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Abstract. A number of measures have been developed to
formally define the landmark salience of a geographic fea-
ture in order to identify landmarks for inclusion in pedes-
trian navigation systems. However, most of the available
research has focused on urban environments. Rural areas
differ from urban environments in several ways, such as
their level of structure and regularity, and the type and den-
sity of landmarks. In this paper, we focus on measures for
calculating the landmark salience of geographic features
in rural areas. We present results from two models: one
explicitly designed to identify landmarks in rural areas,
and one originally focused on urban areas. We compare
the identified landmarks with those from a survey. The re-
sults show that the differences between the models and the
survey results are not statistically significant. The results
of the two models are marginally statistically significantly
different. The first model identifies highly semantically
salient geographic features as landmarks, while the second
model does not consider semantic salience and prefers nat-
ural geographic features. Investigating these facts further
may be part of future research.
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1 Introduction

Navigating rural areas presents unique challenges due to
the irregular and diverse nature of landmarks in these ar-
eas (Snowdon and Kray, 2009). While extensive research
has been conducted on the identification and use of land-
marks in urban environments (Sorrows and Hirtle, 1999;
Raubal and Winter, 2002; Yesiltepe et al., 2021), less at-

tention has been paid to rural areas where landmarks can
vary significantly in terms of visibility, permanence, and
salience (Kettunen et al., 2013, 2015; Snowdon and Kray,
2009).

There are several examples of navigation in rural areas.
People may take a Sunday walk around the fields and
meadows near where they live. They might want to take a
longer walk, for example around a lake or through woods.
Or they might want to spend several days walking, for ex-
ample in a national park. In all of these examples, people
need landmarks to find their way to a particular place in
a rural area (perhaps a place to eat or spend the night), to
orient themselves, e.g. to find their way back, or to com-
municate their route to others.

A landmark is traditionally defined as a prominent, eas-
ily recognisable feature within an environment that serves
as a reference point for orientation and navigation (Lynch,
1960). In this study we define rural landmarks as distinc-
tive geographic features or man-made structures within ru-
ral areas that serve as reference points for navigation. Un-
like urban landmarks, which are mainly characterised by
buildings, signs, or other built elements, rural landmarks
can include natural features such as trees, rocks, water ele-
ments, or paths, as well as smaller man-made structures
such as huts, signs, or fences. These landmarks are of-
ten less prominent and more variable due to environmental
factors, making their identification and use more complex
(Kettunen et al., 2013).

The salience of a landmark refers to the distinctiveness
or prominence of a geographic feature in its environ-
ment, which makes it stand out and be more easily no-
ticed (Raubal and Winter, 2002). In computational models
of landmark selection, salience serves as a critical metric
for identifying landmarks. Most existing landmark iden-
tification models are primarily designed for urban envi-
ronments and emphasise man-made and visually distinct
landmarks (Raubal and Winter, 2002; Klippel and Winter,
2005; Gedicke et al., 2023). One of the few models that
focuses on calculating the overall salience of rural geo-
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graphic features is proposed by Nuhn et al. (2024). An-
other model that does not explicitly focus on rural geo-
graphic features but includes the attribute "natural" is the
model of Binski et al. (2019).

In this paper, we conduct a comparative analysis of the
Binski et al. (2019) and Nuhn et al. (2024) models and ap-
ply both models to a rural area. The hypothesis is that the
models identify landmarks, that correspond to what people
would choose. In the following, we give an overview of
the related work (Section 2), the constraints for our study
(Section 3), the data we used (Section 4), and the results
(Section 5). This is followed by a discussion (Section 6)
and a conclusion (Section 7).

2 Related Work

This section provides an overview of existing work on the
study of landmarks in rural areas (Section 2.1). This is
followed by a look at existing models for assessing the
salience of landmarks in rural areas (Section 2.2).

2.1 Landmarks in rural areas

Landmarks have been extensively studied and discussed in
the wayfinding and navigation literature as essential ref-
erence points in different contexts. Most research has fo-
cused on landmarks in urban environments (Lynch, 1960;
Siegel and White, 1975; Sorrows and Hirtle, 1999; Mi-
chon and Denis, 2001; Raubal and Winter, 2002; Tom and
Denis, 2003; Yesiltepe et al., 2021). However, wayfind-
ing in rural areas plays an important role, for example
in ski touring (Rehrl and Leitinger, 2008), hiking (Ket-
tunen et al., 2013), and mountaineering (Van Damme and
Olteanu-Raimond, 2022).

In these scenarios, e.g. ski touring, it is often possible to
go anywhere and move freely (e.g. across the field). In this
paper we assume that a traveller is closely connected to a
network of routes (with roads and paths) and that the trav-
eller uses landmark-based piloting for wayfinding (Allen,
1999). Landmarks can be used for several purposes in
wayfinding (Yesiltepe et al., 2021). They are used to find
a route to a specific location (Klippel and Winter, 2005;
Raubal and Winter, 2002), for orientation purposes (Mi-
chon and Denis, 2001; Schwering et al., 2017), and for
communication routes (Allen, 1997, 2000).

Routes are typically described using five categories: pre-
scribing action, prescribing action with reference to a land-
mark, introducing a landmark, describing a landmark, and
comments (Denis, 1997). The study of route descriptions
in rural areas shows that people refer to two-dimensional
landmarks significantly more often in rural areas than in
urban ones (Brosset et al., 2008). Most descriptions in-
clude actions to which the landmarks refer, followed by
non-spatial details to characterise the landmark, highlight-
ing that landmarks in rural areas require more detailed
descriptions than urban ones. In rural settings, introduc-

ing and describing landmarks are the dominant categories
(Sarjakoski et al., 2011), while actions and action-linked
landmarks are referenced less frequently than in urban-
focused studies.

Analysis of Volunteered Geographic Information (VGI)
route directions has identified the types of landmarks and
decision points that aid navigation in mountainous regions
(Egorova et al., 2015). For landmark descriptions, features
such as surface type, landscape colours, and terrain char-
acteristics (e.g., snow) can also function as landmarks in
alpine settings (Egorova et al., 2015). Further research
has built on these findings by proposing methods for in-
corporating this information into rescue operations, im-
proving the efficiency and effectiveness of search and res-
cue efforts in challenging environments (Van Damme and
Olteanu-Raimond, 2022). Landmarks are also used to re-
cover from disorientation in the wild (Wattne and Volden,
2024).

Identifying landmarks in rural areas is challenging because
many geographic features are subject to change. Landmark
permanence refers to the likelihood that a geographic fea-
ture is present in form or label (Burnett et al., 2001). Tradi-
tional definitions that emphasise static, permanent features
(Kettunen, 2014) are less effective in rural areas where el-
ements such as snow or crevasses can shift or become per-
manent at certain altitudes (Egorova, 2018).

To explore the use of rural landmarks in route descriptions,
landmarks are categorized into eight landmark groups
(Sarjakoski et al., 2013):

1. Structures - constructions made by humans or ani-
mals (house, power line, bridge, anthill, bird’s nest,
etc.)

2. Passages - routes or paths intended for movement
(road, path, intersection, etc.)

3. Trees and parts of trees - trees and their components
(spruce, stump, wood pile, etc.)

4. Waterways - elements of water systems (lake, ditch,
shore, etc.)

5. Landcover - types of vegetation (spruce trees, clear-
ing, marshland, etc.)

6. Rocks - rocky features (stone, rock area, etc.)

7. Signs - human-made markers (guidepost, info board,
trail marker, etc.)

8. Landforms - topographic features (incline, hill, de-
pression, etc.)

Structures emerge as the most frequently referenced land-
marks in both seasons due to their visibility, while the
use of passages decreases in winter due to obscured paths.
Conversely, landforms are referenced more often in winter
as they become more visible against the snow. Temporary
geographic features, such as flowers and tracks, are not in-
cluded in this analysis (Sarjakoski et al., 2011).
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Table 1. Rules for the computation of landmark salience (Taken from Nuhn et al. (2024)).

Dimension Attribute Salient Salience
(Attribute)

Salience
(Dimension)

Visual

Height V h If significantly
different

sV h ∈ {0, 20}
sVis = sV h + sV w +
sV c + sV s + sV o

Width V w sV w ∈ {0, 20}

Colour V c Different than the
others at the
intersection

sV c ∈ {0, 20}

SurfaceV s sV s ∈ {0, 20}

Object class V o sV o ∈ {0, 20}

Semantic
Cultural and histori-
cal importance Sc

If True
sSc ∈ {0, 50}

sSem = sSc + sSe

Explicit
marks Se

sSe ∈ {0, 50}

Structural

Location at a Deci-
sion Point Stl

If True 3D: sStl ∈ {0, 50}
2D: sStl ∈ {0, 25}

3D: sStr = sStl +
sStd

Intersections: sStr =
sStl + sStd + sStg

Routes:
sStr = sStl + sStd +
sSts

Distance to the
Decision
Point Std

If Std =
min(Std1,...Stdi)

3D: sStd ∈ {0, 50}
2D: sStl ∈ {0, 25}

Degree Stg > 3 branches / > 4
branches

sStg ∈ {0, 25, 50}

Slope Sts ≥ 5% / ≥ 10% sSts ∈ {0, 25, 50}

Temporal
Seasonality T s If False sTs ∈ {0, 50}

sTem = sT s + sT p

Permanence T p If True sT p ∈ {0, 50}

2.2 Assessing the salience of landmarks in rural
areas

Most existing landmark identification models are primar-
ily designed for urban environments and emphasise man-
made and visually distinct landmarks. Here we review one
of the rare models for rural areas (Section 2.2.1) and an-
other model that includes a "nature" component (Section
2.2.2).

2.2.1 Model of Nuhn et al. (2024)

The model of Nuhn et al. (2024) is developed for ru-
ral areas and is an adaptation of the traditional salience
model as introduced by Raubal and Winter (2002). It iden-
tifies rural landmarks from a set of geographic features
(landmark candidates) at an intersection by considering at-
tributes from several dimensions. The model includes at-
tributes from the visual, semantic, and structural dimen-
sions as the model of Raubal and Winter (2002) and adds a
temporal dimension as temporality plays an important role
in rural areas (Nuhn et al., 2024). Nuhn et al. (2024) assign
salience values to each attribute of the model. Each dimen-
sion can reach a total salience of 100, which is distributed
across its attributes. For example, the visual dimension has
five attributes, and if they are all salient, each attribute re-
ceives 20 of the total salience (seeTable1). More details
are given below.

Visual Salience: The model of Nuhn et al. (2024) con-
siders five attributes: height, width, colour, surface, and

object class. We implement an analogous version of this
model. At each intersection, we calculate the average val-
ues for height and width. If a geographic feature’s attribute
value deviates significantly from these averages, it is as-
signed a salience value of 20 for both height and width
(see Table1, column "Salience (Attribute)"). For the at-
tributes colour, surface, and object class, a geographic fea-
ture is considered salient if its value for the corresponding
attribute differs from all others at the intersection, in which
case it also receives a salience value of 20 (Table 1).

Semantic Salience: Nuhn et al. (2024) include the at-
tributes Cultural and historical importance and explicit
marks in their model. A geographic feature is assigned
a salience value of 50 for cultural and historical impor-
tance if it holds cultural or historical significance (see Ta-
ble 1). Similarly, explicit marks are given a 50 salience
value when such a mark is present (Table 1).

Structural Salience: For the structural dimension, Nuhn
et al. (2024) introduces the structural attributes location
at a decision point and distance to the decision point. As
three-dimensional geographic features are only evaluated
on the basis of these two attributes, they receive a salience
value of 50 if they are salient. For routes and intersections,
the model includes two additional attributes, so that two-
dimensional landmarks receive a salience value of 25 for
each of the two attributes. For the location attribute, the
model focuses on local landmarks at intersections, assign-
ing each geographic feature a Boolean value of True for
this attribute (see Table 1). For the distance to decision
point attribute, the geographic feature closest to the in-
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tersection is considered to be the most salient and is as-
signed a salience value for this attribute, while other geo-
graphic features are assigned a value of zero. In addition,
the model of Nuhn et al. (2024) considers the attribute
slope for routes and degree for intersections. For intersec-
tions, degree adds salience based on the number of paths:
intersections with four paths receive a salience value of 25,
and those with more than four paths receive a value of 50.
Routes with an average slope of 5% or more are consid-
ered somewhat salient and receive a salience value of 25,
while those with a slope of 10 or more receive 50 (Table
1).

Temporal Salience: Nuhn et al. (2024) extends the tradi-
tional model of Raubal and Winter (2002) by including
a temporal dimension. The first attribute within this di-
mension is seasonality. If a geographic feature’s season-
ality value is False, it is considered salient and assigned a
salience value of 50 (see Table1). The second attribute is
permanence, where geographic features with a True value
for permanence are considered salient and given a salience
value of 50 (Table 1).

Finally, the overall salience is calculated as the sum of vi-
sual, semantic, structural, and temporal salience:

Srural = SV is +SSem+SStr +STem (1)

Each of these dimensions can contribute up to 100, mean-
ing the total salience value can reach 400. In the model of
Nuhn et al. (2024), the geographic feature with the high-
est overall salience at an intersection is designated as the
landmark.

Figure 1. Decision tree 1: Permanence (Taken and adapted from
Binski et al. (2019)).

2.2.2 Model of Binski et al. (2019)

The model of Binski et al. (2019) follows a decision tree
structure with three separate decision trees for perma-
nence, visibility, and uniqueness. The result of the decision
trees is a salience score from 1 to 5.

Permanence (Decision tree 1): For permanence, Bin-
ski et al. (2019) first examine whether it is possible
for the geographic feature to change completely and be-
come another geographic feature (Figure 1). They give
the examples of mountains and airports as permanent ge-
ographic features. So we decide regarding the groups of
Sarjakoski et al. (2013) that only landforms, waterways,
and routes are permanent geographic features and all other
geographic features are able to change. Paths can also
change as they can disappear under vegetation. Then Bin-
ski et al. (2019) examine whether a geographic feature is
natural. We consider geographic features from the groups
landcover, landform, trees, and waterways as natural ge-
ographic features. Next, Binski et al. (2019) evaluates
whether a geographic feature tends to change its form in
terms of colour, shape, size, and name. We only consider
signs to be permanent in form.

Figure 2. Decision tree 2: Visibility (Taken and adapted from
Binski et al. (2019)).

Visibility (Decision tree 2): Binski et al. (2019) examines
whether a geographic feature is clearly distinguished from
its surroundings and whether it is possible to notice it from
a great distance (Figure 2). We confirm that only a few ge-
ographic features are visible from a great distance, such
as a shed, the lake, the forest, and prominent trees. Next,
Binski et al. (2019) evaluates whether a geographic feature
is tall. We assume that a geographic feature is tall if it is
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significantly taller than the other geographic features at an
intersection. Furthermore, Binski et al. (2019) examines
whether a geographic feature is spread over a large area.
We define geographic features of the classes routes, water-
ways, landforms, and landcover to be spread over a large
area. The last leaf of the Binski et al. (2019) decision tree
decides whether it is possible to see a geographic feature in
all environmental conditions (e.g. light and weather). We
find that only routes and signs are visible in all conditions.

Uniqueness (Decision tree 3): For uniqueness, we exam-
ine whether a geographic feature is outstanding from its
environment (Figure 3). We assume that a geographic fea-
ture is outstanding if it has visual salience. Thus, once the
visual salience (calculated according to the model of Nuhn
et al. (2024)) is greater than 50, we confirm that the ge-
ographic feature stands out from its environment. Next,
it is examined whether it is possible to find similar geo-
graphic features nearby. We define that there should be no
geographic feature with the same object class at the inter-
section. Finally, Binski et al. (2019) examines whether it
is easy to mistake the geographic features with other ge-
ographic features. Here we define that there should be no
geographic features of the same group as those defined by
Sarjakoski et al. (2013) at the intersection.

Figure 3. Decision tree 3: Uniqueness (Taken and adapted from
Binski et al. (2019)).

The total salience score is calculated as the sum of the
scores of the individual decision trees for permanence, vis-
ibility, and uniqueness. The total salience score for each
geographic feature ranges between 3 and 15. Binski et al.
(2019) normalises this score between the values of 1 and
10. Those with values of 6-7 are considered as landmarks
(Binski et al., 2019). We establish a geographic feature
with a salience equal to or greater than six as a landmark.

3 Constraints for our study

We implement the model of Nuhn et al. (2024) (Section
2.2.1) and the model presented by Binski et al. (2019)
(Section 2.2.2). As a basis for the models we make the fol-
lowing assumptions, which are adapted from Nuhn et al.
(2024):

• Our focus is on the identification of rural landmarks.
A rural area is characterised as an unbuilt area (Nuhn
et al., 2024), which can include both man-made struc-
tures such as huts, power lines, wayside crosses, and
bridges, and animal-made structures such as anthills,
bird nests, and beaver dams (Kettunen et al., 2013).
In rural areas there are also roads and paths with in-
tersections.

• We restrict our scope to local landmark candidates lo-
cated at and visible from the centre of intersections,
excluding landmarks located between intersections
and not visible from them.

• Each intersection contains a set of landmark candi-
dates classified into the landmark groups (Sarjakoski
et al., 2013): structures, trees and parts of trees, water-
ways, landcover, rocks, signs, and landforms. We di-
vide the group passages from Sarjakoski et al. (2013)
into paths and routes. Routes are larger passages in-
tended for movement and covered with tar or gravel
(e.g. Figure 8). Paths are smaller passages covered
with gravel, earth, or wood (e.g. Figure 11).

• Intersections can also be landmark candidates. Inter-
sections can look very different, with different struc-
tures such as tar, gravel, or soil, making the intersec-
tion itself a landmark. They are assigned to either the
paths or routes classes.

• Both two-dimensional and three-dimensional land-
mark candidates are considered. Examples of two-
dimensional geographic features are routes and inter-
sections, while examples of three-dimensional geo-
graphic features are signs and bridges.

• Landmark candidates are characterised by attributes
in the visual, semantic, structural, and temporal di-
mensions.
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Figure 4. Survey Route with Selected Intersections.

4 Data

We selected a study area in the rural region of Biessen-
hofen, around Lake Bachtel in Bavaria, Germany (Fig-
ure 4). The Bachtel Lake is located in an area charac-
terised by natural landscapes, including forests, hills and
water bodies. This setting provides an ideal environment
for the study of rural landmarks due to its varied terrain.
The study area consists of ten intersections. The first four
intersections and the last two intersections contain sev-
eral man-made structures, while the remaining intersec-
tions are deeper in the forest and contain only one man-
made geographic feature each (such as a wooden bridge or
a sign).

4.1 On-Site Data Collection

We used Esri’s Arc-GIS Survey123 (Survey123, 2024) to
collect information about geographic features in the study
area. Designed primarily for survey design and implemen-
tation, this tool has also proved effective for field data
collection. We designed a detailed survey form to record
the attributes of each potential landmark at the intersec-
tions. The attributes were inspired by those outlined by
Nuhn et al. (2024), as shown in Table 1. Consequently,
we recorded the height, width, colour, surface, and ob-
ject class of each landmark, as well as its cultural and
historical importance, and any explicit markings. Drop-
down menus were used for the surface and object class
fields. For surface options included coniferous, deciduous,
grass, gravel, iron, multistructure, soil, stone, tar, water,

Figure 5. Landmark groups of the geographic features in the
study area.

and wood. Object classes were categorised into different
classes such as bench, bridge, deadwood, dog waste bin,
fence, fish ladder, gully cover, intersection, meadow, path,
power pole, ravine, shed, sign, street gutter, tourist info,
tree, tree group, tree stump, water, water pipe, wayside
cross, wetland, and wood pile. We also recorded the dis-
tance of each landmark from the intersection, the number
of branches at the intersection (degree), and whether the
slope was steep. We also recorded whether the landmark
was two or three dimensional, natural, seasonal, or perma-
nent. In addition, a drop-down menu was included to select
from the landmark groups (Sarjakoski et al., 2013).

We collected geographic features and data on their at-
tributes during a field survey on the first of May 2024.
We walked along the ten intersections and recorded visi-
ble geographic features. We also took photographs of each
intersection showing the geographic features.

After data collection, we reviewed each geographic fea-
ture and the intersections and decided which ones to in-
clude for further investigation. Some geographic features
were additionally included by recording their attributes
from the photographs taken. We ended up with 76 geo-
graphic features at ten intersections in the study area (Fig-
ure 4). 46.05% of the collected geographic features are
two-dimensional geographic features, i.e., routes or inter-
sections. Nearly 70% of the geographic features are man-
made, as both routes and intersections are man-made geo-
graphic features.

Figure 5 shows the distribution of geographic features cat-
egorised by landmark groups (Sarjakoski et al., 2013).
Paths and signs represent the largest groups with 19.74%
each, followed by structures with 18.42%, trees account
for 15.79%, and routes for 11.84%. The remaining cate-
gories are landcover with 6.58%, waterways with 5.26%,
and 2.63% of the geographic features fall under landforms.
Rocks were not observed and are therefore excluded from
further analysis.
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Figure 6. General survey structure illustrated using intersection
number 5 as an example.

4.2 Survey

We conducted an online survey using ArcGIS Survey123
to collect landmarks to validate our landmark identifica-
tion models. The survey consisted of ten photographs of
the intersections shown in Figure 4, with two questions
for each photograph (Figure 6). The first question asked
the participant to select the most distinctive landmark in
the photograph, and the second question asked for a free
text explanation of the selection. Participants had to an-
swer both questions, with only one selection allowed for
the first question.

The survey was shared with family, friends, and acquain-
tances. As there were no specific criteria for participation
in the survey, there was no intentional influence on the
composition of the participant group. The survey did not
ask for demographic or other personal information. The

online survey was open between 21 May 2024 and 04 June
2024. During these two weeks, 25 participants completed
the survey. Before starting the survey, participants had to
confirm that they agreed to take part in the study and to the
processing and storage of the contents of the survey. The
survey was approved by the data protection officer of the
University.

4.3 Data and Software Availability

The data for the water areas in Figure 4 were down-
loaded from Geofabrik and the shapefile used was
gis_osm_water_a_free_1. The other data in the figure are
published in Nuhn (2025), along with the images of the 10
intersections shown to survey participants, the calculations
for the Nuhn et al. (2024) and Binski et al. (2019) models,
and analysis of the results presented in Section 5.

5 Results

This section presents the landmarks selected by the survey
participants (Section 5.1). We examine the model results
in detail (Section 5.2) and compare the survey results with
the model results (Section 5.3).

5.1 Landmarks selected by survey participants

In order to evaluate our model, we have to divide the geo-
graphic features presented in the survey into "Landmark"
and "No Landmark". Therefore, we follow the rule intro-
duced by Nuhn et al. (2024) (p.13): "geographic features
selected by more than 20% of the survey participants are
defined as landmarks". This means that once an item has
been selected by at least five survey participants, it be-
comes a landmark. The number of landmarks at each inter-
section is not fixed; rather, there are X landmarks at each
intersection. The survey resulted in one to three selected
landmarks per intersection – a total of 21 landmarks.

Figure 7 shows for each landmark group how many geo-
graphic features are selected as landmarks by the survey
participants. Most of the selected geographic features are
part of the group signs. Trees are the second most selected.
Structures such as a wayside cross, a fence, and a shed are
selected three times, as are routes and paths. There are also
three geographic features from the group waterways (all
three times the lake) which are also selected as landmarks.
The participants did not choose any landmarks from the
groups landcover and landforms.

Participants selected mostly three-dimensional geographic
features as landmarks (twelve out of 21). Most of these are
man-made geographic features, such as signs, a wayside
cross, or a shed. Only seven natural geographic features
(three times the lake, a tree stump, the start of the forest,
a double tree, and an outstanding tree) were selected as
landmarks.
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Figure 7. Groups of the landmarks.

5.2 Models results in detail

We identify landmarks with the two models for each sur-
vey intersection. The input to the models is the geographic
features presented in the survey. The outputs are the iden-
tified landmarks. We look first at the results of the model
of Nuhn et al. (2024) (Section 5.2.1) and then at the results
of the model of Binski et al. (2019) (Section 5.2.2).

5.2.1 Model of Nuhn et al. (2024)

The model of Nuhn et al. (2024) identifies twelve land-
marks. Figure 7 shows for each landmark group how many
geographic features are identified as landmarks. Seven ge-
ographic features are part of the group signs. Paths are the
second most selected (with three geographic features). The
model identifies one routes geographic feature and one
geographic feature of structures (a power pole) as land-
marks. The model did not identify any landmarks from
the groups trees, waterways, landcover, and landform. The
analysis shows that most (eight) of the landmarks are
three-dimensional geographic features. All the landmarks
are man-made geographic features.

The total salience of the model of Nuhn et al. (2024) can
reach a maximum of 400. The mean of the salience values
for all objects is 176.84 (standard deviation 53.99). This
means that the salience value for all objects is less than
half of the possible salience value. This indicates that, on
average, the objects in the area only achieve a moderate
salience according to the model of Nuhn et al. (2024).

However, there are objects with a high salience value. The
highest value is 310 and is reached at intersection 9 for two
geographic features - the nature reserve sign and the tourist
information (Figure 8). Both have a visual salience of 60
because they are both salient in height and object class.
The sign is additionally salient in colour and the tourist
information in surface. The highest salience value of 310
is achieved by another geographic feature at intersection 4

Figure 8. Intersection 9 (The colour indicates the number of
times the geographical feature was selected as a landmark in the
survey: no colour: 0-4 selections and dark green 17-20).

(Figure 9), also a nature reserve sign. It is visually salient
in width, surface, and object class. All three geographic
features have a semantic salience of 100 and a structural
salience of 50 for their location. The temporal salience is
100 for all geographic features because they are permanent
and seasonal geographic features.

Figure 9. Intersection 4 (The colour indicates the number of
times the geographical feature was selected as a landmark in the
survey: no colour: 0-4 selections, orange 5-8, and light green 13-
16).
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There is one geographic feature that received the lowest
salience value of 50. This is a tree stump with no visual,
semantic, or structural salience. It is only considered to be
a permanent geographic feature, which gives it a salience
value of 50.

For the twelve geographic features identified as land-
marks, the mean is 250.00. After the nature reserve sign
and the tourist information with 310, there are seven land-
marks with a salience value of over 200. There are two
landmarks that only reach a salience value of 190. They
have a visual salience of 40 (surface and object class), one
of them has a semantic salience of 50, the other one has a
structural salience of 50, and both have a temporal salience
of 100. Although the total salience is only 190, there is
no other geographic feature at this intersection that has a
higher salience.

5.2.2 Model of Binski et al. (2019)

The model of Binski et al. (2019) identifies the most
landmarks with 23. Figure 7 shows the number of ge-
ographic features identified as landmarks by the model
for each landmark group. Six geographic features are part
of the group trees. Waterways and signs are the second
most selected (with four geographic features each). The
model identifies three routes and three landcover geo-
graphic features, two landform geographic features, and
one structures geographic feature (a fence) as landmarks.
The model did not identify any landmarks from the group
paths. Twelve of the landmarks are two-dimensional ge-
ographic features. For this model, the number of natural
landmarks is higher (15) than the number of artificial land-
marks.

The application of the Binski et al. (2019) model produced
salience scores for all geographic features within the ex-
pected range of 2 to 10. The mean is 4.46 with a standard
deviation of 2.34. There are four landmarks that reach the
maximum salience score of 10. Each time it is the lake. It
receives for all three decision trees the full salience score,
because it is a natural geographic feature that will not to-
tally change (Decision tree 1), it is noticeable from a great
distance (Decision tree 2), and it stands out from the en-
vironment and it is not possible to find similar geographic
features nearby (Decision tree 3).

There are 21 geographic features that received the lowest
salience score of 2. These are for example a dog waste
bin, a bench, several paths and intersections, tree stumps,
a street gutter, a gully cover, a fish ladder, a fence, bridges,
and a wood pile. This is because these are not natural ge-
ographic features that tend to change its form (Decision
tree 1), they are neither visible from a great distance, nor
tall, nor spread out on a large area, nor are possibly to be
seen in all conditions (Decision tree 2), they do not stand
out from the environment and can be easily mistaken with
other geographic features (Decision tree 3).

For 23 geographic features identified as landmarks, the
mean salience score is 7.45. The lake is the landmark the
most outstanding since the next salience score is only 8.7
(the ravine). There are also six landmarks that reaches
a salience score of 7.3 (three times an intersection, the
start of the forest, a sign, and a tourist information board).
There are five landmarks that only reach the threshold of
6, such as three times meadow and two signs.

Figure 10. Intersection 2 (The colour indicates the number of
times the geographical feature was selected as a landmark in the
survey: no colour: 0-4 selections and dark green 17-20).

For eight of the ten intersections the model found more
than one landmark. For intersection 1 for example four
landmarks are identified (the meadow, trees, the intersec-
tion, and a fence). The intersection itself is the most salient
with a score of 7.3. An intersection with three identified
landmarks is intersection 8. Here a double tree, the ravine,
and the lake are identified as landmarks. There are two in-
tersections with only one identified landmark. At Intersec-
tion 2 (Figure 10), only the intersection itself is identified
as a landmark, although at first glance other geographic
features (e.g. the bridge) could also be identified as land-
marks. The reason for this can be found in the fact that
there are no natural geographic features at the intersection
that would receive a high score for decision tree 1. The in-
tersection extends over a large area and therefore receives
a score of three for decision tree 2. Although there is the
fence, which ranks higher as an intersection for decision
tree 2 because it is tall, it does not qualify as a landmark
as it gets the lowest score for decision tree 1 and decision
tree 3. The intersection is outstanding from the environ-
ment and it is not possible to find similar geographic fea-
tures nearby, so it gets a score of five for decision tree 3.
Most of the other geographic features at the intersection
get a score of one because they are not outstanding and are
easily confused with other geographic features at the inter-
section. This is also true for the bridge. We assume that a
geographic feature is salient if it has visual salience (Sec-
tion 2.2.2). However, the bridge has a lower visual salience
than the intersection because it differs in surface. For the
surface attribute, a geographic feature is considered salient
if its value differs from all other geographic features at
the intersection. Since there is another wooden geographic
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feature (a bench) at the intersection, the bridge has a lower
visual salience than the intersection, which is the only ge-
ographic feature made of tar at the intersection.

The other intersection with only one landmark is intersec-
tion 7 (Figure 11). Here a ravine is identified as a land-
mark. It is the only geographic feature at the intersec-
tion that cannot change completely and it is a natural geo-
graphic feature (Decision tree 1). Furthermore, it is one of
the geographic features at intersection 7 that is spread over
a large area (Decision tree 2) and it stands out from the
environment (Decision tree 3) as it has a visual salience
of 80. This is because it is salient in terms of (negative)
height, colour, surface, and object class.

5.3 Comparison of Survey and Model Results

The evaluation of the results of the survey and the two
models reveal notable differences in the identification of
the most salient landmark, as the landmarks identified at
each intersection vary across the three methods. The sur-
vey resulted in one to three landmarks per intersection,
while the Binski et al. (2019) model identifies one to four,
and the model of Nuhn et al. (2024) one and for two inter-
sections two. At only two intersections – number 4 and 9
– the models and the survey agree on a single landmark:
a nature reserve sign (Figure 9) and a tourist information
board (Figure 8).

We apply McNemar’s test to compare the landmarks iden-
tified by the model with those selected in the survey (Mc-
Nemar, 1947). This test is based on a contingency table
combining the results of the model and the survey (Table
2). The null hypothesis is that the number of landmarks
identified by the model but not the survey is equal to the
number identified by the survey but not the model. A sig-
nificance level of α= 0.05 is used. If the p-value calcu-
lated by McNemar’s test exceeds α, the null hypothesis is
accepted, indicating that there is no significant difference
between the model and survey results.

The two-tailed p-value for comparing the survey results
with the model of Binski et al. (2019) is 0.838, which is
not statistically significant according to conventional cri-
teria (Table 2). Similarly, when comparing the survey re-
sults with the model of Nuhn et al. (2024), the p-value is
lower at 0.124, but still indicates no significant difference
between the model and survey results.

Table 2 shows that the models are in better agreement with
the survey about which geographical features are not land-
marks than about what is a landmark. The model from
Nuhn et al. (2024) agrees 46 times with the survey that
a geographical feature is not a landmark. The model of
Binski et al. (2019) has 42 agreements with the model of
Nuhn et al. (2024) about what is not a landmark.

6 Discussion

The evaluation of the models in Section 5 shows that the
differences between the two models and the survey results
are not statistically significant. However, for this study
(Section 3) certain constraints are made which could af-
fect the results.

We collected the data in a rural region around a lake. In
general, the choice of study area influences the evalua-
tion of the model. The model of Nuhn et al. (2024) has
already been tested in another rural area. In both cases, the
model produced results that were not statistically signifi-
cantly different from the selection of survey participants.
We can therefore assume that the model is suitable for ru-
ral areas. As for the Binski et al. (2019) model, this is the
first study to test it in rural areas. This means that it is
unclear whether it would be able to identify landmarks in
other rural areas.

The results of the two models are only marginally statis-
tically significant (p=0.046). These differences can be ex-
plained by the different attributes which are taken into ac-
count by the two models. Firstly, Binski et al. (2019) does
not take semantic salience into account, unlike the model
of Nuhn et al. (2024). Here, objects with semantic salience
are given a high value, i.e. a higher chance of being identi-
fied as a landmark. This also results in a different distribu-
tion of identified two- and three-dimensional landmarks.
In the original implementation of Nuhn et al. (2024) 86%
of the identified landmarks are three-dimensional. In our
implementation, 67% are three-dimensional geographic
features. In Nuhn et al. (2024), most of the identified land-
marks are signs that are classified as three-dimensional.
Thus, Nuhn et al. (2024) [p. 18] assumes "that as soon as a
sign is present and visible (this may depend on the season
and vegetation), we can use it as a landmark". However,
only 48% of the landmarks identified by the Binski et al.
(2019) model are three-dimensional and only four out of
23 are signs. The reason why more signs are not identi-
fied as landmarks can be found in decision tree 3, where
visual salience is used to assess whether a geographic fea-
ture stands out from its environment. Visual salience is a
relative attribute, as it is highly dependent on the other ge-
ographic features at an intersection. Thus, if a geographic
feature does not stand out from the others at the intersec-
tion, it will receive a lower salience in decision tree 3.

Another difference is that the model of Binski et al. (2019)
assigns a salience score of 5 to decision tree 1 once a ge-
ographic feature is natural. This leads to the high num-
ber of natural landmarks identified. The model of Binski
et al. (2019) was developed for urban environments. In ru-
ral areas, artificial geographic features are generally more
salient. Future work could investigate whether giving ar-
tificial geographic features a higher score would lead to
better results.

We have taken the rules for calculating landmark salience
from Nuhn et al. (2024) (Table 1). They present - as we do
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Table 2. McNemar’s contingency table.

Survey Mc Nemar
Landmark No Landmark

Model Nuhn et al. (2024) Landmark 3 18
p = 0.124

No Landmark 9 46

Model Binski et al. (2019) Landmark 10 11
p = 0.838

No Landmark 13 42

Figure 11. Intersection 7 (The colour indicates the number of times the geographical feature was selected as a landmark in the survey:
no colour: 0-4 selections and dark green 17-20).

in this paper - their salience measures without any empir-
ical evidence that they lead to better results compared to
other salience measures. Thus, the salience measures and
the conditions that must be fulfilled for the attributes to be
considered salient are based on many assumptions. These
assumptions could be validated in a future empirical study.

As mentioned by Nuhn et al. (2024), visibility depends
on the season and vegetation. The visibility of certain
landmarks, such as lakes, can change dramatically with
the seasons. For example, during the summer months, in-
creased vegetation can obscure landmarks such as lakes,
making them harder to recognise. A total of 29 geographic
features are classified as seasonal. Eight of these were se-
lected as landmarks by survey participants. These were
trees, tree stumps, and a group of trees. The lake was
also a seasonal landmark chosen by the participants. It
can change its appearance during the seasons, for exam-
ple it can look like a meadow in winter when it is cov-
ered with snow. Unlike the study in Nuhn et al. (2024), we
only include one non-permanent geographic feature in our
study, a pile of wood. This geographic feature was only
selected twice by survey participants, so it did not reach
the threshold to be classified as a landmark. Nuhn et al.
(2024) concludes that non-permanent, salient geographic
features can be included in route descriptions. However,
as we only considered one non-permanent geographic fea-
ture, we recommend further research into the permanence
factor.

Similar to Nuhn et al. (2024), we conducted an online sur-
vey to evaluate our model. This approach has some draw-
backs compared to on-site surveys. The images are cen-
tred, which can unintentionally draw attention to specific
geographic features. Participants are limited to one view
of the decision point, whereas in realistic conditions they
would be able to move their head/eyes to look around. In
future studies, a virtual environment such as Street View
might provide more realistic conditions for such a survey.

Additionally, labelling geographic features may enhance
the salience of certain landmarks by making them stand
out more in the images. The number of selectable land-
marks and geographic features is also limited. Participants
had to choose one landmark, the most prominent one.
However, sometimes there could be several salient land-
marks in each image, or even the opposite case, no land-
mark at all. Furthermore, there is no such restriction in
landmark salience models, as there may be no landmark
at all or several. Therefore, in future studies, it should be
possible to choose no landmark, one landmark, or several
landmarks.

Furthermore, some features may be less visible in the im-
ages; for example, the slope of routes is difficult to discern
(Pingel, 2010). Other factors, such as lighting conditions,
shadows, and camera height, may have further influenced
the perceived prominence of geographic features.
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7 Conclusion

In this study, we conducted a comparative analysis of
two rural landmark identification models: the Binski et al.
(2019) and the Nuhn et al. (2024) models. Through both
model application and a participant survey, we assessed
how effectively these models identified landmarks in rural
areas.

Our hypothesis was that the models would identify land-
marks that correspond to what people would choose. We
show that the differences between the models and the sur-
vey results are not statistically significant. However, look-
ing at the results, Table 2 shows that the models are in bet-
ter agreement with the survey about which geographical
features are not landmarks than about what is a landmark.

We have identified open questions for future research, both
in the development of the models for the identification of
landmarks in rural areas and in the investigation of the sur-
vey results. The model of Nuhn et al. (2024) has now been
tested in two rural areas and produced results that were
not statistically significantly different from the selection
of survey participants. We can therefore assume that the
model is suitable for rural areas. As far as the Binski et al.
(2019) model is concerned, this is the first time that it has
been tested in rural areas. The model should be applied
in other study areas to test its functionality for other land-
scapes and geographic features.

The results of the two models are statistically significantly
different. Currently, the model of Binski et al. (2019) does
not take semantic salience into account and prefers nat-
ural geographic features. In contrast, the model of Nuhn
et al. (2024) identifies highly semantically salient geo-
graphic features as landmarks. Investigating these facts
further may be part of future research.

We only considered permanent geographic features, with
the exception of a pile of wood. We recommend further
research to investigate how people select landmarks de-
pending on their permanence. We are also interested in
understanding the role of seasonal changes in landmark
selection and whether significantly different landmarks are
selected in winter compared to summer.

In rural areas, navigation systems based on landmarks
could significantly improve wayfinding. However, a key
challenge in developing such systems is the limited data
available for natural areas. 22 of the geographic features
used in this study can be found in a topographic map and
44 in OpenStreetMap. However, they do not come with
all the visual, semantic, and structural data needed for the
models. This study’s data was collected through a field
study - a method that, while effective, is typically time-
consuming and complex, making it impractical for large-
scale landmark identification in applied systems. A poten-
tial focus of future work could be to use crowdsourced
data to explore its viability as a resource for collecting at-
tributes essential for identifying rural landmarks.
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