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Abstract. This study explores the application of Moran’s
I, a measure of spatial autocorrelation, in evaluating spatial
machine learning models, specifically focusing on random
forest (RF) models applied to simulated raster data with
varying spatial structures. The research simulates 300 sce-
narios (raster datasets), each with different spatial autocor-
relation ranges (10, 50, and 100). It assesses model perfor-
mance using root mean square error (RMSE) and Moran’s
I values of the residuals across the entire raster, as well as
for both training and testing samples. Based on our exper-
imental setup, the results show that Moran’s I of the resid-
uals is affected by the spatial structure of the data, with
higher values observed for datasets with greater autocorre-
lation ranges. A weak correlation is found between RMSE
and Moran’s I values, suggesting that Moran’s I can offer
valuable supplementary insights beyond RMSE in evaluat-
ing the spatial quality of models. However, the study also
highlights the sensitivity of Moran’s I to sample size and
spatial proximity, which can lead to misleading interpreta-
tions of model quality. These findings underscore the po-
tential limitations of relying solely on Moran’s I in spatial
machine learning applications and raise critical questions
regarding its dependence on sample size and spatial dis-
tance. The study calls for further investigation into these
factors to enhance model evaluation and improve the ac-
curacy of spatial model assessments.
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1 Introduction

Machine learning methods have been widely applied for
prediction and classification of spatial data (henceforth re-
ferred to as spatial machine learning) (Nikparvar and Thill,
2021). While traditional models such as support vector
machines, random forests (RF), and gradient boosting ma-
chines have demonstrated effectiveness in these tasks, they
inherently lack spatial awareness. They do not directly ac-
count for the spatial structure of the data, such as the spa-
tial relationships between the observations, as their results
are based on data in tabular form. If spatial structure in the
data is relevant for the prediction, this can lead to models’
subpar quality and weak performance in spatial prediction
tasks (Meyer et al., 2018; Behrens et al., 2018).

Various approaches have been proposed to incorporate
spatial information into machine learning models to im-
prove their performance and better capture the spatial
structure of the outcomes (Jemel,janova et al., 2024). One
of the most common approaches is to include spatial prox-
ies, such as the coordinates of the observations or Eu-
clidean distances between them, as additional predictors in
the model (Behrens et al., 2018). Other approaches include
the inclusion of spatial predictors based on a distance
matrix among training cases (Dray et al., 2006; Hengl
et al., 2018), or applying spatially-aware cross-validation
techniques for feature selection and model tuning (Meyer
et al., 2019; Schratz et al., 2019). Moreover, variants of
machine learning models have been developed to incor-
porate spatial information directly into the method, such
as Geographical RF (Georganos et al., 2021) or RF-GLS
(Saha et al., 2023).

A distinct role in spatial machine learning models is
played by measures of spatial autocorrelation, such as
Moran’s I (Moran, 1950). These measures are used both
before the modeling process to understand the spatial
structure of the data and after the modeling process to
evaluate the model’s performance. In the latter case, the
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Figure 1. Examples of simulated outcomes based on the set of covariates with different ranges (10, 50, 100)

model’s residuals are derived, and the spatial autocorrela-
tion of these residuals is calculated: when the residuals are
spatially autocorrelated, it indicates that the model is not
able to capture the spatial structure of the data well (Besag,
1974; Dormann et al., 2007). In some studies, this infor-
mation is further used to improve the model by, for exam-
ple, geostatistical modeling of the residuals and adding the
predicted values of this model to the initial model predic-
tions (Hengl et al., 2015; Beguin et al., 2017). Other stud-
ies use this information to understand the model’s limita-
tions and interpret the results (Mascaro et al., 2014; Kirk-
wood et al., 2016; Liu et al., 2022; Kim et al., 2023).

Given its widespread use in spatial machine learning, this
study explores the strengths and limitations of Moran’s I
within this context. Here, we focus on the random forest
model and relationships between Moran’s I values for the
simulations with different spatial structures. We also in-
vestigate the relationship between Moran’s I values of the
residuals of the model and the model’s quality, as mea-
sured by the root mean square error (RMSE).

2 Materials and Methods

The study workflow consists of three main parts: data sim-
ulation and sampling, modeling, and model evaluation.
First, 300 raster outcomes of various spatial structures
were simulated, and 350 training and 150 testing sam-

ples were created for each raster. Next, a random forest
model was fitted for each raster, and the model’s qual-
ity was evaluated using the RMSE value. The Moran’s I
value was calculated for the residuals of the RF model for
the whole raster area, the training samples, and the test-
ing samples. Lastly, the values of the RMSE and Moran’s
I were analyzed, and the relationship between the RMSE
and Moran’s I values was investigated.

training testing

−10 −5 0 5 10

Figure 2. Example of a training (350 locations) and testing sam-
ple (150 locations) on a simulated map with a range of 100
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2.1 Simulated Data and Sampling

A raster template with 200 columns and 200 rows was gen-
erated as the foundation for constructing both covariates
and outcomes. Six covariates were created using the condi-
tional Gaussian simulation based on a spherical variogram
model. This process was repeated 100 times for each of
the three specified ranges (10, 50, and 100) with a mean
of 0 and constant sill of 1 and a nugget value of 0. The co-
variates were then combined to generate an outcome raster
with the formula Y =X1+X2 ·X3+X4+X5 ·X6: we
included interactions to reflect potential dependencies be-
tween covariates. Thus, a total of 300 outcome rasters were
produced, each with six related covariates (Figure 1).

For each outcome raster, a training and testing sample was
generated. The locations of the training and testing sam-
ples were randomly selected from the raster area, with
300 points for the training samples and 150 points for the
testing samples (Figure 2). The goal of this split was to
mimic an interpolation problem: predicting the outcome
for the locations within the training sample, and evaluating
the model’s performance using the testing sample found
within the same study area.

2.2 Modeling

For each outcome raster, we extracted the corresponding
values of the covariates and the outcome for the training
samples, and fitted a random forest (RF) model. The RF
model was fitted with 500 trees with the number of vari-
ables to possibly split at in each node (mtry) tuned based
on the values of 2, 3, 4, 5, and 6. The final model was se-
lected based on the lowest root mean square error (RMSE)
value calculated using the out-of-bag (OOB) samples. The
final model was used to predict the outcome for the whole
raster area, the training samples, and the testing samples.

2.3 Model Evaluation Metrics

The quality of each RF model was evaluated using the
RMSE value calculated for the whole raster area, the train-
ing samples, and the testing samples. Next, the residuals
of the RF model (differences between the predicted and
observed values) were derived for the whole raster area,
the training samples, and the testing samples. These resid-
uals were used to compute Moran’s I (Moran, 1950) for
the whole raster area, the training samples, and the testing
samples. Moran’s I is calculated as:

I =
n∑n

i

∑n
j wij

×
∑n

i

∑n
j wij(xi − x̄)(xj − x̄)∑n

i (xi − x̄)2
(1)

where n is the number of observations, xi and xj are
the values of the observations at locations i and j, x̄ is
the mean value of the observations, and wij is the spatial
weight between the observations at locations i and j. Here,

Table 1. Average RMSE for different ranges and sample types

Range Overall Training Testing
10 1.349 0.576 1.347
50 1.074 0.458 1.062

100 0.776 0.321 0.761

we used a binary spatial weight matrix based on the eight
nearest neighbors, where wij = 1 if the observations at lo-
cations i and j are neighbors and wij = 0 otherwise. Thus,
in case of the raster data, the Moran’s I value was based on
the values of eight closest cells, while for training and test-
ing samples, the Moran’s I value was based on the values
of eight closest point samples.

Moran’s I measures spatial autocorrelation on a scale from
-1 to 1, where -1 indicates strong negative spatial auto-
correlation (a checkerboard pattern), 0 indicates no spatial
autocorrelation, and 1 indicates strong positive spatial au-
tocorrelation with similar values close to each other.

2.4 Data and Software Availability

All analyses were conducted in R (R Core Team, 2024).
The raster data was processed using the terra package (Hij-
mans, 2025), while the spatial simulations were conducted
using the simsam and the gstat packages (Nowosad, 2025;
Pebesma, 2004). Random forest models were fitted using
the ranger package (Wright and Ziegler, 2017) and the spa-
tial autocorrelation was calculated using the spdep pack-
age (Bivand et al., 2013). Visualizations in the manuscript
were made using the ggplot2 (Wickham, 2016) and the
tmap packages (Tennekes, 2018).

The research code supporting this publica-
tion is available at https://github.com/Nowosad/
moran-i-spatial-ml-prelim.

3 Results

In total, 300 RF models were fitted and evaluated, with
100 models for each autocorrelation range. The RMSE
values for the whole raster area, the training samples, and
the testing samples were calculated for each model, and
their average values are presented in Table 1. Two main
observations can be made based on the results. First, the
models’ accuracy, as measured by the RMSE, largely de-
pends on the range of the covariates. Models based on the
simulations with a range of 10 have the highest RMSE val-
ues, while models based on the simulations with a range
of 100 have the lowest RMSE values. Second, while the
RMSE values of the training sample are much lower than
the overall RMSE values (overly optimistic), the RMSE
values of the testing samples are comparable to the overall
RMSE values.

Figure 3 shows the Moran’s I values of the RF models
residuals for the whole raster area, the training samples,

AGILE: GIScience Series, 6, 40, 2025 | https://doi.org/10.5194/agile-giss-6-40-2025 3 of 6

https://github.com/Nowosad/moran-i-spatial-ml-prelim
https://github.com/Nowosad/moran-i-spatial-ml-prelim


10 50 100

Overall Training Testing Overall Training Testing Overall Training Testing

0.00

0.25

0.50

0.75

M
or

an
's

 I

Figure 3. Moran’s I for different ranges and sample types

and the testing samples. In general, the overall Moran’s I
values are much higher than the Moran’s I values of the
training and testing samples. Moreover, the residuals of
the RF models based on the simulations with a range of
10 have the relatively lowest Moran’s I values, while the
residuals of the RF models based on ranges of 50 and 100
have higher Moran’s I values. In all cases the models resid-
uals of the whole rasters are spatially autocorrelated, and
thus the RF models were not able to capture the spatial
structure of the data well. Training and testing samples for
the models of the outcome with the shortest range have the
Moran’s I values close to zero, while the Moran’s I val-
ues of the training and testing samples for the models of
the longest range are higher, but still much lower than the
Moran’s I values of the whole raster area. It also seems that
the Moran’s I values of the testing samples have smaller
median values of Moran’s I than the values of the training
samples, while also having a larger variability.

Lastly, we checked the relationship between the RMSE
values of the models and Moran’s I values of the RF
models residuals (Figure 4). There is a weak positive re-
lationship between the RMSE and Moran’s I values for
the whole raster area with a coefficient of determination
(R2) of 0.09–0.5. A slight positive correlation was also
observed for the training samples for ranges of 50 and
100, while for the testing samples, the relationship is much
weaker or even not present.

4 Conclusions and Future Research

This preliminary work investigates Moran’s I capabilities
and limitations in the context of spatial machine learning,
using a set of simulated data and random forest models.
The results show that the relationship between the RMSE
and Moran’s I values of the RF models’ residuals is weak
for the overall raster area, very weak for the testing sam-
ples, and barely present for the training samples. It sug-
gests that Moran’s I values of the residuals provide other
information than the RMSE values and can thus be used
as an additional measure to evaluate the model’s quality.

At the same time, our results suggest that Moran’s I, as
measured in this study, exhibits certain properties that may
limit its usefulness in spatial machine learning applica-

tions. The Moran’s I values of the residuals of training and
testing samples are much lower than the Moran’s I values
of the whole raster area. This indicates that the RF mod-
els were not able to capture the complete spatial structure
of the data well, but Moran’s I values of the residuals of
the training and testing samples did not reflect this well.
In practice we do not have access to the whole raster area,
and thus the Moran’s I values of the residuals of the train-
ing and testing samples may not be a good representation
of the existence of spatial autocorrelation in the model’s
residuals. This may create a false sense of confidence in
the model’s quality, suggesting that the model is able to
capture the spatial structure of the complete data well,
while in reality, it is not.

Moreover, the relation between Moran’s I values for the
whole raster area, the training samples, and the testing
samples suggests that, in general, the larger the sample
size, the higher Moran’s I values of the residuals are. This
indicates that the residuals’ Moran’s I values are sensitive
to the sampling process and size, or, more specifically, to
the distances between the neighboring samples. It makes
sense: the larger the random sample size, the closer the
neighboring samples are, and thus, their values are more
similar, leading to higher Moran’s I values. As stated by
Makido and Shortridge (2007), “Moran’s I is a function of
spatial resolution,” which suggests that Moran’s I values
of the residuals may more reflect the sample size than the
model’s quality. Additionally, this suggests that comparing
Moran’s I values between models with different sample
sizes may not be meaningful.

The presented results preliminary suggest various proper-
ties of Moran’s I in the context of spatial machine learn-
ing, while also opening new questions. The issue of the
sample size and the distances between the neighboring
samples should be further investigated to understand their
impact on Moran’s I values of the residuals. For exam-
ple, is it possible to standardize Moran’s I values of the
residuals based on the sample size and possibly sample
scheme to make them comparable between models with
different sample sizes? Moreover, the study framework
could be expanded in a few ways. Simulations without a
spatial structure or based on covariates not related to the
outcome could be used to understand the relationship be-
tween Moran’s I values of the residuals and the model’s
quality. Including spatial proxies as additional predictors
in the RF models could also provide insights into the rela-
tionship between Moran’s I values of the residuals and the
proxies’ properties. Additionally, the expanded framework
could help to further clarify and explain the relationship
between the RMSE and Moran’s I values of the residuals.
In this work, we focused on an interpolation problem, but
it would be interesting to check how Moran’s I values of
the residuals behave in an extrapolation problem. Lastly,
it is worth comparing Moran’s I values of the residuals of
the RF models with other measures of spatial autocorrela-
tion, such as Geary’s C, to understand their differences and
their usefulness in the context of spatial machine learning.
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Figure 4. Moran’s I for different ranges and sample types
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