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Abstract. While predicting human and vehicle trajecto-
ries is a deeply investigated field of research, predicting
aircraft trajectories remains a less explored frontier. Still,
the long-term prediction of aircraft movements is a funda-
mental challenge in aviation, influencing Air Traffic Man-
agement (ATM), operational efficiency, and flight safety.
Traditional trajectory prediction models are often primar-
ily focused on a 2D prediction. With this work, we evaluate
different data representation methods in the field of long-
term aircraft trajectory prediction using a state-of-the-art
mobility prediction method, namely a CVAE-LSTM. We
show that the H3 grid presents advantages for this task.
With that, we explore a fascinating field of future mobility
research, as the used data allows for various technical anal-
yses without implying threats to personal privacy-relevant
information.
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BoK Concepts. [TA14-3] Predictive modelling products,
[DM5-3] Modelling 3D, [TA14-2] Descriptive analytics
products
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1 Introduction

Predicting 4D aircraft trajectories is a fundamental chal-
lenge in aviation, influencing Air Traffic Management
(ATM), operational efficiency, and flight safety. We gen-
erally differentiate between short-term predictions (up to
10 minutes) for safety purposes and long-term predictions
(greater than 10 min) for strategic aircraft management
(Shafienya and Regan, 2022). Long-term planning is es-
sential as airspace congestion continues to increase: Pre-
cise strategic trajectory forecasting is then essential for
optimizing airspace and airport utilization, minimizing de-
lays, and ensuring safe separation between aircraft.

This poses a significant challenge for the traditional tra-
jectory prediction methods deployed in general mobility
research (Mokbel et al., 2024) or 2D path planning and
collision control for cars and ships (Karle et al., 2022; Fu
et al., 2024; Elayam et al., 2022; Drapier et al., 2024; Liu
et al., 2024). These trajectory prediction models often pri-
marily focus on model optimization in 2D and lack inte-
gration of state-of-the-art geospatial data representations
for more dimensions. Examples range from Long Short-
Term Memory (LSTM) based methods to more com-
plex architectures using Conditional Variational Autoen-
coders (CVAEs), Transformers, and Diffusion models (Fu
et al., 2024; Bharilya and Kumar, 2024; Teeti et al., 2022;
Schuetz and Flohr, 2023).

With this work, we present our research on long-term air-
craft trajectory prediction with a special focus on differ-
ent trajectory representation approaches. Specifically, we
explore the effectiveness of hierarchical hexagonal spatial
index (H3) as an alternative to conventional vector-based
representations, which rely on latitude, longitude pairs,
or Cartesian projections. With that, we contribute to the
growing body of research on data-driven trajectory pre-
diction in the aviation domain. Experimental results with
a CVAE-LSTM model indicate that using H3 indexing en-
ables a more structured and sparse representation of air-
craft trajectories.

2 Background on Aircraft Trajectory Prediction

In aviation, a trajectory T i is normally represented as a
sequence of N equally spaced state vectors vit over time,
capturing an aircraft’s flight path (Ayala et al., 2023):

T i
1_N = {vi1,vi2, . . . ,viN}. (1)

Each state vector v includes at least the aircraft’s posi-
tion, i.e., latitude, longitude, and altitude, along with time,
forming a discrete-time state transition model (Georgiou
et al., 2018). For an aircraft i at time t, its state vector is

AGILE: GIScience Series, 6, 46, 2025. https://doi.org/10.5194/agile-giss-6-46-2025 
Proceedings of the 28th AGILE Conference on Geographic Information Science, 10–13 June 2025. 
Eds.: Auriol Degbelo, Serena Coetzee, Carsten Keßler, Monika Sester, Sabine Timpf, Lars Bernard 
This contribution underwent peer review based on a full paper submission. 
© Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

1 of 7

https://orcid.org/0009-0007-1574-524X
https://orcid.org/0000-0002-5101-5793
https://orcid.org/0000-0002-6951-8022


defined as

vit = (latit, lon
i
t,alt

i
t, ..., t). (2)

The time interval between consecutive state vectors,
known as the sample interval, determines the sequence’s
length and resolution.

To consider that a predicted trajectory is accurate to the
true trajectory of an aircraft, position errors along the hor-
izontal (latitude and longitude) and the vertical (altitude)
axes are measured. ATM and air traffic control systems
have different safety requirements depending on the flight
phase. Still, they consider deviations greater than 9.26 km
horizontally and ≈ 500 m vertically (Federal Aviation Ad-
ministration, 2025; Gong and McNally, 2004).

3 Related Work

The related work is separated into two parts: the methods
for trajectory prediction and the corresponding data rep-
resentations that serve as a basis for these prediction ap-
proaches.

3.1 Methods for Trajectory Prediction

Different methodological approaches have been developed
for trajectory prediction in aviation (Zeng et al., 2022). As
illustrated in Figure 1, the methods found in the literature
of this domain can be classified into kinetics-based, state
estimation, data-driven, and hybrid approaches. Classical
methods, such as kinetic models and state estimation tech-
niques, e.g., differential equations and Markov Decision
Processes, offer robustness but often require simplifica-
tions that limit their effectiveness in complex real-world
scenarios (Hong et al., 2023; Zhang et al., 2018; Lee et al.,
2009). Data-driven approaches, leveraging machine learn-
ing, are gaining popularity for their ability to capture intri-
cate dependencies (Ayala et al., 2023; Schuster and Pali-
wal, 1997; Graves, 2012). Hybrid methods, which inte-
grate classical models with probabilistic techniques, are
also being explored to improve long-term prediction ac-
curacy while maintaining computational efficiency (Wang
et al., 2024). Recent research has focused on refining data-
driven or hybrid approaches, specially focusing on se-
quence modeling models, to enhance prediction reliabil-
ity and applicability in commercial aviation (Zeng et al.,
2022).

3.2 Typical Data Representations for Trajectories

Various geospatial data representation methods have been
proposed for trajectory prediction in general and aircraft
trajectory prediction in specific. They differ primarily in
their spatial dimensions, which are primarily 2D, 3D,
or 4D. Most aircraft-related studies employ vector-based
representations, encoding GPS trajectory positions using
geodetic coordinates (Shafienya and Regan, 2022; Zhang

et al., 2022; Wu et al., 2022b; Yang et al., 2023; Zhang
and Liu, 2024), sometimes mapped to Cartesian coordi-
nates for better distance calculations (Wu et al., 2022a;
Pang and Liu, 2020; Shi et al., 2020). Some researchers
have used grid-based methods, such as cubic grids, to in-
corporate additional data like wind patterns (Ayhan and
Samet, 2016; Schimpf et al., 2023; Zhai et al., 2019; Torres
and Dehn, 2017), while others have explored alternative
approaches, such as Uber’s hierarchical hexagonal spatial
index (H3)1, for improving resolution and computational
efficiency on collision detection and trajectory modeling
(Sahadevan Neelakandan and Al Ali, 2023; Ostroumov,
2024). A visualization of the H3 hierarchical hexagonal
spatial index is given in Figure 2.

Beyond aviation, trajectory prediction for autonomous ve-
hicles has also evolved with the introduction of multi-
resolution hexagonal grids and hierarchical square grid
systems, such as Geohash, to improve storage efficiency
and model performance (Hu et al., 2022). Especially,
Uber’s H3 framework, which employs hexagonal raster
grids, has gained traction for motion modeling, offering re-
duced distortions compared to traditional map projections.
These grids vary in sizes per resolution, ranging from ap-
proximately 1200 km for the coarsest, lowest-resolution,
to 60 cm for the finest, highest-resolution, as depicted in
Table 1. Its hierarchical nature allows for selective resolu-
tion adjustments, making it particularly effective for pro-
cessing large-scale geospatial data. Recent studies confirm
that H3 outperforms traditional indexing methods in terms
of runtime, memory efficiency, and scalability, making it
a promising tool for trajectory prediction across various
domains in 2D (Al-Lawati et al., 2024; Shiri et al., 2024;
Oje et al., 2024; Kmoch et al., 2022; Wen et al., 2021; Yan
et al., 2023; Elayam et al., 2022).

Table 1. Descriptive information about each H3 resolution (Res.)
available in Uber’s framework.

Res. # Cells Avg.
Area (km2)

Avg. Edge
Length (km)

0 122 2,562,182.16 1281.26
...

5 2,016,842 252.90 9.85
6 14,117,882 36.13 3.72
7 98,825,162 5.16 1.41
8 691,776,122 0.74 0.53
9 4,842,432,842 0.11 0.20
10 33,897,029,882 0.015 0.076
11 237,279,209,162 0.0021 0.029

...
15 569,707,381,193,162 0.00000090 0.0006

1https://github.com/uber/h3, last accessed 11.02.2025
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Figure 1. Taxonomy of methods for trajectory prediction in aviation.

Figure 2. Example of a H3 grid in three different resolutions.

4 Methods

The paper’s primary goal is to explore state-of-the-art tra-
jectory representations in the aviation domain. To this
end, we evaluate different data representations on long-
term aircraft trajectory prediction using a well-established
model. The method consists of a) the data preparation
and adaptation into discrete spatial representation, b) the
proposition of a CVAE-LSTM model for the long-term
prediction of aircraft movements, and c) the proposition
and discussion of error measures.

Given clean aircraft trajectories (sufficiently smooth, no
outliers, equally sampled), the question remains how
to best prepare this data for data-driven prediction ap-
proaches. As discussed in the related works Section 3.2,
various representations for trajectory data were proposed.
As state-of-the-art sequence prediction techniques often
originally stem from natural language processing tasks,
many of them require categorical, respectively discrete in-
puts. Therefore, for further study, the location data of tra-
jectories is once taken in traditional latitude, longitude,
and altitude pairs and additionally mapped onto the dis-
crete hierarchical hexagonal spatial grid (H3) with an ad-
ditional altitude component. Both representations are then
tokenized into discrete tokens for consecutive learning ap-
proaches. The time dimension was converted into a differ-
ential feature relative to the flight’s start time, a technique
proven effective in other studies (Ayala et al., 2023; Guo
et al., 2024).
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Figure 3. Model architecture of the proposed CVAE-LSTM
model. During training, we employed a teaching forcing method
(1,2,3) and shifted the target sequences by adding a [START]
token at the beginning (4).

For the actual prediction, this work employs a CVAE ar-
chitecture, with LSTM layers to predict the next trajectory
positions, which is schematically presented in Figure 3.
This model was inspired by the work of (Ayala et al.,
2023). Still, we replaced the Convolutional Neural Net-
work (CNN) encoder with LSTMs for simplicity, given
that our dataset was not large enough to successfully train
convolutional layers from the ground.
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The model begins with the embedding layers for each in-
put feature (1), essentially linear layers designed to map
token indices into better representations in the latent space.
We used an embed size of 128. Next, all the embedded fea-
tures are concatenated, normalized, and passed through an
LSTM encoder (2), with 1024 as hidden size, extracting
the spatial-temporal features from input sequences. Fol-
lowing the encoder, we added a two-layer LSTM decoder
(3), also with a hidden size of 1024. It takes the previous
predictions as input and the hidden state from the encoder.

As illustrated in the diagram in Figure 3, the historical data
is fed into the model on the encoder part, providing con-
text for the prediction processes occurring on the decoder
side. During training, true previous targets are input for the
decoder instead of the previously predicted values. This is
known as a teacher forcing training method and helps the
model to converge faster. To achieve this, we shifted the
target sequence by one position by adding a [START]
token at the beginning (4). During inference, the previ-
ous predictions are fed into the decoder, as the true val-
ues are not available at this stage. We employ a Negative
Log Likelihood Loss per predicted feature. This loss is
particularly effective for training models in classification
tasks with multiple classes, as it measures how well the
predicted probability distribution aligns with the true class
labels. In our case, each token corresponds to a discrete
value of one dimension of the trajectory’s state vector.

4.1 Implementation Details

During training, we employed the Adam optimizer with
an initial learning rate lr of 1e−4. The model was trained
for 100 epochs with a batch size of 64. An early stopping
technique was used to prevent overfitting halting training
when the validation loss start increasing over a tolerance
for three epochs. The complete list of training hyperpa-
rameters is presented in Table 2. The dataset was randomly
partitioned into training (70%), validation (20%), and test-
ing (10%) sets, ensuring no overlap between the different
sets.

Table 2. Hyperparameters used during training and evaluation
processes.

Parameter Value
Batch size 64
Optimizer Adam
Optimizer params lr = 1e−4,β1 = 0.9,β2 = 0.999,

weight_decay=1e−5
Dropout rate 0.2
Activation LogSoftmax
# Epochs 100

4.2 Evalution Metrics

The prediction accuracy is systematically evaluated using
Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE), well-known performance metrics in the trajec-
tory prediction domain. It is clear to the authors, that this
might sound counterintuitive given the categorical nature
of predictions into distinct tokenized locations, still for the
application domain it is rather unimportant whether the
right distinct values are predicted but instead a continuous
spatial distance to the actual trajectory is beneficial. There-
fore, we propose to transform the aircraft’s coordinates
into a unified Earth-Centered Earth-Fixed (ECEF) coordi-
nate system before computing the prediction errors. This
approach ensures that all positional data is represented rel-
ative to a single, well-defined origin.

Data and Software Availability

Research code and computational workflows support-
ing this publication are available in 2025-AGILE-
AircraftTrajectoryPrediction (https://github.com/
tum-bgd/2025-AGILE-AircraftTrajectoryPrediction).
Research data supporting this publication was
downloaded from the OpenSky Network (https:
//opensky-network.org/) with scripts provided in the
repository as described in Section 5.

5 Dataset

The dataset comprises historical ADS-B trajectory data
sourced from the OpenSky Network (Schäfer et al., 2014)
and processed using version 2.11.1 of the Traffic
toolbox (Olive, 2019). It includes 2,334 flights landing
at Toulouse-Blagnac Airport (LFBO) between October 1
and November 5, 2024, with an average flight distance of
approximately 797.54 km and a duration of 76.08 min-
utes. Due to the irregular time spacing of ADS-B record-
ings, missing data points were interpolated using cubic
spline interpolation to create a smoother dataset. To bal-
ance data volume with computational efficiency, trajecto-
ries were resampled at intervals of 5, 10, 20, and 30 sec-
onds, as well as 1 minute, allowing the model to be tested
across various configurations. Anomalous values were re-
moved using threshold-based filtering and median smooth-
ing, including implausibly high speeds, vertical rates, and
altitudes. Additionally, complex flight operations such as
go-arounds and holding patterns were excluded to prevent
confusion in the model. As ground segments are not well
covered in the ADS-B data, points within 5 km of the ori-
gin and destination airports were also removed.

6 Experiments and Results

To show the applicabilty of our approach we conduct two
experiments: First we evaluate the distinct spatial grid sys-
tem H3 in different resolutions against the standard lati-
tude, longitude and altitude representation. Then we eval-
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uate the long-term prediction performance of the propsed
approach.

6.1 Different H3 Resolutions

An experiment comparing different grid resolutions
against a geodetic baseline data representation was con-
ducted to identify the best grid resolutions for predict-
ing aircraft trajectories. The tested H3 resolutions, rang-
ing from 5 to 11, respect aviation’s distance safety stan-
dards (approximately 9.26 km horizontally and 500 m ver-
tically (Federal Aviation Administration, 2025)) while en-
suring good computational performance. All the trajecto-
ries were re-sampled to 60 second intervals between po-
sitions, and the input and output sequence lengths were
kept fixed at 5 and 60 points, respectively. The results,
shown in Table 3, indicate that the lowest prediction er-
rors occur at the resolution 5. This behavior is not ex-
pected since a high-resolution number means smaller grid
areas, which should lead to smaller distance errors. How-
ever, by analyzing the RMSE, we can notice the presence
of large values in the distance calculations, indicating that
true values were outside, and spatially far, from the pre-
dicted H3 cell. This happens because flights often follow
similar paths, and some departure airports are underrep-
resented. Due to that, the data had some high-probability
concentration cells in specific geographic areas, such as
the Paris-Toulouse route. Hence, less frequent cells were
often misclassified into cells inside these zones instead of
spatially close ones. This pattern significantly increases
the horizontal errors when more cells are added with fine-
grained resolutions.

Table 3. Results of global spatial MAE and RMSE per spatial
feature and chosen data representation (Baseline Latitude and
Longitude and different H3 grid resolutions). The best results for
each error metric are highlighted in bold.

MAE RMSE
X (km) Y (km) X (km) Y (km)

Basel. Lat.,Lon. 347.941 505.121 608.317 947.573

H
3

R
es

ol
ut

io
n

5 32.428 42.566 92.035 115.732
6 50.225 62.577 132.781 164.336
7 88.262 124.694 195.682 293.530
8 194.095 273.405 441.892 677.890
9 215.824 332.284 383.219 604.977
10 240.655 363.235 337.013 510.632
11 375.999 550.849 693.119 979.535

6.2 Different Long-term Prediction Ranges

Further, we analyzed the proposed data representation
under different long-term prediction ranges, specifically
look-ahead times (LATs) of 30 and 60 minutes. This ex-
periment aimed to determine whether the error bounds of
such a data representation remained within aviation speci-
fications. To explore the impact of different sampling rates,
we tested multiple sampling intervals to assess whether

more frequent trajectory sampling led to improved perfor-
mance. For consistency, we only used the fifth resolution
grid of H3, as previous experiments indicated it gener-
ally yielded better results. The input sequence was fixed
at two minutes, resulting in 24, 12, 4, and 2 trajectory
points for the 5-, 10-, 20-, 30-, and 60-second sampling
times, respectively. Table 4 presents the spatial errors for
these sampling times and look-ahead predictions. The re-
sults indicate that for longer-range predictions, less fre-
quent trajectory sampling generally leads to lower errors.
The best overall spatial error was approximately 32 km in
both look-ahead times, which shows consistency instead
of an increasing pattern with the increase in the prediction
range. However, none of the configurations produced re-
sults approaching the 9.26 km horizontal safety margins
required in aviation.

Table 4. Results of global spatial MAE and RMSE per feature
and sampling time (ST) for each look-ahead time (LAT). The best
results per feature and prediction length are highlighted in bold.
As data representation, an H3 grid of resolution 5 is chosen.

LAT
(min)

ST
(s)

MAE RMSE
X (km) Y (km) X (km) Y (km)

30

5 261.242 286.252 408.017 544.501
10 303.056 346.598 457.504 588.518
20 228.064 286.933 393.055 547.494
30 34.945 59.469 125.844 196.429
60 31.694 35.807 117.308 112.321

60

5 358.490 472.021 467.870 687.508
10 298.051 333.066 415.271 567.649
20 248.198 444.592 475.836 822.712
30 31.435 33.809 82.885 88.986
60 32.428 42.566 92.035 115.732

Nevertheless, Figure 4 illustrates that the model can accu-
rately identify the next H3 cells in the 30-minute predic-
tion scenario for some trajectories. This shows promising
results despite the necessary adjustments required to make
the predictions compliant with aviation safety standards.

Figure 4. An example of a flight prediction of the model trained
with a 60 s sampling time with H3 at resolution 5 using 2 minutes
input and 30 minutes look-ahead time. In (a), the ground truth
(red dots) is plotted together with the ground truth H3 cells. In
(b), the predicted cells overlay the previous plot, showing a true
prediction.
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7 Conclusion

In this work, we showed that predicting aircraft trajectories
poses a relevant application field for mobility research. We
conducted initial experiments on applying state-of-the-art
trajectory representation methods on aircraft flight paths.
Specifically, we proposed to use H3 as a distinct spatial
grid and showed that this data representation results in su-
perior prediction performance compared to the standard
geodetic representation in spatial coordinates. While H3
indexing presents a viable alternative to traditional coordi-
nate systems, further refinements are necessary to achieve
the high accuracy required for practical implementation in
air traffic control and flight management systems as they
pose high safety standards, such as using 3D grids with
weather data, and more advance model architectures.

Apart from improving the pure model prediction perfor-
mance, future work might investigate further postprocess-
ing steps to extrapolate the sequence of predicted trajec-
tory cells to actual continuous trajectories. This might in-
clude cleaning the trajectory data based on the physical
limitations of aircraft travel and introducing methods to
smooth out potential discontinuities. In general, the au-
thors propose that the field of trajectory prediction in mo-
bility science takes aircraft trajectories more into account,
as they offer big data volumes without huge privacy risks
involved.
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