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Abstract. Historical maps provide valuable information
and knowledge about the past. However, as they often
feature non-standard projections, hand-drawn styles, and
artistic elements, it is challenging for non-experts to iden-
tify and interpret them. While existing image captioning
methods have achieved remarkable success on natural im-
ages, their performance on maps is suboptimal as maps
are underrepresented in their pre-training process. Despite
the recent advance of vision-enabled GPT models in text
recognition and map captioning, they still have a limited
understanding of maps, as their performance wanes when
texts (e.g., titles and legends) in maps are missing or in-
accurate. Besides, it is inefficient or even impractical to
fine-tune these models with users’ own datasets. To ad-
dress these problems, we propose a novel and lightweight
map-captioning counterpart. Specifically, we fine-tune the
state-of-the-art vision-language model CLIP to generate
captions relevant to historical maps and enrich the captions
with GPT models to tell a brief story regarding where,
what, when and why of a given map. We propose a novel
decision tree architecture to only generate captions rele-
vant to the specified map type. Our system shows invari-
ance to text alterations in maps. The system can be easily
adapted and extended to other map types and scaled to a
larger map captioning system.

Submission Type. algorithm.

BoK Concepts. image processing and analysis → image
understanding → visual interpretation

Keywords. image captioning, GPT, historical maps, map
storytelling

1 Introduction

Historical maps allow us to learn more about a cer-
tain place’s geography, economics, history, and culture.
However, unlike modern maps, they often contain less

accurate geographic information, varying artistic or reli-
gious symbols and legends, non-standard projections, and
hand-drawn styles. This challenges non-experts (i.e., non-
cartographers) to correctly identify and capture the key in-
formation. Image captioning (Anderson et al., 2018; Chen
and Zitnick, 2014; Stefanini et al., 2022; Zhou et al., 2020)
provides descriptions for images in natural language and
serves as a powerful tool in various situations, such as
content understanding for individuals with visual impair-
ments, image tagging for database management, and ef-
ficient search and retrieval of images. Typically, an im-
age encoder is trained for visual cues, and a textual de-
coder is used to produce the final caption. CLIP (Con-
trastive Language-Image Pre-Training), recently proposed
by Radford et al. (2021), learns the shared representations
for images and text prompts. It was trained over a tremen-
dous number of images for a good correlation between
images and texts and has been widely used for down-
stream tasks (like image captioning) with little or no fur-
ther training. For example, the ClipCap model (Mokady
et al., 2021) uses the pre-trained CLIP prefix and fine-
tunes a language model to generate image captions, which
has achieved state-of-the-art performance. However, most
image captioning methods generate descriptions limited to
visual elements, which are not sufficient to tell a meaning-
ful story about maps.

In this paper, we propose a map-specific captioning sys-
tem equipped with a basic understanding of maps, which
is not yet addressed by any image-captioning models. By
fine-tuning CLIP models for map-relevant captions and us-
ing GPT (Generative Pre-trained Transformer) to combine
and enrich them, our system could generate a comprehen-
sive story. We choose a range of recent GPT models, in-
cluding GPT-3.5-turbo, GPT-4o, and GPT-4o-mini for this
task. Compared to GPT-4-turbo and o1, these models have
comparable performances at a much lower cost. Given an
input map, the story should answer the following ques-
tions:

• Where does the map depict about?
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• What is the map type, style, and topic?

• When was the map created?

• Why was the map created?

We focus on two major map types: topographic maps,
which provide detailed and accurate graphical representa-
tions of an area (Kent, 2009), and pictorial maps, which
use illustrations to represent information (Schnürer et al.,
2021). Since not every aspect is relevant for both map
types — for example, the topic is usually the same for all
the topographic maps (i.e., geography and elevation) —
we propose a decision tree structure to generate the cap-
tions with respect to the map type. Moreover, we design
a user interface for interactive map storytelling, where the
user can choose which aspects to include in the story.

2 Related Work

Map information retrieval. Various studies have been
carried out on automatically retrieving information from
maps. In Zhou et al. (2018), state-of-the-art deep convo-
lutional neural networks (CNNs) were used for automatic
map-type classification. In Schnürer et al. (2021), the au-
thors used CNNs to identify pictorial maps and further rec-
ognize objects on pictorial maps. Besides map types, the
study Li and Xiao (2023) also recognized geographic re-
gions and projections. The work Hu et al. (2022) used GIS-
based augmentation to bootstrap the recognition of map
extents and state names. In the paper Touya et al. (2020),
the authors used CNNs to infer the object classes existing
in the map and the spatial extent from French geography
textbooks.

Image captioning. Image captioning can be catego-
rized into template-based, retrieval-based, and novel cap-
tion generation approaches (Hossain et al., 2019). The
template-based approach detects elements such as objects,
actions, and scenes in images and fits those elements to a
pre-defined template for generating a grammatically cor-
rect descriptive caption (Farhadi et al., 2010; Li et al.,
2011; Zeng et al., 2018). However, there are limitations to
such a caption-generation system when it comes to gen-
erating captions from diverse scenes or scenes that fall
outside the scope of the provided templates. To address
this issue, retrieval-based methods utilize image similar-
ity to annotate images without captions by comparing
them to known captions (Hodosh et al., 2013; Ordonez
et al., 2011; Sun et al., 2015). These methods are inca-
pable of generating diverse captions and producing image-
specific and distinctive captions. Other works focused on
enhancing the ability of image and language understand-
ing with state-of-the-art deep learning models (Kiros et al.,
2014; Xu et al., 2015; Yao et al., 2017; You et al., 2016).
They achieve more diverse and image-specific results than
template- and retrieval-based methods. However, the mod-
els for image and language understanding are trained sep-
arately, leading to a lack of integration between the two

feature sets. To better study the correlation between im-
ages and captions, CLIP Radford et al. (2021) was pro-
posed to jointly train the image encoder and text encoder
to predict the most relevant text snippet as the label for an
image. ClipCap (Mokady et al., 2021) combines the CLIP
encoder and GPT models for more detailed and compre-
hensive captions with semantic understanding. It leverages
the pre-trained CLIP and GPT and trains a lightweight
transformer-based mapping network in between.

GPT models. GPT models (Brown et al., 2020), such as
GPT-3.5 (ChatGPT), GPT-4, and GPT-4o, developed by
OpenAI, are large-scale language models (LLMs) based
on transformers, primarily designed for tasks like text gen-
eration. Given instructions (called prompts), the GPT mod-
els can generate human-like texts in natural language and
conversationally answer questions. They can be used for
answering questions, searching, text summarization, and
content generation. In this paper, we use GPTs to tell sto-
ries about maps based on the input keywords and prompts.

We compare the performances of GPT-3.5-turbo, GPT-
4o, and GPT-4o-mini. GPT-3.5-turbo is optimized for
quick interactions such as chat applications and real-time
language processing tasks. It suits applications requiring
rapid response times with high language processing qual-
ity. GPT-4o and GPT-4o-mini are designed to efficiently
manage complex multi-modal tasks. GPT-4o maintains
the equivalent performance as GPT-4-turbo on English
text while offering significant advancements in processing
other languages, as well as in vision and audio understand-
ing, over previous models. Its API has faster operations
and lower cost than GPT-4-turbo. GPT-4o-mini, a com-
pact model, is designed for cost-effective performance in
resource-constrained environments. It outperforms GPT-
3.5-turbo across various academic benchmarks, including
those measuring textual intelligence. We also compare our
proposed method against vision-enabled GPT models, in-
cluding GPT-4-turbo, GPT-4o, and GPT-4o-mini — the
more advanced LLMs that can process image inputs and
generate captions directly. While the more recent GPT-4o
and GPT-4o-mini models are recognized for their impres-
sive multimodal capabilities, GPT-4-turbo remains highly
effective, particularly in reasoning tasks, and is among the
first GPT models to support image processing.

3 Methodology

An overview of our methods is presented in Figure 1.
We first process maps and their metadata automatically
from the online map repository to generate a training
dataset with keyword captions regarding where, what and
when and use this dataset to fine-tune different CLIP mod-
els. In the inference phase, we propose a decision tree ar-
chitecture to structure the keyword captions with respect
to the map type and use GPT to extend the context (why)
and summarize the story. Furthermore, a web interface is
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developed for interactive storytelling with the decision tree
architecture and fine-tuned models loaded at the backend.

3.1 Preliminary: CLIP

CLIP (Radford et al., 2021) is a neural network de-
signed for learning joint representations of images and
texts in a way that enables efficient cross-modal under-
standing. As shown in Figure 2, it employs a vision trans-
former (ViT) for image processing and a transformer-
based language model to process text. The training strat-
egy of CLIP is based on a contrastive learning framework
where the model is trained to maximize agreement be-
tween representations of positive pairs (correct image-text
pairs) and minimize agreement between representations of
negative pairs (mismatched image-text pairs). CLIP was
pre-trained on a dataset of 400 million images and asso-
ciated natural language descriptions and can be applied
to various cross-modal tasks, such as image classification
and object detection, without requiring task-specific adap-
tations. One notable feature of CLIP is its ability to gen-
eralize to zero-shot scenarios. The model can make pre-
dictions on classes that were not seen during training: as
long as the names/descriptions of the classes from the tar-
get dataset are specified, a single linear classifier is applied
to predict the class with the highest probability.

3.2 Dataset preparation

We collected data from the David Rumsey Historical
Map Collection1, an online map repository containing his-
torical maps from all over the world complemented with
detailed metadata. As we focus on topographic maps and
pictorial maps, only the maps in the collection’s categories
Classical and Pictorial map were considered. In total, af-
ter manually filtering out poor-quality maps, 1,334 topo-
graphical and 3,183 pictorial maps were gathered. To cre-
ate ground-truth captions answering the four questions in-
troduced in Section 1, we extracted necessary information
from the metadata associated with each map. We pro-
cessed topographic maps and pictorial maps separately as
different challenges occurred.

Where. For topographic maps, since the location attribute
in the metadata is often ambiguous, incorrect, and impre-
cise, we also parsed the location information from map
titles. For pictorial maps, a substantial class imbalance
emerged, with 3,183 maps depicting 1,349 different loca-
tions. Consequently, we decided to only focus on the two
largest classes – the world and the United States.

What. For topographic maps, there are a few style vari-
ations, such as with/without relief, with/without decora-
tive elements, and hand-colored/engraved, often described
in metadata. However, as this description is not well-
structured and consistent, we have only extracted key-
words from these descriptions. We calculated the frequen-

1https://www.davidrumsey.com/

cies of each keyword and then reduced the number of style
classes to focus only on the most frequent ones. As topo-
graphic maps mainly describe the geography and topogra-
phy of an area, we omitted the map topic in the caption.
Pictorial maps are less constrained in styles with diverse
color schemes and artistic illustrations, making it challeng-
ing to summarize the style. Thus, we excluded styles when
captioning pictorial maps. Similar to where, the topics of
pictorial maps present a strong imbalance. For example,
there are 29% flight network maps but only 2% military
maps. We decided to focus only on the most frequent top-
ics and manually merged some sub-categories into a more
general class.

When: We derived the century of production from the
Date attribute in the metadata, which is consistently com-
plete. However, as most pictorial maps were created in the
20th century, it was no longer necessary to depict when
they were created in the caption.

Why: The metadata provides no information about the pur-
pose and functionality of a map. To fill this gap, we made
use of GPT’s generative capabilities. Instead of then us-
ing the generated caption as ground truth to fine-tune the
model, which would take additional training effort and
might lead to error propagation stemming from imperfect
captions, we only made use of GPT in the inference step.

Eventually, we obtained separate datasets for each cap-
tion category. Each dataset contains maps (compressed, up
to 768×768 pixels) and the corresponding captions. Note
that the ground-truth captions are only comprised of key-
words (or phrases) like Italy or hand colored with pictorial
relief instead of a full sentence. Table 1 gives an overview
of the final number of classes and maps for each of the six
caption categories.

Table 1. Overview of the generated datasets for each caption cat-
egory. Both the numbers of classes and map samples are shown.
We differentiate the location for topographic maps and pictorial
maps.

Caption category # of classes # of maps

Map type 2 4’517

To
po

gr
ap

hi
c Location (topographic) 27 723

Style 6 1’132

Pi
ct

or
ia

l

Century 4 1’334

Location (pictorial) 2 290
Topic 13 284

3.3 Fine-tuning CLIP

The visual information from maps is captured and trans-
formed into textual information using CLIP models, each
fine-tuned to generate keyword captions for a specific as-
pect. We utilize six CLIP models in total, generating key-
word captions related to location, map type, topic, style,
and century, as shown in Figure 1 A). The fine-tuning pro-
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Figure 1. Overview of our proposed methodology.
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Figure 2. CLIP model architecture: an image encoder and a text encoder are jointly trained to predict the correct pairings of a batch
(image, text) of training examples. During inference, the trained text encoder creates a zero-shot linear classifier by embedding the
names or descriptions of the classes from the target dataset.

cess was adapted from Radford et al. (2021). We used a
batch size of 10 and an initial learning rate of 1e-5 with
Adam optimizer Kingma and Ba (2014). All models were
trained on a single 16 GB NVIDIA RTX A4000 GPU.

3.4 Decision tree for inference

As some aspects are only relevant to certain map types,
we proposed a decision tree structure where our models
first predict the map type at the root node and then predict
other relevant keyword captions based on the identified
map type. The inference process using the decision tree
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is illustrated in Figure 1 B. For instance, given the map on
the left in Table 4, the decision tree classifies it as a “pic-
torial map” (keyword 1), leading to the prediction of only
the location “world” (keyword 2) and the topic “flight net-
work” (keyword 3), while the style keyword is excluded as
it is irrelevant in this context (see Section 3.2). At last, we
use GPT to extend the story about why based on the gener-
ated keyword captions and to summarize the story by an-
swering the questions in Section 1, with the prompt of the
following structure: “Please create a concise sentence that
encapsulates these keywords: {keywords}. Please also ad-
dress the following aspects in a concise and coherent para-
graph, in under 40 words, about: {questions}. Ensure the
output is a single paragraph and must strictly no longer
than 50 words. Do not include any generated information
or fabricated details.”

3.5 Web Interface

An interactive web application has been developed for
our map captioning system, where users can upload maps
for caption generation. Users can select specific questions
that they are interested in, and the application will gener-
ate captions with relevant information to address the se-
lected questions. In addition, users can choose different
GPT models as story generators, as well as various vision-
enabled GPT models for captioning comparison. A screen-
shot of our web interface is shown in Figure 1 C. The core
functionality of this application is built using Gradio2, an
open-source Python package designed for building web
applications efficiently. To further enhance user experi-
ence, the Gradio application is integrated into a webpage
that offers detailed descriptions and map examples.

4 Results

4.1 Fine-tuned CLIP Models

We compare the prediction accuracy of our fine-tuned
CLIP models with the base CLIP model for each cap-
tion category. The base CLIP model can predict never-seen
classes as long as the enumeration of class names is given.
The similarity between the text encoding (class name) and
the image encoding is then used to predict the most proba-
ble class. As shown in Table 2, based on 113 test maps (68
topographic maps and 45 pictorial maps), our fine-tuned
CLIP models significantly outperform the base model in
five out of six caption categories. The base model per-
formed slightly better in the location (pictorial) caption
category, likely due to its extensive training on illustra-
tions of the United States and the world with significant
graphic variations. In Table 3, two examples of keyword
captions generated by the base CLIP model and our fine-
tuned CLIP models are shown respectively.

2https://www.gradio.app/

Table 2. Comparison of prediction accuracies achieved per cap-
tion category with the base CLIP model and our fine-tuned CLIP
models.

Caption category Base CLIP Fine-tuned CLIP

Map type 0.43 0.96
Location (topo.) 0.28 0.78
Style 0.29 0.75
Century 0.40 0.76
Location (pict.) 0.96 0.93
Topic 0.47 0.67
Average Accuracy 0.47 0.81

Table 3. Comparison of keyword captions generated by the base
CLIP model and our fine-tuned CLIP models for the two test
maps depicted in the left column. Falsely predicted caption is
marked in red.

Test map Caption category Base CLIP Fine-tuned

Map type pictorial map pictorial map

Location (pict.) world world

Topic world war 2 flight network

Map type pictorial map topographic map

Location (topo.) eastern hemisphere asia

Style hand colored with
decorative
elements and
pictorial relief

hand colored

Century 18th century 19th century

4.2 Map captioning

We compared our map captioning system with ClipCap
model. Additionally, to assess the efficiency and stabil-
ity of our system, we compared the performance of ours
using different story generators, including GPT-3.5-turbo,
GPT-4o, and GPT-4o-mini, and the recent vision-enabled
GPT models, including GPT-4-turbo, GPT-4o, and GPT-
4o-mini.

Table 4 shows examples of the stories generated by our
method and ClipCap. While the original ClipCap can rec-
ognize maps, there are wrong interpretations like “room”
and “map cutter”. To fine-tune it, we combined topic and
location for pictorial maps and century and location for to-
pographic maps in a single sentence. In Table 4, while the
fine-tuned ClipCap correctly detects the Air France global
flight network in the first example, it falsely recognizes the
production time (should be 19th instead of 17th century) in
the second example. By comparison, our method can gen-
erate more accurate, comprehensive, and detailed captions,
including what, when, where, and why.

In Tables 5 to 7 we compare the generated captions of
our system with vision-enabled GPT models under the in-
fluence of missing or wrong map texts. We evaluate our
model’s performance across various versions of GPT, as
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Table 4. The stories of the same test maps generated by our method and ClipCap (Mokady et al., 2021). ✻: Fine-tuned ClipCap.

Test map

Ours
This pictorial map illustrates the global flight network,
showcasing worldwide destinations and travel routes. It
is a visual representation of the world, providing infor-
mation about flight connections, and can be used for
planning and visualizing travel itineraries.

This hand-colored topographic map of Europe in the
19th century features pictorial relief. It shows the ge-
ographical features of Europe and can be used for geo-
graphical analysis.

ClipCap A map of the world is on display in a room. An old map with a map cutter on it.

ClipCap✻ Map depicting Air France worldwide flight network. Map depicting Europe in the 17th century.

our model can be seamlessly integrated with each for sto-
rytelling. We can see that the vision-enabled GPT models
present superior capability in recognizing texts in maps
(such as the map title “Gallia Vetus” in Table 5 and the
year “1942” in Table 7) and enriching the contextual in-
formation with external knowledge. However, hallucina-
tions like the map title “Baird North’s War Map” in Ta-
ble 7 also occur. When we directly alter or modify texts
on maps to simulate the scenarios where maps have miss-
ing or incorrect textual information, the GPTs struggle to
identify the correct information from maps. For example,
in Table 5, the GPT models failed to predict the depicted
geography (mainly France). In Table 6 and Table 7, they
were unable to predict the relevant century (19th century)
and map topic (World War 2), respectively. In the three
examples, the vision-enabled GPT models were generally
ineffective when map texts were missing, incomplete, or
incorrect. In contrast, our method identifies accurate infor-
mation from maps without relying on textual data, show-
ing robustness against text modifications and maintaining
consistency across various GPT versions.

5 Discussion

The primary objective of our work is to develop a cap-
tioning system equipped with a foundational understand-
ing of historical maps, which is not yet achieved by ex-
isting image-captioning models. By supervising the CLIP
model to predict keywords related to “what”, “where”, and
“when” on historical maps, we efficiently extract and rep-
resent essential map content. These keywords play a cru-
cial role in our map captioning system, as they enable ac-
curate comparison with ground truth data–keywords de-
rived from map metadata–and ensure that the narratives
generated by GPT are grounded in factual information.

As mentioned in 4.1, our fine-tuned CLIP models out-
perform the base model in five out of six categories. On

keywords: pictorial map, united states , transport routes

Figure 3. Keyword captions generated by the base CLIP model
following our decision tree approach. As the base CLIP cannot
correctly identify the map type (which is supposed to be topo-
graphic map), the errors propagate through the decision tree and
generate wrong captions.

average, fine-tuning enhanced CLIP’s performance from
47% to 81%, representing a 72% improvement. The base
model performed slightly better in the location (pictorial)
caption category, possibly because the base CLIP has al-
ready been well-trained with a multitude of illustrations
depicting the United States or the world with large graphic
variations. On the other hand, we used only 290 maps to
fine-tune the model for these two classes, which might lead
to over-fitting. We assess the accuracy of each individual
caption. If we evaluate the co-occurrence of all the relevant
captions of a given map, the performance of base CLIP can
be even worse. Moreover, as the base CLIP models cannot
predict the map type well, the error will propagate through
the whole decision tree. An example is shown in Figure 3.

Albeit not efficient enough to train an individual CLIP
model for each keyword caption, our proposed architec-
ture has the following advantages: 1) users can fine-tune
specific categories independently from other keyword cap-
tions; 2) it can be easily extended to other map types and
scaled to a bigger captioning system by incorporating ad-
ditional tree branches and integrating additional fine-tuned
CLIP models. Based on the predicted keywords, we lever-
age language models, i.e., GPTs, to narrate the story by
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Table 5. Comparison of generated captions between our system integrating different GPT versions for storytelling and the vision-
enabled GPTs that can generate captions directly, when texts on maps are missing. On the right, the title and production year (at
bottom-left) are covered. Falsely predicted information is marked in red.

Test map

Ours
(GPT-3.5-turbo)

A hand-colored topographic map of France from the
19th century showcases the terrain and features for geo-
graphic analysis, military planning, and navigation pur-
poses within the country during that era.

A 19th-century hand-colored topographic map of
France. The map depicts the geographical features and
terrain of France during that time and could be used
for navigation, military planning, and understanding the
country’s landscape in the 19th century.

Ours
(GPT-4o)

This hand-colored topographic map of France from the
19th century provides detailed elevation and landscape
features of the region, offering insights into geographic
terrains applicable to studies in historical geography,
exploration, and cartography during that period.

This topographic map, hand-colored and depicting
France in the 19th century, provides detailed geograph-
ical and elevation information, ideal for understand-
ing the landscape and planning developments or travel
strategies of that era across the nation’s diverse regions.

Ours
(GPT-4o-mini)

This hand-colored topographic map represents France
in the 19th century. It portrays the country’s geographi-
cal features, including elevation and terrain. Such maps
could be used for historical research, education, and un-
derstanding of regional development during that period.

This 19th-century hand-colored topographic map illus-
trates the geographical features of France. It serves as
a valuable resource for understanding the country’s ter-
rain, aiding in studies related to geography, history, and
land use during that period.

GPT-4-turbo

This historical map, titled “Gallia Vetus,” represents
Ancient Gaul during Roman times, detailing its diverse
tribal regions and main settlements. It serves educa-
tional and research purposes, offering insights into an-
cient geographic and political boundaries and the devel-
opment of early European civilizations.

This historical map illustrates the railway networks
across Spain and Portugal as of 1900. It details rail lines,
geographical features, and cities, making it a valuable
tool for understanding regional connectivity and travel
planning during that era.

GPT-4o

This map depicts Ancient Gaul, focusing on geograph-
ical and political regions in what is now France, during
antiquity. It serves as a historical reference to under-
stand the territorial organization and tribal distributions
of that era.

This historical map depicts France and surrounding re-
gions, focusing on political boundaries and geograph-
ical features of the time, around the 19th century. It
serves as a tool for understanding historical territorial
divisions and geographical knowledge during this pe-
riod.

GPT-4o-mini

This map illustrates the region of Gaul as it appeared
in 1820. It serves to depict administrative divisions, ge-
ographic features, and transportation routes, useful for
historians, geographers, and those studying early 19th-
century France.

This map depicts Romania, showcasing its administra-
tive divisions and geographical features. It is from the
19th century and can be used for historical research and
understanding regional developments during that time.
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Table 6. Comparison of generated captions between our system integrating different GPT versions for storytelling and the vision-
enabled GPTs that can generate captions directly, when texts on maps are incorrect. On the right, wrong title and production year are
injected. Falsely predicted information is marked in red.

Test map

Ours
(GPT-3.5-turbo)

A 19th-century hand-colored topographic map of
Greece could be utilized for geographical analysis, land
surveying, and historical research, providing detailed
visual information about the terrain features, elevations,
and geographic characteristics of Greece as depicted in
the 1800s.

A hand-colored topographic map of Greece from the
19th century depicts detailed physical features. It pro-
vides information on the country’s terrain, elevations,
and natural landscape, aiding in military planning, in-
frastructure development, and geographical studies of
Greece during that era.

Ours
(GPT-4o)

This hand-colored topographic map depicts the geo-
graphical features of Greece during the 19th century.
It provides detailed elevation and terrain information,
which could be used for historical research, educational
purposes, or understanding the landscape and develop-
ment of Greece in that era.

The hand-colored topographic map of 19th-century
Greece illustrates the country’s geographical features
and elevations. Created during this period, it could be
utilized for military planning, educational purposes, or
enhancing understanding of Greece’s diverse landscape
in that era.

Ours
(GPT-4o-mini)

This 19th-century topographic map of Greece is hand-
colored, depicting the region’s geographic features. It
can be used for educational purposes, historical refer-
ence, or research into the landscape and topography of
Greece during that era.

This 19th-century topographic map of Greece is hand-
colored, showcasing the region’s varied landscape. It
can be used for geographical studies, historical re-
search, or to understand the terrain and settlements of
Greece during that period.

GPT-4-turbo

This map illustrates Ancient Greece along with sur-
rounding island groups and inset maps of the Athe-
nian Empire and the Environs of Athens. This histori-
cal map, rendered in detail, could serve educational and
academic purposes, aiding in the study of Greek history
and geography.

This map represents Italy in the year 1200, detailing its
geographical features and political divisions during the
medieval period. It serves as an educational tool for un-
derstanding Italy’s historical territorial boundaries and
regional distinctions at that time.

GPT-4o

This map depicts Ancient Greece, focusing on its geo-
graphical regions and city-states. It provides a historical
overview, likely from the classical period, and can be
used for educational purposes or historical research on
ancient Greek territories and their locations.

The map depicts Greece around the year 1200, high-
lighting regional divisions and geographic features.
This historical map can be used for educational pur-
poses, illustrating political boundaries and geography
during the period, aiding in studies of medieval Greek
history and cartography.

GPT-4o-mini

This map depicts Ancient Greece, focusing on its geo-
graphic features and city-states. The map illustrates the
region’s landscape during classical antiquity, serving as
a historical reference for educational and research pur-
poses.

This map depicts Greece in the year 1200. It illustrates
territorial divisions and geographic features, valuable
for historical research or education regarding medieval
Greek topography and settlement patterns.
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Table 7. Comparison of generated captions between our system integrating different GPT versions for storytelling and the vision-
enabled GPTs that can generate captions directly, when texts on maps are altered. On the right, the title and map legend are erased
using an AI tool. Falsely predicted information is marked in red.

Test map

Ours
(GPT-3.5-turbo)

A pictorial map of the world during World War 2. The
map illustrates the global theater of the conflict, show-
casing key locations, battles, and events from the war.
It serves as a visual aid for understanding the scope and
impact of World War 2.

A pictorial map of the world during World War 2, de-
picting key locations and events. It could be used for
educational purposes or as a historical reference to vi-
sualize the global impact of the war.

Ours
(GPT-4o)

This pictorial map of the world during World War 2 pro-
vides a visual representation of global events and ter-
ritorial boundaries. It illustrates the geopolitical land-
scape of the era and could be used for educational pur-
poses, understanding historical context, or visualizing
wartime strategies.

This pictorial map illustrates global strategic locations
and events of World War 2. It depicts the world during
the period of World War 2 and can be used for educa-
tional purposes to understand the geopolitical dynamics
and military campaigns of that era.

Ours
(GPT-4o-mini)

The pictorial map of the world during World War II
illustrates the geopolitical landscape and significant
events of the time. It focuses on global movements and
conflicts from 1939 to 1945, serving as an educational
tool for understanding wartime dynamics.

This pictorial map of the world illustrates key events
and themes during World War II. It focuses on various
countries affected by the war, serving as a visual ref-
erence for historical education and analysis of global
conflict from 1939 to 1945.

GPT-4-turbo

This map, titled “Baird North’s War Map,” provides a
comprehensive view of World War II status across the
globe. It visually delineates territorial control and al-
liances as of 1942. It serves educational and historical
analysis uses, detailing key regions, battles, and occu-
pation zones worldwide.

This map depicts the Cold War era, highlighting the
global political divisions between the Western Bloc, the
Eastern Bloc, and Non-Aligned countries. It covers the
entire world and is useful for understanding mid-20th-
century geopolitical alignments and tensions.

GPT-4o

This map depicts global territorial control during World
War II as of 1942. It highlights Axis, Allied, and neutral
countries. Created for educational purposes, it provides
a visual representation of geopolitical power dynamics
and wartime alliances during this period.

This 1939 world map illustrates British Empire territo-
ries in red, showcasing colonial dominance across con-
tinents. It serves educational or political purposes, high-
lighting the global extent of British control at that time,
reflecting geopolitical conditions shortly before World
War II.

GPT-4o-mini

This map illustrates global military theaters during
World War II, specifically from 1942. It serves to de-
pict zones of conflict and military presence, aiding in
geographical understanding of wartime strategies and
alliances across various continents.

This map illustrates historical colonial empires and their
territories around the world, focusing on the mid-20th
century. It serves to highlight global colonial influences
and could be used for educational purposes regarding
imperial history and geographical changes.
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completing the sentence and enriching the context. Be-
sides, our designed web interface enables interactive sto-
rytelling, where the users can choose which aspects to in-
clude in the caption and which GPT model to use for sto-
rytelling.

Both our approach and ClipCap combine CLIP and
GPT models. The difference lies in that no extra map-
ping network is needed between the CLIP and GPT mod-
els. Furthermore, we only fine-tune CLIP models while
using GPT to extend and summarize the story at infer-
ence, which is more lightweight and efficient to train. Fine-
tuning ClipCap does not lead to satisfactory results, possi-
bly because: 1) the ClipCap model was trained on the nat-
ural images (Lin et al., 2014) and the size of our dataset is
not sufficient to fine-tune the transformer-based mapping
network; 2) CLIP models stay frozen in the training pro-
cess of ClipCap, which can propagate errors to GPT if the
visual prefix cannot be correctly obtained from maps.

Compared with vision-enabled GPT models that pri-
marily rely on textual information to generate correct cap-
tions, our system leverages visual cues such as shapes and
textures. This reliance on visual information significantly
enhances the robustness of our system in cases where la-
bels are illegible (e.g., due to the aging of printed maps
or low resolution) or have been altered. Such modifica-
tions can be introduced for unethical reasons such as mis-
representation, propaganda, forgery or distorting historical
context. Therefore, it is crucial for a captioning system to
interpret maps without depending solely on textual infor-
mation.

Our method also has limitations. First of all, GPTs may
slightly hallucinate captions, especially for why, given
that no ground truth is provided to be aligned with. Our
work only evaluated the accuracy of keywords that can
be compared with the ground truth, i.e., “what”, “where”
and “when”. Since no ground truth is available for “why”
(which is enriched by the GPT), and the quality of gener-
ated captions is aligned with the capability of the current
language model per se, our work does not involve extra
evaluation of the caption. The users can potentially assess
whether the story is informative in future work. On the
other hand, our proposed architecture requires enumerat-
ing all classes in the decision tree. The classes should be
defined beforehand; thus, our proposed architecture cannot
describe unseen categories/concepts.

While our system represents a first step toward auto-
matic map storytelling, we acknowledge that the gener-
ated textual descriptions currently fall short of richer nar-
rative depth. The outputs are intentionally concise and fo-
cus on summarizing the key spatial and temporal informa-
tion; they do not yet capture historical context, causality,
or thematic progression —key elements of storytelling in a
broader sense. This limitation stems from both the nature
of the input (often sparse and limited cartographic con-
tent) and the current capabilities of general-purpose lan-
guage models when applied to niche, domain-specific vi-
sual inputs like historical maps. Future work will explore

ways to enrich the descriptive outputs with contextual his-
torical knowledge, integrate multi-modal reasoning (e.g.,
combining text, map features, and external metadata), and
move toward generating narratives that not only describe,
but also interpret maps in ways that support educational
and scholarly storytelling goals.

6 Conclusion and outlook

While existing image captioning methods show promis-
ing results on natural images, their performances for maps
remain suboptimal in terms of caption accuracy and gran-
ularity. Our proposed method outperforms ClipCap in
map storytelling and is more stable than other vision-
enabled GPT models when missing or altered text in
maps. Compared with vision-enabled GPT models, our
proposed lightweight method can be easily used to fine-
tune map captioning with users’ private or proprietary
datasets. Moreover, our system has a scalable decision tree
architecture that is flexible to adapt and extend. However,
there are also limitations. The current system focuses on
broad periods (e.g., centuries) for identifying when, which
can fail to capture significant historical nuances. Addition-
ally, the caption quality depends on the current language
model’s capabilities, which may lack depth in explaining
the why behind a map. In the future, more efficient ways
can be explored to automatically generate a larger and
more diverse map dataset. Moreover, the generated nar-
ratives should be further enriched and deepened by inte-
grating other knowledge bases for storytelling in a broader
sense. The caption quality can be further strengthened and
evaluated via user study. Combined with our decision tree
approach, it would allow the development of a more pow-
erful (historical) map captioning system.

Data and Software Availability

The data and code to reproduce our results on the test
set with our approach are available at https://github.com/
claudaff/automatic-map-storytelling.

Declaration of Generative AI in writing

The authors declare that they have used Generative AI
tools only to a minor degree in the preparation of this
manuscript. Specifically, the AI tools were utilized for im-
proving grammar and language editing, but not for gener-
ating scientific content, research data, or substantive con-
clusions. All intellectual and creative work, including the
analysis and interpretation of data, is original and has been
conducted by the authors without AI assistance.
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