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Abstract. The evaluation of rainfall-induced soil erosion 

risk is fundamental for territorial planning and takes into 

account parameters such as rainfall erosivity, soil 

erodibility and the topographic factor. The Triangular 

Irregular Network (TIN) is the most frequently used 

interpolator in the production of digital elevation models 

(DEM) but is considered unsuitable by several authors for 

the calculation of soil erosion. Therefore, the DEM 

created for the city of Torres Novas, Portugal, using 

interpolation methods such as Inverse Distance 

Weighting, Ordinary Kriging, and Empirical Bayesian 

Kriging (EBK) were evaluated to determine which one 

was the most accurate. The best interpolator was EBK, 

from which a rainfall-induced soil erosion map was 

created. A map was also produced from TIN and both 

were compared with historical cartography. The EBK 

method was found to be the most effective interpolator for 

rainfall-induced soil erosion as well. Therefore, the 

authors recommend its use in future studies in the 

municipality of Torres Novas. 

Submission Type. Analysis; Dataset. 

BoK Concepts. [AM7] Spatial statistics; [AM8] 

Geostatistics.  

Keywords. rainfall-induced soil erosion; topographic 

factor; triangulated irregular network; kriging. 

1 Introduction 

Among the geomorphological risks that affect a territory, 

the rainfall-induced soil erosion risk plays an important 

role in the evolution of the physical traits of the landscape, 

as it affects areas subject to excessive soil loss due to the 

action of superficial drainage. This excessive loss brings 

negative consequences for maintaining the balance of 

morphogenetic and pedogenetic processes, soil quality 

and fertility, and the regulation of the hydrological cycle. 

(Cunha et al., 2021; Guduru & Jilo, 2023), for what its 

analysis is fundamental in territorial planning and 

management. 

Most of the methodologies used to predict rainfall-

induced soil erosion are based on empirical models, such 

as the Universal Soil Loss Equation, or USLE (Eq. 1), 

which is the most widely used in the world (Kinnell, 2010) 

because of its straightforward and relatively simple 

computational input needs compared to other models 

(Guduru & Jilo, 2023). 

𝑨 = 𝑹 × 𝑲 × 𝑳𝑺 × 𝑪 × P (1) 

A simplified version of the USLE (Eq. 2) is referenced in 

the National and Regional Strategic Guidelines provided 

in the Legal Regime of the Portuguese National 

Ecological Reserve (Decree order n.º 336/2019 of 2019-

16-09, in its current wording) to define areas with high

risk of rainfall-induced soil erosion, to which all

municipalities in the country must adapt.

𝑨 = 𝑹 × 𝑲 × 𝑳𝑺 (2) 

In this simplified version of the Portuguese Decree, the 

average amount of soil loss (A) is obtained by multiplying 

the rainfall-runoff erosivity factor (R), the soil erodibility 

factor (K), and the topographic factor (LS), which 

depends on slope length and gradient. The values of the 

crop management factor (C) and the soil conservation 

practice factor (P) are considered constant and equal to 1. 

To calculate the topographic factor, the first step is to 

create a digital elevation model (DEM). The Triangulated 

Irregular Network (TIN) is one of the most commonly 
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used interpolators for its production. Due to its simplicity, 

this interpolator is employed for a wide range of purposes, 

from volumetric calculations to urban area planning 

(Longley et al., 2015), and has become the preferred 

method used by the local authority of Torres Novas. 

However, according to Bergonse & Reis (2015), TIN is 

unsuitable for the calculation of erosion as it disregards 

terrain curvature (strongly associated with erosive 

features) and has limitations in reproducing deep valleys, 

leading to underestimated values if the original surface is 

convex and overestimated values if it is concave. 

Although there are no solid results in the literature 

regarding the performance of the various spatial 

interpolators available for DEM generation (Tan & Xu, 

2014), some studies show that interpolators such as 

Inverse Distance Weighting (IDW), Spline, or Kriging 

provide good results depending on the purpose of the 

DEM and the context in which they are applied (Bergonse 

& Reis, 2015; Tan & Xu, 2014; Boumpoulis et al., 2023). 

Considering the importance of accurate risk assessment, 

especially in urban areas, this study aims to evaluate the 

accuracy of TIN compared to other interpolators in the 

production of DEM for the city of Torres Novas.  

The chosen interpolators were IDW, as it is also a simple 

and fast method to implement, Ordinary Kriging (OK) for 

its suitability in large areas with complex spatial variation 

and Empirical Bayesian Kriging (EBK), which provides 

more accurate error estimates than other kriging methods. 

This study also seeks to assess whether the risk areas of 

rainfall-induced soil erosion resulting from the 

application of the DEM produced by TIN show significant 

differences when compared to those produced by the best 

interpolator identified. 

2 Study Area 

The county of Torres Novas covers an area of 

approximately 270 km², with a rainfall-induced soil 

erosion risk scenario ranging from moderate to high in 

more than 50% of its territory. These areas are primarily 

characterized by moderate to high slopes, combined with 

high erodibility and soils lacking vegetation (Cunha et al., 

2021). 

The city of Torres Novas was chosen as the study area 

(Fig. 1) due to its historical cartography, which includes 

the delineation of several risks, including erosion (Fig. 2), 

as well as up-to-date vector-based digital cartography at a 

scale of 1:2000, which allows a rigorous evaluation of the 

suitability of different interpolation methods. 

Furthermore, the city exhibits an interesting topographical 

heterogeneity, ranging from higher elevations in the 

western and northeastern regions, to lower floodplain 

areas in the east and southeast, with significant variations 

in slope between these zones. 

Figure 1. Study Area Location: from left to right, the 

municipality of Torres Novas in Portugal, followed by the study 

area (in red) within the municipality.. 

Figure 2. Urbanization Plan of the city of Torres Novas, dated 

March 1992 (reproduction authorized by Câmara Municipal de 

Torres Novas). 

3 Methods and data 

3.1 Analysis 

The diagram in Fig. 3 illustrates the main steps of the 

analysis. 
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3.2 Data and Software Availability  

The elevation points used in this study to produce the 

DEMs for the different interpolators were obtained from 

the Vector Digital Cartography (NdD1) at a 1:2000 scale 

for the city of Torres Novas, certified in 2024 and 

provided by Câmara Municipal de Torres Novas 

(https://cm-torresnovas.pt/) through a formal request 

form. This data cannot be redistributed due to licensing 

restrictions. 

The Rainfall Erosivity (Panagos et al., 2015) and Soil 

Erodibility (Panagos et al., 2014) datasets for Europe are 

available for download from the European Soil Data 

Centre (ESDAC) of the Joint Research Centre (JRC) 

through a request form at https://esdac.jrc.ec.europa.eu/ 

and cannot be redistributed due to licensing restrictions. 

The analysis was conducted using ArcGIS Pro software, 

version 3.2., developed and commercialized by ESRI 

(https://www.esri.com/).  

4 Results and Discussion 

4.1 Exploratory spatial data analysis 

The exploratory data analysis of the elevation points (Tab. 

1) reveals that the city’s average elevation is 63.62 meters 

with a standard deviation of 25.51, indicating significant 

variation of elevation values in relation to the average. 

Elevations are below 60 meters in 50% of the points, and 

the distribution is positively skewed (asymmetry of 0.53), 

suggesting a tendency towards higher elevations.  

The elevation range in the city spans from 22.48 to 127.2 

meters (Fig. 4), with the lowest elevations primarily 

located in the east and southeast, corresponding to a 

floodplain along the main river of the municipality, while 

the highest values are found in the west and northeast. 

Table 1. Descriptive statistics for elevation (m). 

Min 22.48   Range 104.72 

Max 127.20   IQR 34.15 

Mean 63.62   Q1 43.85 

Std Dev 25.51   Q3 78.00 

Median 60.00   CV 0.40 

Count  2679   Skewness 0.53 

Outliers 0   Kurtosis 2.44 

 

 

Figure 4. Elevation data posting using graduated colors. 

Figure 3. Diagram with the main steps of the analysis. 
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The regional histogram (Fig. 5) also confirms the slightly 

positive asymmetry of the data and, by selecting different 

areas of the map and histogram, a trend of data 

aggregation can be observed.  

 

Figure 5. Regional Histogram. 

The Voronoi map (Fig. 6) reveals an isotropic pattern for 

the overall study area. 

 

Figure 6. Simple Voronoi map of elevation. 

To further analyze spatial autocorrelation, the Global 

Moran’s I and Local Moran’s I statistics were applied. 

The Global Moran’s I revealed a statistically significant 

spatial autocorrelation, with an index of 0.9645 (p-

value < 0.0000). Given the z-score of 98.53, there is a less 

than 1% likelihood that this clustered pattern could be the 

result of random chance. 

The Local Moran's I statistic (Fig. 7) identified 1950 local 

clusters (764 high-high and 1186 low-low), reflecting a 

positive spatial autocorrelation, and 28 high-low spatial 

outliers, indicating a negative spatial autocorrelation, 

located in areas with steep slopes. No low-high outliers 

were found. The results also show 701 points, located in 

the central area and southwest, without significant spatial 

autocorrelation (p-value > 0.05).  

 

Figure 7. Local Moran's I map. 

The significant spatial autocorrelation of the data and the 

global isotropic pattern suggest that kriging methods are 

likely to be more effective in producing the DEM than 

deterministic ones (Bergonse & Reis, 2015). 

4.2 Triangulated Irregular Network (TIN) 

The TIN predicted surface (Fig. 8) was created using the 

‘Create TIN’ tool, available with the 3D Analyst 

extension of ArcGIS Pro, and then exported to a raster, 

with a cell size of 2 meters. This cell size was chosen for 

all the interpolators to provide more detail, as the base and 

historical cartography are at a 1:2000 scale. 

The prediction errors associated with the TIN were 

obtained using the 'Extract Values to Points' tool, 

available with the Spatial Analyst extension of ArcGIS 

Pro, and simple map algebra. The resulting Mean Error 

and Root Mean Square Error (RMSE) values were 0.001 

and 0.11, which was expected as this is an exact 

interpolator. 
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Figure 8. TIN predicted surface. 

4.3 Inverse Distance Weighting (IDW) 

To obtain the most accurate surface from the IDW 

interpolator, the ‘Geostatistical Wizard’ tool, available 

with the Geostatistical Analyst extension of ArcGIS Pro, 

was used. Cross-validation was performed by adjusting 

different settings for the neighborhood parameter (Tab. 2) 

and the configuration with the lowest RMSE was chosen, 

as it provided the most accurate model. 

Table 2. Local neighborhood definitions and prediction errors 

statistics for IDW. 

Sector 

Type 

Max. 

neighbors 

Min. 

neighbors 

Mean 

Error  
RMSE 

1 sector 
15 10 0.293 3.246 

8 5 0.249 3.004 

4 sectors 
15 10 0.295 3.726 

8 5 0.255 3.381 

4 sec. 45º 15 10 0.292 3.723 

8 sectors 
15 10 0.309 4.073 

8 5 0.264 3.688 

The resulting IDW predicted surface (Fig. 9) was then 

exported to a raster with a cell size of 2 meters. 

 

Figure 9. IDW predicted surface. 

A contour line map was also produced (Fig. 10), 

confirming that there is no global anisotropic pattern in 

the data. 

 

Figure 10. Contour line map for IDW. 

4.4 Ordinary Kriging (OK) 

Using the ‘Geostatistical Wizard’ tool again, this time for 

the OK, the semivariogram model that best fit the data was 

first determined. Of the two models tested (Tab. 3), the 

Sill, representing the value where the variogram 
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stabilizes, is higher in the Spherical model, while the 

range, representing the distance beyond which spatial 

autocorrelation no longer exists, is higher in the 

Exponential model. As for the nugget effect, related to 

variability at very short distances, the value in the 

Spherical model is low, suggesting reduced measurement 

errors, whereas in the Exponential model, it is zero. 

Table 3. Experimental variogram parameters. 

Model Spherical Exponential 

Nugget  5.525 0 

Range  5258.949 6071.682 

Anisotropy False False 

Partial Sill  1130.730 1009.941 

Model Spherical Exponential 

 

As both methods yielded similar results, the 

semivariogram model chosen was the Spherical, as it 

followed the averaged values more closely, particularly 

the first ones (Fig. 11). 

 

 

Figure 11. Semivariogram models for OK. 

Cross-validation was then performed, but the 

configurations with different neighborhood values did not 

result in changes to the outcomes, so only the 

configurations for different sectors are presented (Tab. 4). 

Based on the resulting prediction errors, the configuration 

with the lowest RMSE was chosen, as it provided the most 

accurate model. 

Table 4. Prediction errors statistics for OK, using 5 maximum 

neighbors and 2 minimum neighbors for all sectors 

Sector 

Type 

Mean  

Error  
RMSE 

Root-Mean-Square 

Standardized error 

(RMSSE) 

1 sector 0.117 2.558 0.561 

4 sectors 0.047 2.438 0.552 

4 sect. 45º 0.049 2.438 0.552 

8 sectors 0.055 2.431 0.552 

 

The resulting OK predicted surface (Fig. 12) was then 

exported to a raster with a cell size of 2 meters. 

 

Figure 12. OK predicted surface. 

4.5 Empirical Bayesian Kriging (EBK) 

The best-fitting model for the EBK was found using the 

'Exploratory Interpolation' tool, available with the 

Geostatistical Analyst extension of ArcGIS Pro. The tool 

identified 'EBK Advanced' as the best result (Tab. 5). 

Table 5. Interpolation models ranks and cross-validation 

statistics 

Model  Rank RMSE Mean Error 

EBK - Advanced 1 2.061 0.081 

OK – Optimized 2 2.178 0.101 

EBK - Default 2 2.191 0.071 

IDW - Optimized 2 2.864 0.239 

IDW - Default 2 3.246 0.293 

OK – Default 2 4.314 -0.054 
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Based on the model produced by the Exploratory 

Interpolation tool, the EBK was fine-tuned using the 

values shown in Tab. 6. 

Table 6. Parameters for EBK advanced 

Parameters  

Subset size 200 

Overlap factor 2 

Number of simulations 300 

Transformation Empirical 

Semivariogram Type K-Bessel Detrended 

Radius 75.159 

 

Through the analysis of specific locations on the map 

(Fig. 13), it was found that the semivariograms in the 

western area are more accurate, whereas in the eastern 

area, with fewer and more homogeneous data, they are 

less precise. However, the standard deviation values in 

several locations are lower than the average standard error 

of EBK Advanced, therefore, the model is well-adjusted. 

 

Figure 13. Example of semivariogram analysis. 

Subsequently, different cross-validation configurations 

were tested (Tab. 7), and the option of 4 sectors with a 

neighborhood between 8 and 5 was chosen to generate the 

DEM from the EBK, as it yielded the lowest estimation 

errors. 

The resulting EBK predicted surface (Fig. 14) was then 

exported to a raster with a cell size of 2 meters. 

 

 

Table 7. Local neighborhood definitions and prediction errors 

statistics for EBK. 

Sector 

Type 

Max. 

neigh. 

Min. 

neigh. 

Mean 

Error  
RMSE RMSSE 

1 sector 15 10 0.081 2.061 0.890 

4 

sectors 

15 10 0.064 2.050 0.881 

8 5 0.055 2.039 0.884 

4 sector 

45º 
15 10 0.060 2.051 0.877 

8 

sectors 
8 8 0.062 2.053 0.870 

 

 

Figure 14. EBK predicted surface. 

4.6 Rainfall-induced soil erosion maps 

The comparison of prediction error statistics for the 

different interpolators (Tab. 8) shows that the interpolator 

that presented the lowest RMSE was the EBK. However, 

EBK required the most processing time, taking about 5 

hours to produce a 2m cell size raster, while the others 

took less than 2 minutes. 

Table 8. Prediction errors statistics comparison. 

Method 
Mean 

Error 
RMSE 

Min. 

estimated 

elevation 

Max. 

estimated 

elevation 

IDW 0.249 3.004 22.48 127.19 

OK 0.049 2.438 23.19 127.34 

EBK 0.055 2.039 11.61 193.66 
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From the DEM produced by the TIN and the EBK, and 

the precipitation erosivity and soil erodibility data 

available in the JRC/ESDAC, two rainfall-induced soil 

erosion maps were generated (Fig. 15 and 16) according 

to the simplified version of the USLE (Eq. 2).  

 

Figure 16. Rainfall-induced soil erosion using the TIN predicted 

surface. 

 

Comparing the resulting maps with the historical 

cartography of the city (Fig. 17), it is clear that the EBK 

produces much more accurate rainfall-induced soil 

erosion maps, modelling areas that are more aligned with 

the city's reality. 

 

Figure 17. Rainfall-induced soil erosion using the EBK 

predicted surface. 

 

Figure 15.  Comparison of the erosion areas defined in the Urbanization Plan of the city of Torres Novas (from 1992) and the 

rainfall-induced soil erosion maps produced using the TIN and EBK predicted surfaces 
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The improved accuracy of the EBK can be attributed to its 

ability to better handle terrain heterogeneity, such as those 

observed in the study area, provided the model is properly 

parameterized. In contrast, the TIN is more sensitive to 

abrupt slope variations, which may affect its performance 

in areas with significant topographical differences. 

5 Conclusions  

This essay aimed to evaluate the accuracy of TIN in 

comparison to other interpolation methods in the 

production of rainfall-induced soil erosion maps for the 

city of Torres Novas. 

The elevation points used to generate the DEMs were 

obtained from the Vector Digital Cartography (NdD1) at 

a 1:2000 scale for the city of Torres Novas, certified in 

2024. As elevation is a continuous variable, strong spatial 

correlation and spatial dependence were expected in the 

data, particularly in the western part of the city, with 

higher elevations, and in the eastern part, with lower 

altitudes corresponding to a floodplain along the 

municipality's main river. 

DEMs using four different interpolation methods were 

produced: TIN, commonly used in this type of studies for 

its simplicity and rapidness, IDW and two Kriging 

methods – Ordinary Kriging and EBK. The interpolated 

surfaces that were produced do not differ significantly 

from each other in a global form, corresponding well to 

the city reality. This likeness among the interpolators is 

probably due to the fairly large number of points that 

produce a tendency to equity. Excluding TIN, EBK was 

the interpolator that presented fewest estimation errors. 

From the comparison between the rainfall-induced soil 

erosion maps produced by TIN and EBK and the existing 

historical cartography for the city, EBK stands out as the 

best interpolator, producing more accurate and detailed 

areas. Although TIN creates a reliable map, it resulted in 

some overestimation of values in the areas with high 

erosion risk, which did not occur with EBK. 

Producing rainfall-induced soil erosion maps that are 

closer to reality allows for better decision-making in the 

scope of territorial planning and management. Therefore, 

it is recommended the use the EBK interpolator in future 

studies of rainfall-induced soil erosion in the municipality 

of Torres Novas. However, it is important to consider that 

there are some limitations regarding the processing time 

of this interpolator, which is longer, and the need for 

proper model tuning, as it is sensitive to incorrect 

specification of the semivariogram model. 
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