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Abstract. This case study presents a web-based Geospa-
tial eXplainable Artificial Intelligence (GeoXAlI) system
demonstrated through a case study for wildfire suscep-
tibility assessment. Addressing limitations in traditional
GeoXAl tools, the system integrates XAl methods with
open-source geospatial technologies. Using a Random
Forest model, the system combines environmental, topo-
graphic, and meteorological features to provide global and
local insights. SHAP values offer feature-level explana-
tions, while the interactive platform enables users to visu-
alize wildfire susceptibility, examine feature contributions,
and correlate predictions with spatial patterns and distribu-
tion of feature values. This approach tries to enhance trans-
parency in Al-driven environmental decision support sys-
tems, with a specific focus on the interpretability of model
output.
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1 Introduction

Artificial Intelligence advancements have created new op-
portunities across domains due to Al’s ability to handle
complex data and discover intricate patterns. In geogra-
phy, massive geospatial datasets from remote sensing, Li-
DAR, field surveys, and Volunteered Geographic Informa-
tion (VGI), have enabled GeoAl applications ranging from
predicting natural disasters such as floods (Lyu and Yin,
2023) and forest fires (Ghorbanzadeh et al., 2019; Piao
et al., 2022) to urban planning (Kim et al., 2023) as well
as leveraging location intelligence for logistics and supply
chain management (Taghiyeh et al., 2023).

Despite these advances, explainability and transparency
remain critical concerns. The European Parliament’s Ar-
tificial Intelligence Act (Madiega, 2021) emphasizes that
Al systems must provide interpretable outputs, allowing
informed decisions. This principle falls under eXplainable
Artificial Intelligence (XAI), with its geographical appli-
cation known as GeoXAI (Roussel and Bohm, 2023; Xing
and Sieber, 2023). Therefore, GeoXAlI refers to systems
that apply XAI techniques to interpret and understand the
predictions made by Al models trained on geographic data
through Geographic Information System (GIS) tools and
methods.

Many scholars in environmental and GIS fields use XAl
methods such as LIME! (Ribeiro et al., 2016) and SHAP?
(Lundberg and Lee, 2017) to identify key factors in predic-
tive models across domains such as flood (Seleem et al.,
2022), wildfire (Abdollahi and Pradhan, 2023; Cilli et al.,
2022), earthquake (Matin and Pradhan, 2021), site selec-
tion (Algahtani et al., 2024), road traffic (Liua et al., 2024)
and urban studies (Kim et al., 2023; Sun et al., 2023;
Mueller-Kett, 2024; Li, 2022). These scholars primarily
rely on plots and attribution maps to visualize explana-
tions, but conventional XAI techniques often lack inter-
active cartographic maps and geovisualization techniques
necessary for case-specific and local explanations (Das
and Rad, 2020). This limitation is particularly problem-
atic for natural disaster analysis, where geographic con-
text is essential (Xing and Sieber, 2023). To address this,
researchers like Maxwell et al. (2021) and Pradhan et al.
(2022) advocate for interactive maps in GeoXAl, enabling
users to explore local insights and interact with prediction
outputs for better decision-making.

This paper addresses this research gap with an interactive
Web GIS system using open-source geospatial technolo-
gies. Our wildfire susceptibility case study demonstrates
the integration of geospatial data, machine learning, and
explainability methods, allowing users to visualize Al pre-
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dictions, examine feature contributions, and obtain local
interpretations within a geographic context.

1.1 Research Contribution

The primary contribution of this work is the development
and implementation of a novel web-based GeoXAl frame-
work that bridges the gap between Al models and human-
interpretable spatial insights. Unlike existing approaches
that often present interactive local GeoXAlI outputs as ab-
stract visualizations detached from their spatial context,
our system:

1. Integrates SHAP-based explanations directly within
a geospatial interface

2. Enables real-time, location-specific interpretations of
model predictions

3. Correlates feature contributions with their spatial dis-
tributions

4. Facilitates interactive exploration of wildfire suscep-
tibility factors

While previous studies have applied machine learning to
wildfire prediction or used XAI methods for feature im-
portance analysis, our work uniquely combines these ap-
proaches within an interactive web platform that maintains
the geographic context critical for environmental decision-
making.

2 Materials and Methods

This section outlines the methodology for developing a
web-based GeoXAl system for wildfire susceptibility as-
sessment and local explanation. It covers the study area,
data collection, feature selection, implementation of a
Random Forest model, SHAP computation for feature im-
portance analysis, and the integration of GeoXAlI for in-
teractive geospatial interpretation.

2.1 Study Area and Inventory Dataset

The study encompasses Berlin and Brandenburg, Germany
(43,010.4 km?), an area prone to wildfires with 80 inci-
dents recorded between 2015-2023 by the European Forest
Fire Information System (EFFIS)® using MODIS sensor
data. The prediction model considers wildfire susceptibil-
ity across this entire time period, modeling the probability
of wildfire occurrence at specific locations based on envi-
ronmental conditions.

2.2 Wildfire Contributing Features

Wildfire occurrence is influenced by climatic variables,
topography, and vegetation properties (Naderpour et al.,

3https://forest-fire.emergency.copernicus.eu/
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2021; Wotton et al., 2010; Nami et al., 2018). This study
considers three key categories: topographic attributes, me-
teorological variables, and vegetation indices.

e Topographic attributes were derived from OpenDEM
platform and include elevation, aspect, and slope.

e Meteorological variables were obtained from the
German Weather Service (DWD) and Landsat Col-
lection 2, covering precipitation, drought index,
global radiation, and Land Surface Temperature
(LST).

e Vegetation indices, including NDVI, GNDVI, and
NDMI, were calculated using Sentinel-2 imagery
processed via Google Earth Engine (GEE). The land
cover dataset from the German Aerospace Centre
(DLR) provided additional classification layers.

2.3 Random Forest Model

A Random Forest (RF) model was selected for its inter-
pretability and robustness in high-dimensional settings.
Key steps included:

e Merging environmental features and georeferencing
using GeoPandas.

e Ensuring class balance by randomly selecting equal
samples from fire and non-fire categories.

e Binary encoding of the target feature (burnt_area)
with 1 for fire and O for non-fire.

e Splitting data into training and testing sets (80:20).

e Optimizing hyperparameters: max_depth = 10,
min_samples_leaf = 1, min_samples_split = 2
n_estimators = 100.

)

Data preprocessing involved GDAL tools for CRS normal-
ization, resampling, and format conversion.

The RF model generates a wildfire susceptibility raster
(range 0-1) with 91% accuracy. It classified 197/208 non-
burnt and 76/92 burnt areas correctly. Despite class imbal-
ance (69% non-burnt), the model achieved strong preci-
sion (0.87) and recall (0.83) for burnt areas. While future
work may incorporate oversampling or threshold tuning,
this study emphasizes SHAP-based interpretability over
pure predictive performance within the GeoXAI frame-
work.

2.4 SHAP for Wildfire Prediction Interpretability

SHAP provides global and local interpretability, helping
users understand overall model behavior and individual
wildfire predictions. It quantifies each feature’s contribu-
tion to the model’s output, using Shapley values (Shapley,
1953) from cooperative game theory.
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For global interpretation, SHAP averages feature contri-
butions across all subsets (Lundberg and Lee, 2017), of-
fering insight into which features most influence predic-
tions. For local interpretation, it identifies the key drivers
behind specific fire events, enhancing model transparency.
In RF models, SHAP uses the TreeExplainer algorithm
(Sharma et al., 2020) to determine feature contributions.
It calculates the impact of each feature by comparing pre-
dictions with and without it at different nodes. Summing
these contributions along the tree paths provides SHAP
values, which are then averaged across all trees to deter-
mine each feature’s final impact. In this case study, a Web-
based GeoXAlI framework was developed to enable user
interaction with the RF model and local explanations us-
ing the SHAP Python package. This interactive system al-
lows users to explore model predictions and feature contri-
butions spatially, enhancing interpretability and decision-
making capabilities.

2.5 User-Centered Design and System Architecture

The web-based GeoX Al system was designed with a focus
on usability and performance for environmental decision-
makers, ensuring that critical insights are both accessible
and actionable. While developing the system, input from
potential users—including wildfire analysts and GIS spe-
cialists—was considered to refine core functionalities. The
architecture consists of:

1. Front-end interface: Crafted with modern web tech-
nologies (Vue.js, CSS3, JavaScript) and visualization
libraries (Maplibre GL JS, D3.js), it offers an intuitive
and visually rich user experience.

2. Middleware: Powered by FastAPI, a Python-based
framework, it efficiently computes predictions and
SHAP values on demand.

3. Database: PostgreSQL with the PostGIS extension
stores and manages vector datasets efficiently.

4. Geospatial data server: GeoServer serves Cloud-
optimized GeoTIFFs (COG) for smooth and scalable
rendering.

To ensure the system effectively meets user needs, key re-
quirements were identified based on common challenges
faced in wildfire management. Color-coded susceptibil-
ity maps enable rapid risk assessment, while clicking the
map reveals on-demand local explanations for swift in-
terpretability. Dynamic visualizations of feature contri-
butions boost model interpretability, and optimized re-
sponse times—under 2 seconds—ensure real-time SHAP
computations without interrupting workflows. By aligning
these capabilities with user needs, the GeoXAI platform
enhances transparency, interpretability, and efficiency in
wildfire risk assessment.
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2.6 Data and Software Availability

The source codes for both the RF model # and the web GIS
application 3 are available on public GitHub repositories,
and the application is accessible online °. All software and
tools used are open-source, ensuring full reproducibility of
the methods and analyses.

3 Implementation and Results

This section presents the outcomes of applying the pro-
posed methodology within the GeoXAI web application,
as outlined in Section 2. The application applies the de-
tailed framework and technical architecture to provide a
comprehensive analysis, interactive geo-visualization, and
exploration of wildfire prediction model outcomes.

3.1 Training RF Model

We implemented the RF model using Python 3.11 and
scikit-learn. After data preparation with equal samples
from fire and non-fire categories, we optimized the model
using GridSearchCV. The model achieved strong predic-
tive performance as evidenced by the 91% accuracy and
82% Cohen’s kappa score on the test set. These metrics
demonstrate the model’s ability to distinguish between
burnt and non-burnt areas beyond what would be expected
by chance (Sasikala et al., 2017), particularly important
given the class imbalance inherent in wildfire occurrence
data. The trained RF model was used to predict the entire
dataset, generating a forest fire susceptibility (FFS) map
that visualized the likelihood of fire occurrence across the
study area (Fig. 1). The model was saved in Joblib format,

Figure 1. Wildfire susceptibility mapping using RF model

“https://github.com/QSafariallahkheili/FFS
Shttps://github.com/QSafariallahkheili/GeoX Al
®http://tv4-geo-xai.innowest-brandenburg.de/app/
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enabling seamless user interaction through the GeoXAlI
web application for further analysis.

3.2 Local Explanation and Exploration

The GeoXAl interface offers an interactive environment
for exploring the FFS map and understanding model pre-
dictions through local, interpretable explanations using
SHAP values. The predictors are stored as COGs and
hosted via a GeoServer instance. This architecture ensures
efficient data delivery and spatial querying, which is es-
sential for scalable, on-demand model interpretation.

The local explanation workflow is initiated when a user
clicks on any location on the FFS map. This action triggers
a client-side request that is sent to a dedicated API. The
API performs several tasks sequentially:

1. Raster sampling: It extracts the pixel values for all
predictor layers at the specified coordinates by query-
ing the COGs.

2. Model inference: These values are passed to the
trained RF model to generate class probabilities for
"fire" and "non-fire."

3. SHAP value computation: SHAP values are com-
puted in real-time to explain the contribution of each
predictor to the local prediction.

4. Data packaging and response: The API returns prob-
abilities for each class (fire, non-fire), SHAP values
indicating each predictor’s local influence, and raw
raster values at the clicked location, enabling trans-
parency and traceability

This backend workflow is tightly coupled with the front-
end, which dynamically displays the results in response
to user input. From a user experience perspective, this al-
lows immediate interpretation of why a particular location
is classified as high or low fire susceptibility.

The interface supports seamless zooming, panning, and in-
teraction, enabling domain experts to iteratively explore
regions of interest. Users can navigate between high-risk
zones and areas with low susceptibility to identify patterns
and anomalies in model behavior.

Performance evaluations confirmed consistent API re-
sponse times ranging from 1.2 to 1.8 seconds per re-
quest, even under a moderate load. This level of re-
sponsiveness ensures smooth exploratory workflows, min-
imizing cognitive disruption and enhancing user engage-
ment—particularly important in expert-driven spatial anal-
ysis tasks.

3.3 Interactive Visualization of SHAP Values

To make model explanations accessible and intuitive, the
GeoXAlI system visualizes local SHAP values using a
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fully interactive, D3.js-powered bar chart. This visualiza-
tion is populated directly from the API response, offering
a real-time, interpretable breakdown of predictor contribu-
tions at any selected location. Each bar in the chart repre-
sents one environmental predictor, with its length encod-
ing the magnitude of its impact and its color indicating the
direction—whether the feature increased (positive SHAP
value) or decreased (negative SHAP value) the likelihood
of fire. For instance, in Fig. 2, features like LST and DEM
may elevate the fire risk locally, while global radiation and
NDMI may reduce it. This granular view helps users dis-
tinguish between dominant and negligible factors in the
model’s decision-making process.

Beyond static interpretation, the visualization supports in-
teraction. Users can:

e Hover over bars to reveal exact SHAP values and fea-
ture names

e Click on a bar to activate its spatial layer on the
map, overlaying the selected predictor across the en-
tire study area, complete with a dynamic color leg-
end.

This dual linkage between the chart and the map (as shown
in Fig. 3) supports spatial reasoning: users can examine
how local predictor influence compares to broader spatial
trends. A histogram widget complements this setup by dis-
playing the distribution of the selected predictor across the
full extent of the data, with a vertical marker indicating the
clicked location’s value. This contextual view helps users
evaluate whether a predictor’s value is extreme, typical, or
anomalous. Together, the bar chart, histogram, and spatial
overlay form a coherent and interactive explanation sys-
tem. By integrating quantitative model outputs with geovi-
sual analytics, the platform bridges the gap between statis-
tical interpretation and geographic context. This enhances
understanding not only of individual predictions but also
of how environmental dynamics influence wildfire suscep-
tibility across region.

4 Discussion

The fusion of machine learning, explainable Al (XAI), and
interactive web GIS into our GeoXAlI system offers a pow-
erful yet complex approach to environmental decision sup-
port, revealing both opportunities and hurdles.

Since the model uses temporally aggregated inputs across
2015-2023, the system provides only static explanations.
SHAP values reflect average feature contributions over the
entire period, limiting the ability to explore temporal vari-
ation or trends in fire susceptibility. As a result, users can-
not obtain year-specific or seasonally dynamic explana-
tions—a key area for future development.

Our approach prioritizes interpretability over model com-
plexity, briefly noting that RF was chosen for its reliable
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performance while enabling clear insights. The true em-
phasis lies in leveraging SHAP to unpack predictions, a
vital capability in high-stakes wildfire management where
understanding the ‘why’ behind susceptibility matters
most. This focus on explainability revealed user engage-
ment challenges during initial testing, as non-technical
users struggled to grasp XAI concepts.

Performance poses another consideration. Generating
SHAP explanations on the fly demands substantial com-
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putational power, and though our system leverages server-
side caching and optimized algorithms to keep response
times brisk, scaling up to larger regions or more elaborate
models would call for further refinement. Together, these
insights highlight how the GeoXAI system navigates the
tension between technical capability and practical utility,
paving the way for more transparent and effective envi-
ronmental decision-making.

5 Conclusion

This case study presents a comprehensive assessment of
model outputs, exemplified through wildfire susceptibility
using a web-based GeoXAlI system. By addressing limita-
tions in traditional GeoXAl visualizations, we developed
an interactive system combining open-source geospatial
technologies with XAI methods.

The methodology integrates geospatial analysis with ma-
chine learning to deliver insights into wildfire risks. The
key environmental factors derived from high-resolution
data were processed using GDAL and Google Earth En-
gine, then incorporated into an RF model that demon-
strated strong predictive performance for identifying areas
susceptible to wildfire.

The GeoXAl system supports exploration at multiple
scales, helping users understand both the global patterns
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of wildfire susceptibility and the specific local factors con-
tributing to predictions at particular locations. This ap-
proach enhances transparency and trust in Al systems for
environmental decision-making, demonstrating the poten-
tial of combining GeoXAI with machine learning to im-
prove wildfire prevention and management strategies.

Future work will focus on incorporating temporal dynam-
ics for more precise annual predictions, expanding the
interface based on stakeholder feedback, and conducting
user studies to evaluate the system’s impact on real-world
decision-making in wildfire management.
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