is shown in Fig. 6. The 
discussion here assumes facilities whose demand is 
proportional to the size of the population. A Delaunay 
network was constructed based on representative nodes in 
each municipality, and links that pass through the Tokyo 
bay were deleted to construct a pseudo traffic network 
data (Fig. 7). This section discusses the characteristics of 
the optimal solution and alternative solutions to the 
facility location problem using the pseudo traffic network 
that imitates the traffic network in the city. 

 

 

4.3 Optimal and Alternative Solutions 

Optimal solutions and alternative solutions (α % set based 
on the R-set) were obtained for the p-median, p-center, 
and maximal covering location problems when the 
number of facilities p is 2, 3, or 4. The values of the 
objective functions under the optimal solutions are shown 
in Table 1. These values are used to set the tolerance 
values (allowable cost) when obtaining the alternative 
solutions. The characteristics of the alternative solutions 
are discussed below. 

30km0 15
1.000.000 500.000 300.000 (people)

30km0 15

Figure 6. Population distribution in Tokyo metropolitan 
area. 

Figure 7. Delaunay triangulation in study area. 
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Table 1. Objective function value of optimal solution. 

Number of 
facilities 

Ave. dist. 
(km)    
p-median 

Max. dist. 
(km)  
p-center 

Coverage 
(people)  
MCLP 

2 21.9809 70.1285 19,509,334 

3 18.6165 58.2897 22,831,241 

4 16.4301 46.0929 25,240,295 

4.3.1 p-median problem 

Figure 8(1) shows the distribution of the alternative 
solutions for the p-median problem. It can be seen that the 
candidate locations of the optimal solutions for p = 2, 3, 
and 4 are close to each other. The alternative solutions are 
distributed in almost concentric circles with the optimal 
solution at the center, indicating that the distribution of 
the locations (α % set) that become the alternative 
solutions does not differ greatly when the number of 
facilities is varied. This result indicates that it is more 

From outside
N=120, N=115,
N=110, N=115,
N=100

From outside
N=110, N=107.5,
N=105, N=102.5,
N=100

From outside
N=98, N=98.5,
N=99, N=99.5,
N=100

R1

R2

R1

R2

R3

R1

R2

R3

R4

R1

R2

R1 R2

R3

R1

R2

R3
R4

R1

R2

R1

R2

R3

R1

R2

R3 R4

30km0 15 30km0 15 30km0 15

30km0 15 30km0 15 30km0 15

30km0 15 30km0 15 30km0 15

(1) p-median (2) p-center (3) Maximal covering location

p=2 p=2 p=2

p=3 p=3 p=3

p=4 p=4 p=4

Figure 8. Alternative solutions for facility location problems. 
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efficient (i.e., the total cost is smaller) to locate facilities 
concentrated in the urban center because the population is 
concentrated in the urban center. 

A closer look at the subset Rm reveals that alternative 
solutions are formed at locations where the network is 
dense. In particular, focusing on R1, the alternative 
solutions are not distributed in the east direction, but are 
clustered in areas where the network is dense. For subsets 
R2 and R3, we can see that they are widely distributed in 
areas with dense networks and large populations. 

4.3.2 p-center problem 

Figure 8(2) shows the distribution of the alternative 
solutions of the p-center problem. Since the p-center 
problem does not take the quantity of demand into 
account, it is considered that the results depend on the 
shape of the space to be analyzed, which is concentric in 
shape. 

In detail, in the results for p = 2, one of the optimal 
solution locations is located slightly west of the center, 
and the alternative solutions are distributed extending 
eastward from the optimal solution. In the p = 4 result, the 
subset R2 is distributed in a localized area. This is related 
to the sparseness of the network in the vicinity of subset 
R2. Specifically, this is because the search for a alternative 
solution in the spatial alternative of the optimal solution 
results in a large spatial separation, resulting in a large 
deterioration of the value of objective function. Compared 
to the other three subsets R1, R3, and R4, the degree of 
flexibility of the locations is extremely low. In contrast, 
R2 with p = 3 has a wider distribution of alternative 
solutions than that with p = 4, even though it is distributed 
in an area with a sparse network. This indicates that there 
is higher degree of flexibility in the selection of facility 
locations when the number of facilities to be located is 3 
than is 4. 

4.3.3 maximal covering location problem 

The solution to the maximal covering location problem is 
shown in Fig. 8(3). p-median and p-center problems are 
problems that seek to minimize the value of the objective 
function, so the allowed value of the alternative solution 
is α ≧100. Note, however, that for the maximal covering 
location problem, which aims to maximize the value of 
the objective function (the total demand that can be 
covered), the allowable value of α is α ≦100. 

An overview of Fig. 8(3) shows that both the optimal 
solution and the alternative solutions are concentrated and 
distributed in urban centers, similar to the solution of the 
p-median problem. However, while the alternative 
solutions of the p-median problem are distributed adjacent 
to each other, the subset Rm of the alternative solutions of 

the maximal covering location problem is distributed with 
some spatial interval. This is because the subset Rm is 
formed so that the area covered by each facility (20 km in 
this case) does not overlap. In the p-median problem, the 
optimal solution is located at the center of the candidate 
locations, but the maximal covering location problem is 
characterized by the fact that in many cases the optimal 
solution is located at the edge of the candidate locations. 

4.4 Facility Location Problem Considering Existing 
Facilities 

The above analysis was conducted assuming the case 
where all facilities are newly located, and it was 
confirmed that the alternative solutions appear around the 
optimal location. In the following, we will examine the 
problem assuming that facilities providing the same 
services already exist and that additional facilities are to 
be added to the existing facilities. We assume that there 
are existing facilities in 10 randomly selected 
municipalities. Figure 9(1) shows the distribution of the 
10 randomly selected municipalities with existing 
facilities, and assuming that two additional facilities 
providing the same type of service are to be located under 
the given conditions, the optimal solution and the 
alternative solution (α % set based on the R-set) are 
obtained. The values of the objective function before and 
under the optimal solution are shown in Table 2. These 
values are used to set tolerance values when obtaining the 
alternative solutions. 

Table 2. Objective function value of optimal solution (with 
existing facilities). 

Number of 
facilities 

Ave. dist. 
(km)    
p-median 

Max. dist. 
(km)  
p-center 

Coverage 
(people)  
MCLP 

Existing fa-
cilities 

14.399 52.066 23,860,970 

Existing + 
New facili-
ties 

12.220 35.821 28,824,942 

The results for the optimal solution and the alternative 
solutions are shown in Fig. 9. It can be seen that for all 
facility location problems, the alternative solutions are 
formed in the blank areas where no existing-facilities 
exist. The distribution of the nearest alternative solutions 
is skewed compared to the results obtained when there are 
no existing facilities. In particular, for the p-median and 
maximal covering location problems, the subset R1 is 
spatially separated into two parts. The other facility can 
be selected from a very wide subset R1. This means that 
there is a high degree of flexibility in the selection of 
candidate locations. 
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In the case where there are no existing facilities and all the 
facilities are to be newly located, the alternative solutions 
are distributed around the optimal solution, but when 
existing facilities are taken into account, they are formed 
even far from the optimal location. In other words, this 
indicates that when additional facilities are to be added to 
the existing facilities, it is necessary to study the facility 
location problem by referring to the spatial distribution of 
the candidate locations that can be used as an alternative 
solution, expanding the view to the entire target area, 
rather than sticking to the location of the optimal solution 
obtained in the conventional facility location problem. 

 

 

5 Extension of Alternative Solutions for 
Facility Location Planning 

As an application of considering the alternative solutions 
of the facility location problem as a set of multiple 
candidate locations, we will consider location planning 
that simultaneously takes into account multiple 
determinants. Specifically, we consider a composite 
problem of the p-median problem and the maximal 
covering location problem. Figure 10(1) shows the results 
obtained by the R-set to obtain the 110% set for the p-
median problem and the 90% set for the maximal covering 
location problem, and then integrating them by taking the 
two solutions. This integrated set is equivalent to the 
108% set for the p-median problem and the 98% set for 
the maximal covering location problem as a result. Figure 

10(2) shows the total cost that can be obtained by this 
integrated set. The darker shaded area in Fig. 10(2) can be 
considered to contain the Pareto optimum, which 
considers two different functions of the p-median problem 
and the maximal covering location problem. Pareto 
optimum refers to the state in which, when there are 
multiple evaluation indices, one evaluation index must be 
sacrificed to increase another. The p-median problem and 
the maximal covering location problem have different 
objective functions, so both cannot be evaluated by 
considering them simultaneously. However, by 
superimposing the alternative solutions of both problems, 
it is possible to support facility location planning while 
simultaneously considering multiple quantitative 
evaluation indices and even the problem of uncertainty, 
which is the main focus of this study. 

 

 

6 Summary and Conclusions 

In this study, we first discussed the issues arising from 
uncertainty when applying the calculated optimal solution 
to actual facility location planning.  To overcome this 
problem, we proposed a method that can increase the 
robustness of the facility location planning by finding 
alternative solutions (facility locations obtained by setting 
an acceptable range for the value of the objective 
function), thereby allowing more flexibility in candidate 
facility locations. Next, we conducted numerical analysis 
using hypothetical data on the spatial distribution of 
demands, and obtained knowledge on the characteristics 
of typical facility location problems. Furthermore, the 
characteristics of the optimal solution and the alternative 
solutions were examined using numerical analysis 
examples in which the proposed method was applied to 
real space, and the potential of the proposed method to 
find the alternative solutions was discussed. The main 
findings of this study are as follows. 

As a result of obtaining the optimal solution and the 
alternative solutions in a simple hypothetical space and a 
real space, it was confirmed that the alternative solutions 
are formed in the vicinity of the optimal solution 

Existing facility
(randomly selected 10 city nodes)

From outside N=108,N=106,
N=104,N=102,N=100

From outside N=98,N=98.5,
N=99,N=99.5,N=100

From outside N=110, N=107.5,
N=105, N=102.5,N=100

(1) Existing facility

(2) p-median

(3) p-center

(4) Maximal covering location

30km0 15

30km0 15

30km0 15

30km0 15

R1

R2

R1

R2

R1
R1

R2

R1

Coverage(people/107）

Median(km)
(1) Spatial area (2) Value of function

R1

R2

R1

Figure 9. Alternative solutions based on the R-set (with 
existing facilities). 

Figure 10. Alternative solutions based on the R-set and 
maximal covering location problems. 
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according to the R-set (α % set). In addition, a comparison 
of the alternative solutions of multiple facility location 
problems revealed that the spatial-inclusion relationship 
is relatively easy to establish for the alternative solutions 
of the p-median problem, and that a combination of 
arbitrarily selected locations among the candidate 
locations results in a relatively good evaluation value 
(total cost). However, it was found that the spatial-
inclusion relationship is difficult to be established for the 
alternative solutions of the p-center problem and the 
maximal covering location problem. 

We applied the proposed method to a real space and 
compared the alternative solutions of the p-median, p-
center, and maximal covering location problems. As a 
result, it was found that the alternative solutions of the p-
median problem tended to be concentrically distributed 
around the optimal location. The p-center problem 
showed a clear difference in the size of the alternative 
solutions (the number of candidate locations). It was 
found that the optimal locations of the maximal covering 
location problem tend to be similar to the p-median 
problem, however have the spatial distribution property 
that the alternative solutions extend in a specific direction. 

When new facilities are to be added to the existing 
facilities, it was found that differences in the size of the 
alternative solutions (the number of candidate locations) 
tend to appear, and the alternative solutions may be 
formed in a region far from the optimal solution and 
spatially divided into multiple regions. 

In the location planning of urban facilities, it is necessary 
to make decisions based on the various values held by 
many stakeholders and based on a wide variety of 
evaluation indicators. In such a process, it is difficult to 
discuss based on the only calculated optimal solution, and 
in some cases, it may become an obstacle to smooth 
discussion. The method for obtaining the alternative 
solutions proposed in this study (" α % sets" based on the 
R-set) can extract multiple sets of possible candidate 
locations, and can be effectively used in the actual facility 
location planning process. 

Previous studies have primarily focused on quantitatively 
evaluating the impact of uncertainty on the optimal 
solution. In contrast, this study assumes that "uncertainty 
cannot be quantified in principle" and proposes a method 
for generating alternative solutions when the optimal 
solution cannot be implemented. We demonstrated the 
effectiveness of this approach through numerical 
examples. Planning processes of facility locations often 
require flexibility, redundancy, and robustness, as 
deviations from the original plan are inevitable. The 
method developed in this study directly addresses these 
fundamental requirements, making a significant 
contribution to the field. 

However, this study has certain limitations and 
challenges. First, we considered a scenario in which 
demand locations are fixed to residential areas while 
uncertainty exists at the supply locations. However, since 
people continuously move within urban spaces using 
high-speed transportation networks, the location of 
demand locations also carries uncertainty. Therefore, 
future research should develop methods that account for 
uncertainty in demand locations as well. 

Second, spatial movement costs in this study were 
represented using a simple distance-based metric. 
However, in reality, these costs involve multiple factors, 
including time, financial expenses, and physical effort. 
Moreover, uncertainties exist in traffic congestion and 
public transportation frequency, which should be 
considered in future studies. 

Additionally, the redundancy of alternative solutions in 
this study was expressed using an index, "α%." Since the 
appropriate value of α likely depends on the type of 
facility being planned and the characteristics of the study 
area, further discussion is needed on how to determine its 
value effectively. 

Data and Software Availability 

Research data and code supporting this publication is 
available in the GitHub repository https:// 
https://github.com/Agile-DASA/2025/tree/main. Please 
follow the instructions in the “Notes on analysis 
process.pdf” in the repository. In this study, NUOPT 
provided by NTT DATA Mathematical Systems Inc. was 
used for solving for the K-set and R-set problems. 

Declaration of Generative AI in writing 

The authors declare that they have not used Generative AI 
tools in the preparation of this manuscript. Specifically, 
the AI tools were utilized for language editing but not for 
generating scientific content, research data, or substantive 
conclusions. All intellectual and creative work, including 
the analysis and interpretation of data, is original and has 
been conducted by the authors without AI assistance. 
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