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Abstract. In the aftermath of World War II, significant
amounts of munitions were dumped into the German
coastal waters. These unremedied munitions harbour
various risks. The Multi-Criteria Analysis for Dumped
Munition Prioritisation (MCA-DuMP) was developed as
part of the efforts of the CONMAR project and enables
the prioritisation of these munitions for remediation. To
better understand the formation and structure of these
prioritisation results, a Sensitivity Analysis (SA) was
conducted. As part of this analysis, two approaches to
SA, VARS and PAWN, were applied to three input/output
series obtained using different sampling strategies. The
results of this SA were used to identify influential factors
and to rank the factors according to their influence on the
prioritisation results. Both aspects are helpful to decision
makers as they enable them to better assess and categorise
the prioritisation results, thus allowing them to utilise
the findings as best as possible in their decision-making
process. They can also be utilised by the developers of
MCA-DuMP to verify its behaviour.
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1 Introduction

In the aftermath of World War II, an estimated 1.6 million
tons of munitions were dumped into German waters of the
Baltic and the North Seas. These largely unremedied mu-
nitions pose numerous risks to the environment, economy
and human health (Greinert et al., 2020) (see Fig. 1).

Until 2010, these problems were largely ignored and no
significant actions for their management were taken. Since

then, a number of scientific endeavours have taken up the
challenge to advance the understanding of the role and
future handling of these munitions. Among these is the
CONMAR project, which aims at integrating existing and
new data for the evaluation of marine munitions, pooling
the expertise of research institutions, government agen-
cies, and industry, thus increasing the scientific under-
standing of the effects of marine munitions, and develop-
ing and implementing solutions for monitoring and large-
scale remediation in close collaboration with stakeholders
(GEOMAR Helmholtz Centre for Ocean Research, 2023;
Frey et al., 2024).

As part of these efforts, a Multi-Criteria Analysis (MCA),
called Multi-Criteria Analysis for Dumped Munition Pri-
oritisation (MCA-DuMP), was developed on the basis of
stakeholder workshops using the Analytic Hierarchy Pro-
cess (AHP) approach to evaluate identified munition piles
with regard to the risks they pose for the environment, the
economy, to the human health and for misuse. Possible
socio-economic benefits which might result from the re-
mediation of munition piles, as well as the expected cost-
effectiveness, are also evaluated. MCA-DuMP enables the
prioritisation of munition piles for remediation (Ensen-
bach et al., 2023, 2024). These efforts have gained fur-
ther importance against the backdrop of an immediate
action programme with funds totalling 100 million Eu-
ros, which is envisioned to help pave the way for the
remediation efforts on an industrial scale (Federal Min-
istry for the Environment, Nature Conservation, Nuclear
Safety and Consumer Protection, 2024). Comparable ap-
proaches have been presented and discussed by Landquist
et al. (2016), van der Wulp (2021) and Frey (2024). While
Landquist et al. (2016) developed a probabilistic method
called VRAKA to assess the risks posed by potentially
polluting shipwrecks, van der Wulp (2021) describes a de-
cision support system named DAIMON DSS which in-
tegrates artificial intelligence as well as spatial and non-
spatial data to perform risk assessment of detected muni-
tion objects. Frey (2024) explores various risk assessment
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methods concerning submerged munitions from an explo-
sive ordnance disposal (EOD) perspective. While also ar-
guing for structured approaches which integrate various
spatial and non-spatial data, Frey (2024) also highlights
the need to consider temporal effects as well as interde-
pendencies.

To better understand the formation and structure of MCA-
DuMP’s prioritisation results, a Sensitivity Analysis (SA)
was carried out employing the VARS and PAWN frame-
works. The analysis aimed at identifying factors with neg-
ligible influence on the prioritisation results and ranking
of the remaining factors according to that influence. The
findings may be used to simplify or adapt MCA-DuMP
or to further refine underlying data to allow for more effi-
cient and precise prioritisations. They also allow to verify
that MCA-DuMP is capable of generating robust priori-
tisation results which reflect not only the intentions of the
developers of the model, but also the stakeholder expertise.
Further, decision-makers are enabled to better assess and
categorise the prioritisation results, thus allowing them to
utilise the findings as best as possible in their decision-
making process.

2 Methodology

Multi-Criteria Analysis

MCA-DuMP was developed applying the AHP approach,
which guides complex decisions to be made through a set
of alternatives. The complex decision problem at hand can
be summed up by the following question: How should mu-
nition piles in the German Baltic Sea be prioritised for re-
mediation? This is done by arranging the relevant decision
criteria in a hierarchy tree. Each of the branches of that hi-
erarchy tree comprises a number of criteria. A weight is
assigned to each branch and criterion in order to control
the relative influence to the model results. These weights
were determined via workshops and reflect the expertise
of stakeholders with regard to the overarching question.
MCA-DuMP is divided into six branches (see Fig. 2). The
individual criteria are computed on the basis of geophys-
ical, biological, chemical, toxicological, economic, and
other spatial data (Ensenbach et al., 2023, 2024). Some of
the underlying data exhibit a temporal dimension as well.
Following Greinert et al. (2020) the spatial resolution of
the underlying data was, wherever possible, kept below or
equal to 100 metres. The temporal resolution of the SA
was set to months. MCA-DuMP was implemented using
the programming language Python.

The datasets from which values of the factors are drawn
can be assigned to one of six groups. When executing
MCA-DuMP, values for the factors are extracted and nor-
malised for each munition pile. The normalisation bounds
are defined globally to ensure comparability and robust-
ness of the prioritisation results. These values are then
used in the computation of the individual criteria. MCA-

DuMP incorporates a total of 23 factors and an additional
dummy factor to facilitate factor fixing (see Tab. 1). It
should be noted that there is no one-to-one relationship
between factors and the criteria. Some factors are used in
the computation of multiple criteria. The prioritisation re-
sult is the weighted mean of the results of the criteria and
branches, with higher values indicating a higher remedia-
tion priority.

Sensitivity Analysis

There is a plethora of methods and approaches to SA.
In general, SA investigates how variations in the output
can be attributed to variations in the inputs of a model. A
model is described as a numerical procedure which simu-
lates the behaviour of a system. Values of factors for such
a model may be varied, thus inducing changes to its out-
put. Factors may take the form of parameters appearing in
equations, of initial states or of the boundary conditions
of the model, as well as of temporal or spatial resolutions.
The relationship between the factors, the numerical pro-
cedure facilitated by the model and the output is referred
to as the response surface. Since this relationship is rarely
available in analytical form, it has to be sampled. There are
three main purposes for conducting an SA namely identi-
fying factors with negligible influence on the output (fac-
tor fixing), ranking the factors with respect to their influ-
ence on the output (factor ranking) and identifying regions
of the factor space which result in certain regions of the
output space (factor mapping) (Pianosi et al., 2016).

The two approaches chosen for the analysis of MCA-
DuMP are VARS and PAWN. Both can be classified
as Global Sensitivity Analysis (GSA) methods, meaning
they consider the entire variability space of the factors,
a favourable characteristic when dealing with complex or
non-linear models. The sensitivity of a model towards vari-
ations in its inputs is often expressed by a sensitivity index
(Reed et al., 2024; Saltelli et al., 2007).

VARS

The Variogram Analysis of Response Surfaces (VARS) ap-
proach to SA, proposed by Razavi and Gupta (2016a, b),
represents a general SA framework capable of character-
ising sensitivity across the full spectrum of scales in the
factor variability space. As a variogram-based approach to
SA, variograms are regarded as a comprehensive manifes-
tation of sensitivity information. Here, the Integrated Var-
iogram Across a Range of Scales (IVARS) is used as the
main sensitivity index. Additionally, approximations of
two other commonly employed sensitivity indices, namely
the variance-based Total-order sensitivity index (ST ) pro-
posed by Sobol (2001) and Homma and Saltelli (1999) and
the distribution-based Absolute Elementary-Effects sensi-
tivity index (µ∗) proposed by Morris (1991) and Cam-
polongo et al. (2007), can be derived. Razavi and Gupta
(2016a, b) also provide a dedicated sampling strategy
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Figure 1. Risks posed by unremedied marine dumped munitions (GEOMAR Helmholtz Centre for Ocean Research, 2023)
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Figure 2. Structure of MCA-DuMP (Ensenbach et al., 2023, 2024)
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Table 1. Factors of the Multi-Criteria Analysis

Factor group Factor Spatial resolution Temporal resolution Source

Dummy Dummy - - -

Munition pile characteristics

Number of objects (*) - - GEOMAR
Size of objects (*) - - GEOMAR
Variability of objects (*) - - GEOMAR
Layering of objects (*) - - GEOMAR
State of the fuses (*) - - GEOMAR
Corrosion of objects (*) - - GEOMAR
Burial of objects (*) - - GEOMAR

Distance to spatial features

Distance to coastlines (m) 10x10m - BSH
Distance to harbours (m) 10x10m - BSH
Distance to shipping lanes (m) 10x10m - BSH
Distance to cables (m) 10x10m - EMODnet

Distance to bathing sites (m) 10x10m -
WM MV
MJG SH

Distance to protected areas (m) 10x10m - EMODnet

Munition related pollutants

Pollutants in molluscs (ng/g d.w.) hex cells - UKSH
Pollutants in mammals (ng/g d.w.) hex cells - UKSH
Pollutants in fishes (ng/ml) hex cells - TI-OF
Pollutants in seawater (ng/l) hex cells - GEOMAR

Maritime operations
Shipping density (h) 1x1km monthly medians NGA
Fishing effort (kWfh) c-squares quarterly medians HELCOM
Fishing effort MBCG (kWfh) c-squares quarterly medians HELCOM

Evironmental features
Current velocity (m/s) 200x200m monthly means IOW
Wave height (m) 200x200m monthly means IOW
Seabed sediments 10x10m - BSH

Details on the availability of the underlying datasets can be found in the Data and Software Availability subsection. (*) denotes factors which represent
characteristics of the munition piles themselves. The addendum MBCG refers to Mobile bottom-contacting fishing gear.

called STAR which is designed to facilitate computation
of sensitivity-related information provided by VARS util-
ising techniques closely related to Latin Hypercube Sam-
pling (LHS).

There are two extensions to VARS. A first extension
proposed by Do and Razavi (2020), Generalised VARS
(GVARS) alongside Generalised STAR (GSTAR), enables
the VARS approach to accommodate correlated factors by
describing the correlation structure through Pearson cor-
relation coefficients. The second extension called Data-
driven VARS (DVARS), proposed by Sheikholeslami and
Razavi (2020), allow for the application of the VARS ap-
proach to a generic input/output series. Illustrative case
studies using VARS and GVARS to analyse hydrological
models can be found in Razavi and Gupta (2016b) and Do
and Razavi (2020) respectively.

PAWN

PAWN, proposed by Pianosi and Wagener (2015), repre-
sents an efficient density-based approach to SA. As op-
posed to many comparable density-based approaches that
use Probability Density Functions (PDF) in the computa-
tion of their sensitivity indices, PAWN uses Cumulative
Distribution Functions (CDF), which are easier to derive

than PDFs. Sensitivity is expressed by the PAWN sensitiv-
ity index T .

An extension to the PAWN approach, also proposed by
Pianosi and Wagener (2018), allows for the approach to
be applied to a generic input/output series. An exemplary
case study which applies PAWN to a hydrological model
can be found in Pianosi and Wagener (2018).

Experiment

Following Pianosi et al. (2016) the experiment was divided
into sampling, evaluation, and post-processing phases.
Three input/output series were generated and analysed.
The first was generated employing LHS, utilising the
SAFE Toolbox software package. The factor values were
sampled from uniform distributions within the factor value
ranges. After applying MCA-DuMP to the resulting in-
put/output series, the sensitivity index T was derived using
PAWN (see Fig. 3).

A second input/output series was generated employing
GSTAR. The factor values were sampled from non-
uniform distributions within the factor value ranges. An
identity matrix was used to describe the correlation struc-
ture between the factors, as reliable Pearson correlations
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coefficients could not be derived. The sensitivity indices
µ∗, ST and IVARS50 were derived from this input/output
series using GVARS (see Fig. 3).

With the third input/output series factor values were not
sampled in feature space but rather from the spatial data
directly. Since not all factors exhibit a spatial dimension,
like the characteristics of the munition piles, value ranges
for these also had to be defined beforehand. To generate
the locations for simulating munition piles and extracting
values for factors with a spatial dimension, a homogeneous
Poisson point process was used and applied to the German
Baltic Sea. Such a process generates uniformly distributed
independent random locations (Diggle, 2013). PAWN and
DVARS were applied to the resulting input/output series
to derive the sensitivity indices T and IVARS50. A sample
size of 46000 was chosen, which is double the size recom-
mended by Pianosi et al. (2016), who suggest 1000 sam-
ples per factor. Confidence bands were reported for a con-
fidence level of 95% and computed using common boot-
strapping. To ensure acceptable computation times when
applying DVARS an additional subsampling had to be con-
ducted employing LHS (see Fig. 3).

The experiment was carried out for each month of the year.
The identification of influential factors was conducted
through means of comparison of the sensitivity indices of
a factor under examination and those of the dummy factor.
The remaining factors were subsequently ranked in accor-
dance with their sensitivity indices (see Fig. 3).

Data and Software Availability

Many datasets utilized in MCA-DuMP are publicly
available. Data regarding the generalised coastline,
harbour and cable infrastructures, shipping lanes and
seabed sediments can be retrieved from the Federal
Maritime and Hydrographic Agency (BSH) via their
GeoSeaPortal (https://www.geoseaportal.de/). Data de-
scribing the shipping density can be retrieved from
the National Geospatial-Intelligence Agency (NGA)
via their Global Maritime Traffic Density Service
(GMTDS) (https://globalmaritimetraffic.org/gmtds.html).
Data regarding the fishing effort in the Baltic Sea
can be retrieved from the Baltic Marine Envi-
ronment Protection Commission (HELCOM) via
their HELCOM Map and Data Service (MADS)
(https://maps.helcom.fi/website/mapservice/index.html).
Data regarding the current velocity and wave height
were provided by the Leibniz Institute for Baltic Sea
Research Warnemünde (IOW) and are not openly ac-
cessible. They originate from current velocity models
described, e.g., in Gräwe et al. (2015). Not all datasets
on the concentrations of munition related pollutants are
openly available. These were provided by the University
Hospital Schleswig-Holstein (UKSH), Helmholtz Centre
for Ocean Research (GEOMAR) and Thünen Institute
of Baltic Sea Fisheries (TI-OF). The latter dataset is
available via the earth system research information system

PANGAEA (https://www.pangaea.de/) (Kammann et al.,
2024). Data regarding the munition piles, their locations
and characteristics, are available at GEOMAR but are not
available to the public for security reasons.

Python implementations of VARS and PAWN and
their extensions are available via the VARS-TOOL
(https://github.com/vars-tool/vars-tool) and the SAFE
Toolbox (https://github.com/SAFEtoolbox/SAFE-python)
software packages respectively (Razavi et al., 2018; Pi-
anosi et al., 2015).

High resolution versions of the figures shown
in this article are available via figshare
(https://doi.org/10.6084/m9.figshare.28343009).

3 Results

Factor fixing

Influential factors were identified by comparing the sensi-
tivity indices obtained for the individual factors with the
sensitivity indices obtained for the dummy factor. While
the sensitivity indices µ∗, ST and IVARS50 obtained from
the GSTAR input/output series and T obtained from the
spatial input/output series identified all factors as being in-
fluential to the formation of the prioritisation results the
remaining sensitivity indices could not assert the influen-
tial nature of all factors. It could, however, not be verified
that they were not influential (see Tabs. A1 to A3). It must
further be noted that the factor pollutants in mammals was
omitted during the analysis, since the underlying data did
not exhibit any variation.

Factor ranking

The sensitivity indices obtained were also used to rank
the factors with regard to their influence. Although the
rankings obtained from the three input/output series do ex-
hibit differences, the majority of sensitivity indices agree
that the factors pollutants in fish, fishing effort with Mo-
bile bottom-contacting fishing gear (MBCG), fishing ef-
fort and pollutants in molluscs are by far the most influ-
ential factors. Only, the sensitivity index T obtained from
the LHS input/output series exhibited substantially lower
values for certain factors like the fishing effort and fishing
effort MBCG (see Figs. B1 to B6).

The influence of factor groups were also assessed. One
such factor group contained the munition pile characteris-
tics. The sensitivity indices obtained agree that the factors
size of objects and burial of objects are the most influ-
ential munition pile characteristics. When considering the
entire factor group in terms of its influence, most sensitiv-
ity indices tend to agree that it exerts middling influence on
the prioritisation results when compared to the other fac-
tor groups. A noteworthy deviation from this assessment
is reached when considering the sensitivity index T ob-
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Figure 3. Experimental set-up

tained from the LHS input/output series. A second group
contains the time variable factors. The influence of these
factors on the prioritisation results and possible changes in
this influence over time were of interest.

According to the majority of sensitivity indices obtained,
the factor fishing effort and fishing effort MBCG are also
the most influential factors from the time variable factors.
The majority of sensitivity indices also agree that the time
variable factors do exert major influence on the prioritisa-
tion results. Except for the sensitivity indices T obtained
from the LHS input/output series and IVARS50 obtained
from the spatial input/output series, all sensitivity indices
exhibit substantial changes on a quarterly basis (see Figs.
C1 to C6).

4 Discussion

The factor fixing results did not uncover possibilities
for simplifications of MCA-DuMP through the removal
of criteria, since no factors could be identified as non-
influential. It needs to be stressed that the comparison with
the sensitivity indices obtained for the dummy factor only
allows the identification of influential factors. Statements
about a potential non-influential nature could not be de-
rived. Thus, the introduction of and subsequent compar-
ison with a dummy factor, although straightforward, is
lacking in utility. For the sensitivity indices T , ST and
IVARS50, a value equal to 0 would be sufficient to iden-
tify a non-influential factor. More elaborate considerations
would be necessary with regard to the sensitivity index µ∗.
It would also be possible to determine a threshold to sep-
arate influential and non-influential factors, though such
an approach would require extensive domain knowledge
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about the model to be analysed and the sensitivity indices
utilized.

The rankings obtained for the individual factors and fac-
tor groups, although exhibiting some variation, are plau-
sible considering the structure of MCA-DuMP. The most
influential factors all feature in highly weighted, in some
cases multiple, criteria which are part of highly weighted
branches of MCA-DuMP. Similar arguments apply to the
assessments regarding the munition pile characteristics.
The quarterly changes apparent in the majority of sensi-
tivity indices are also congruent with the changes in the
two most influential time variable factors. These changes
are mainly driven by the two most influential factors.

When comparing the different sensitivity indices, two dis-
crepancies become apparent. The sensitivity index T ob-
tained from LHS input/output series drastically underes-
timated the influence of some factors and only exhibited
minor changes over time. This differing and potentially
false assessment of the sensitivity of MCA-DuMP is at-
tributable to the sampling setup rather than lacking capa-
bilities of PAWN. Similar arguments apply to the sensi-
tivity index IVARS50 obtained from the spatially sampled
input/output series. It is likely that the necessary subsam-
pling has impacted the computation of the sensitivity in-
dex negatively. In addition, the spatial sampling approach
was hampered by the extreme spatial sparsity exhibited by
some data underlying those factors describing the concen-
trations of munition related pollutants.

5 Conclusion and Outlook

The authors conducted an SA of MCA-DuMP developed
in the context of the CONMAR project to enable the pri-
oritisation of munition piles in the German Baltic Sea for
remediation, by assessing the potential risks they pose.
Two approaches to SA, namely VARS and PAWN, were
applied to three input/output series that were sampled by
means of different sampling techniques. A useful base-
line for further investigations regarding the sensitivity of
MCA-DuMP towards its various factors was established
on the basis of the results obtained and discussed in this
study. They also enable the developers of MCA-DuMP to
assess whether the sensitivities exhibited by MCA-DuMP
are congruent with their intentions and by extension re-
flect the expertise of the stakeholders involved in its devel-
opment. Whether or not these assessments lead to adjust-
ments of MCA-DuMP, this study contributes to risk-based,
considerate, and efficient remediation efforts of the muni-
tion piles in the German Baltic Sea.

No possibilities for simplifying MCA-DuMP could be un-
covered from the factor fixing results. The factor ranking
results were congruent with the underlying model and al-
lowed for an assessment of the influence of the individual
factors and for identifying the most influential ones. The
study also uncovered several opportunities to further opti-
mise and develop the presented approaches. Since limita-

tions of the chosen approach to factor fixing could be iden-
tified, statistically stronger approaches which allow for a
clear identification of influential and non-influential fac-
tors should be implemented and evaluated. In order to en-
able an improved assessment and categorisation of the pri-
oritisation results, a complementary Uncertainty Analysis
(UA) should be carried out. Whether and how uncertain-
ties in the factors would translate to their corresponding
sensitivity indices would be of particular interest. When
considering the underlying data, approaches to counteract
the negative impacts of extreme spatial sparsity should be
explored and tested.

Future studies might also consider adapting the approach
presented in this study to allow for individual branches
of MCA-DuMP to be analysed, and regard the individual
branch and criterion weights as factors. Such an approach
could show the influence of the expert opinions on the pri-
oritisation results. The sample sizes for future works could
be established more carefully, e.g., by using convergence
analysis. The PAWN, DVARS approaches could further be
coupled with a more sophisticated sampling setups to al-
low for a more meaningful comparison with the VARS ap-
proach. To fully utilise the capabilities of the VARS ap-
proach and in the hopes to derive more accurate sensitivity
indices, correlations between the factors of MCA-DuMP
should be considered in future studies.

Acknowledgements

We gratefully acknowledge the support of Marcus Krüger,
Samar Ensenbach, Alexander Pechmann, Mareike Kamp-
meier and Aaron Beck, GEOMAR; for providing crucial
information and data regarding MCA-DuMP and invalu-
able insights into the CONMAR project. We also want to
express gratitude towards Tobias Bünning, UKSH and Ulf
Gräwe, IOW; who also shared data essential for this study.

References

Campolongo, F., Cariboni, J., and Saltelli, A.: An effec-
tive screening design for sensitivity analysis of large mod-
els, Environmental Modelling & Software, 22, 1509–1518,
https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.

Diggle, P. J.: Statistical Analysis of Spatial and Spatio-Temporal
Point Patterns, no. 128 in Monographs on Statistics and Ap-
plied Probability, Chapman & Hall/CRC, New York, 3rd edn.,
https://doi.org/10.1201/b15326, 2013.

Do, N. C. and Razavi, S.: Correlation Effects? A Ma-
jor but Often Neglected Component in Sensitivity and
Uncertainty Analysis, Water Resources Research, 56,
https://doi.org/10.1029/2019WR025436, 2020.

Ensenbach, S., Pechmann, A., Frey, T., Hinkel, J., and Greinert,
J.: Implementing geophysical and geochemical data in multi-
criteria analysis for prioritization of munition dump site clear-
ance, https://doi.org/10.5194/egusphere-egu23-14271, 2023.

AGILE: GIScience Series, 6, 43, 2025 | https://doi.org/10.5194/agile-giss-6-43-2025 7 of 21

https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1201/b15326
https://doi.org/10.1029/2019WR025436
https://doi.org/10.5194/egusphere-egu23-14271


Ensenbach, S., Frey, T., Pechmann, A., Pilz, A., and Greinert,
J.: Prioritization of munition piles in the German BalticSea
using multi-criteria analysis, https://doi.org/10.13140/RG.2.2.
34617.07521, 2024.

Federal Ministry for the Environment, Nature Conservation, Nu-
clear Safety and Consumer Protection: Pressemitteilung Nr.
105/24, https://www.bmuv.de/PM11114, 2024.

Frey, T.: What Is Missing in Offshore Explosive Ord-
nance Disposal Risk Assessment?, MDPI Toxics, 12,
https://doi.org/10.3390/toxics12070468, 2024.

Frey, T., Greinert, J., Wilhelmsen, U., Maser, E., Schar-
sack, J., Brenner, M., Rankin, C., and Freiherr von
Lukas, U.: Munition im Meer - Sachstand und Perspek-
tiven, https://www.allianz-meeresforschung.de/app/uploads/
2024/10/241021-dam-factsheet-munition.pdf, 2024.

GEOMAR Helmholtz Centre for Ocean Research: CONMAR
Factsheet, https://www.sustainmare.de/imperia/md/assets/
microsites/sustainmare/dokumente/factsheet_conmar23_en.
pdf, 2023.

Greinert, J., Appel, D., Beck, A., Eggert, A., Gräwe, U., Kamp-
meier, M., Martin, H.-J., Maser, E., Schlosser, C., Song, Y.,
Strehse, J., Eefke van der Lee, Vortmeyer-Kley, R., Wichert,
U., and Frey, T.: Practical Guide for Environmental Monitor-
ing of Conventional Munitions in the Seas - Results from the
BMBF funded project UDEMM “Umweltmonitoring für die
Delaboration von Munition im Meer” Version 1.1, GEOMAR
Report 54, GEOMAR Helmholtz Centre for Ocean Research,
Kiel, Germany, https://doi.org/10.3289/GEOMAR_REP_NS_
54_2019, 2020.

Gräwe, U., Naumann, M., Mohrholz, V., and Burchard, H.: Anat-
omizing one of the largest saltwater inflows into the Baltic Sea
in December 2014, Journal of Geophysical Research: Oceans,
120, 7137–7698, https://doi.org/10.1002/2015JC011269,
2015.

Homma, T. and Saltelli, A.: Importance measures in global sen-
sitivity analysis of nonlinear models, Reliability Engineer-
ing & System Safety, 52, 1–17, https://doi.org/10.1016/0951-
8320(96)00002-6, 1999.

Kammann, U., Töpker, V., Schmidt, N., Rödiger, M., Aust, M.-
O., Gabel, M., and Scharsack, J. P.: Health status of dab
(Limanda limanda) exposed to dumped munition in German
coastal waters, https://doi.org/10.1594/PANGAEA.967434,
2024.

Landquist, H., Rosen, L., Lindhe, A., and Hassellöv, I.-M.:
VRAKA - A Probabilistic Risk Assessment Method for Poten-
tially Polluting Shipwrecks, Frontiers in Environmental Sci-
ence, 4, https://doi.org/10.3389/fenvs.2016.00049, 2016.

Morris, M. D.: Factorial Sampling Plans for Preliminary
Computational Experiments, Technometrics, 33, 161–174,
https://doi.org/10.1080/00401706.1991.10484804, 1991.

Pianosi, F. and Wagener, T.: A simple and efficient method for
global sensitivity analysis based on cumulative distribution
functions, Environmental Modelling & Software, 67, 1–11,
https://doi.org/10.1016/j.envsoft.2015.01.004, 2015.

Pianosi, F. and Wagener, T.: Distribution-based sensitiv-
ity analysis from a generic input-output sample, En-
vironmental Modelling & Software, 108, 197–207,
https://doi.org/10.1016/j.envsoft.2018.07.019, 2018.

Pianosi, F., Sarrazin, F., and Wagener, T.: A Mat-
lab toolbox for Global Sensitivity Analysis, En-
vironmental Modelling & Software, 70, 80–85,
https://doi.org/10.1016/j.envsoft.2015.04.009, 2015.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephen-
son, D. B., and Wagener, T.: Sensitivity analysis of envi-
ronmental models: A systematic review with practical work-
flow, Environmental Modelling & Software, 79, 214–232,
https://doi.org/10.1016/j.envsoft.2016.02.008, 2016.

Razavi, S. and Gupta, H. V.: A new framework for com-
prehensive, robust, and efficient global sensitivity analy-
sis: 1. Theory, Water Resources Research, 52, 423–439,
https://doi.org/10.1002/2015WR017558, 2016a.

Razavi, S. and Gupta, H. V.: A new framework for com-
prehensive, robust, and efficient global sensitivity analysis:
2. Application, Water Resources Research, 52, 440–455,
https://doi.org/10.1002/2015WR017559, 2016b.

Razavi, S., Sheikholeslami, R., Gupta, H. V., and Amin
Haghnegahdar: VARS-TOOL: A toolbox for comprehen-
sive, efficient, and robust sensitivity and uncertainty anal-
ysis, Environmental Modelling and Software, 112, 95–107,
https://doi.org/10.1016/j.envsoft.2018.10.005, 2018.

Reed, P. M., Hadjimichael, A., Malek, K., Karimi, T., Vernon,
C. R., Srikrishnan, V., Gupta, R. S., Gold, D. F., Lee, B.,
Keller, K., Thurber, T. B., and Rice, J. S.: Addressing Un-
certainty in MultiSector Dynamics Research, Zenodo, https:
//doi.org/10.5281/zenodo.6110623, 2024.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,
Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity
Analysis - The Primer, John Wiley & Sons, Chichester, https:
//doi.org/10.1002/9780470725184, 2007.

Sheikholeslami, R. and Razavi, S.: A Fresh Look at Variogra-
phy: Measuring Dependence and Possible Sensitivities Across
Geophysical Systems From Any Given Data, Geophysical
Research Letters, 47, https://doi.org/10.1029/2020GL089829,
2020.

Sobol, I. M.: Global sensitivity indices for nonlinear math-
ematical models and their Monte Carlo estimates, Math-
ematics and Computers in Simulation, 55, 271–280,
https://doi.org/10.1016/S0378-4754(00)00270-6, 2001.

van der Wulp, S. A.: Decision Support System for Marine Muni-
tions - User Manual 1.1, https://tinyurl.com/yzydpc8c, 2021.

AGILE: GIScience Series, 6, 43, 2025 | https://doi.org/10.5194/agile-giss-6-43-2025 8 of 21

https://doi.org/10.13140/RG.2.2.34617.07521
https://doi.org/10.13140/RG.2.2.34617.07521
https://www.bmuv.de/PM11114
https://doi.org/10.3390/toxics12070468
https://www.allianz-meeresforschung.de/app/uploads/2024/10/241021-dam-factsheet-munition.pdf
https://www.allianz-meeresforschung.de/app/uploads/2024/10/241021-dam-factsheet-munition.pdf
https://www.sustainmare.de/imperia/md/assets/microsites/sustainmare/dokumente/factsheet_conmar23_en.pdf
https://www.sustainmare.de/imperia/md/assets/microsites/sustainmare/dokumente/factsheet_conmar23_en.pdf
https://www.sustainmare.de/imperia/md/assets/microsites/sustainmare/dokumente/factsheet_conmar23_en.pdf
https://doi.org/10.3289/GEOMAR_REP_NS_54_2019
https://doi.org/10.3289/GEOMAR_REP_NS_54_2019
https://doi.org/10.1002/2015JC011269
https://doi.org/10.1016/0951-8320(96)00002-6
https://doi.org/10.1016/0951-8320(96)00002-6
https://doi.org/10.1594/PANGAEA.967434
https://doi.org/10.3389/fenvs.2016.00049
https://doi.org/10.1080/00401706.1991.10484804
https://doi.org/10.1016/j.envsoft.2015.01.004
https://doi.org/10.1016/j.envsoft.2018.07.019
https://doi.org/10.1016/j.envsoft.2015.04.009
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1002/2015WR017558
https://doi.org/10.1002/2015WR017559
https://doi.org/10.1016/j.envsoft.2018.10.005
https://doi.org/10.5281/zenodo.6110623
https://doi.org/10.5281/zenodo.6110623
https://doi.org/10.1002/9780470725184
https://doi.org/10.1002/9780470725184
https://doi.org/10.1029/2020GL089829
https://doi.org/10.1016/S0378-4754(00)00270-6
https://tinyurl.com/yzydpc8c


Appendix A: Factor fixing results

Table A1. Factor fixing results obtained from LHS input out-
put/series

Factor T

Number of objects ✗

Size of objects ✓

Variability of objects ✗

Layering of objects ✗

State of the fuses ✗

Corrosion of objects ✗

Burial of objects ✓

Distance to coastlines ✗

Distance to harbours ✗

Distance to shipping lanes ✓

Distance to cables! ✗

Distance to bathing sites ✓

Distance to protected areas ✓

Seabed sediments ✗

Pollutants in molluscs ✓

Pollutants in mammals −
Pollutants in fish ✓

Pollutants in seawater ✗

Shipping density ✓

Fishing effort ✗

Fishing effort MBCG ✗

Current velocity ✗

Wave height ✗

✓: identified as influential, ✗: not identified
as influential, −: omitted in analysis

Table A2. Factor fixing results obtained from GSTAR input out-
put/series

Factor µ∗ ST IVARS50

Number of objects ✓ ✓ ✓

Size of objects ✓ ✓ ✓

Variability of objects ✓ ✓ ✓

Layering of objects ✓ ✓ ✓

State of the fuses ✓ ✓ ✓

Corrosion of objects ✓ ✓ ✓

Burial of objects ✓ ✓ ✓

Distance to coastlines ✓ ✓ ✓

Distance to harbours ✓ ✓ ✓

Distance to shipping lanes ✓ ✓ ✓

Distance to cables! ✓ ✓ ✓

Distance to bathing sites ✓ ✓ ✓

Distance to protected areas ✓ ✓ ✓

Seabed sediments ✓ ✓ ✓

Pollutants in molluscs ✓ ✓ ✓

Pollutants in mammals − − −
Pollutants in fish ✓ ✓ ✓

Pollutants in seawater ✓ ✓ ✓

Shipping density ✓ ✓ ✓

Fishing effort ✓ ✓ ✓

Fishing effort MBCG ✓ ✓ ✓

Current velocity ✓ ✓ ✓

Wave height ✓ ✓ ✓

✓: identified as influential, ✗: not identified as influential, −: omitted
in analysis

Table A3. Factor fixing results obtained from spatial input out-
put/series

Factor T IVARS50

Number of objects ✓ ✗

Size of objects ✓ ✓

Variability of objects ✓ ✗

Layering of objects ✓ ✗

State of the fuses ✓ ✗

Corrosion of objects ✓ ✗

Burial of objects ✓ ✓

Distance to coastlines ✓ ✗

Distance to harbours ✓ ✗

Distance to shipping lanes ✓ ✗

Distance to cables! ✓ ✗

Distance to bathing sites ✓ ✗

Distance to protected areas ✓ ✓

Seabed sediments ✓ ✗

Pollutants in molluscs ✓ ✓

Pollutants in mammals − −
Pollutants in fish ✓ ✓

Pollutants in seawater ✓ ✓

Shipping density ✓ ✗

Fishing effort ✓ ✓

Fishing effort MBCG ✓ ✓

Current velocity ✓ ✗

Wave height ✓ ✗

✓: identified as influential, ✗: not identified as influential, −:
omitted in analysis
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Appendix B: Factor ranking results
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Figure B1. Sensitivity index T obtained from the LHS input/output series (a) and corresponding input factor ranking results (b)
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Figure B2. Sensitivity index µ∗ obtained from the GSTAR input/output series (a) and corresponding input factor ranking results (b)
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Figure B3. Sensitivity index ST obtained from the GSTAR input/output series (a) and corresponding input factor ranking results (b)
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Figure B4. Sensitivity index IVARS50 obtained from the GSTAR input/output series (a) and corresponding input factor ranking results
(b)
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Figure B5. Sensitivity index T obtained from the spatial input/output series (a) and corresponding input factor ranking results (b)

AGILE: GIScience Series, 6, 43, 2025 | https://doi.org/10.5194/agile-giss-6-43-2025 14 of 21



0 20 40 60 80 100
Relative sensitivity

January

February

March

April

May

June

July

August

September

October

November

December

M
on

th

Relative sensitivity index IVARS50

Dummy
Number of objects
Size of objects
Variability of objects
Layering of objects
Burial of objects
Corrosion of objects
State of the fuses
Distance to coastlines
Distance to harbours
Distance to shipping lanes
Distance to cables
Distance to bathing sites
Distance to protected areas
Pollutants in seawater
Pollutants in fish
Pollutants in molluscs
Shipping density
Fishing effort
Fishing effort MBCG
Seabed sediments
Current velocity
Wave height

(a)

Jan
ua

ry

Feb
rua

ry
Marc

h
Apri

l
May Jun

e Jul
y

Aug
ust

Se
pte

mbe
r

Octo
be

r

Nov
em

be
r

Dece
mbe

r

Month

Distance to shipping lanes
Corrosion of objects

Distance to cables
Dummy

State of the fuses
Layering of objects

Variability of objects
Distance to harbours

Number of objects
Wave height

Distance to coastlines
Shipping density

Distance to bathing sites
Current velocity

Seabed sediments
Burial of objects

Distance to protected areas
Pollutants in seawater

Size of objects
Pollutants in molluscs

Fishing effort
Pollutants in fish

Fishing effort MBCG

In
pu

t f
ac

to
r

Ranking of input factors by sensitivity index IVARS50

(b)

Figure B6. Sensitivity index IVARS50 obtained from the spatial input/output series (a) and corresponding input factor ranking results
(b)
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Appendix C: Factor group ranking results
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Figure C1. Factor group ranking results according to sensitivity index T obtained from the LHS input/output series (a) and composition
of the factor groups containing the munition pile characteristics (b) and time variable factors (c)
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Figure C2. Factor group ranking results according to sensitivity index µ∗ obtained from the GSTAR input/output series (a) and com-
position of the factor groups containing the munition pile characteristics (b) and time variable factors (c)
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Figure C3. Factor group ranking results according to sensitivity index ST obtained from the GSTAR input/output series (a) and
composition of the factor groups containing the munition pile characteristics (b) and time variable factors (c)
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Figure C4. Factor group ranking results according to sensitivity index IVARS50 obtained from the GSTAR input/output series (a) and
composition of the factor groups containing the munition pile characteristics (b) and time variable factors (c)
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Figure C5. Factor group ranking results according to sensitivity indicex T obtained from the spatial input/output series (a) and com-
position of the factor groups containing the munition pile characteristics (b) and time variable factors (c)
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Figure C6. Factor group ranking results according to sensitivity index IVARS50 obtained from the spatial input/output series (a) and
composition of the factor groups containing the munition pile characteristics (b) and time variable factors (c)
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