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Abstract. Invasive alien plant species are an increasing
concern in many countries due to their negative impacts on
local ecosystems, human health, infrastructure, and agri-
culture, to name a few. In Switzerland, substantial finan-
cial resources are allocated each year to combat the spread
and eradicate these invasive species. Understanding their
spatial distribution through species distribution modeling
is crucial for improving management interventions. This
study aims to examine the role of environmental and hu-
man factors in predicting the distribution of three inva-
sive plant species (Prunus laurocerasus, Buddleja davidii,
and Robinia pseudoacacia) in the Cantons of Vaud and
Neuchâtel in Western Switzerland. A random forest algo-
rithm is trained, and the resulting model is used to assess
the relative importance of various environmental and hu-
man factors in predicting species distribution. The results
highlight that while environmental features play a signif-
icant role in generating distribution maps, incorporating
human activity patterns, such as proximity to built areas,
railways, and roads, greatly enhances prediction accuracy
and leads to more robust models.
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1 Introduction

The proliferation of invasive alien species is a significant
concern worldwide (Andersen et al., 2004; Stohlgren and
Schnase, 2005). These species can disrupt native ecosys-
tems, leading to biodiversity loss and substantial economic
costs (Linders et al., 2019). A 2023 report by the In-
tergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES) highlighted that invasive
alien species have been a major factor in 60 percent of
global animal and plant extinctions, and the sole driver in
16 per cent of these cases (Roy et al., 2024). The primary
driver behind the introduction of invasive species is the
movement of goods and people, which leads to their inten-
tional or unintentional introduction into new environments
(Keller et al., 2011).

Invasive alien plant species is becoming a growing con-
cern in Europe (European Commission DG Environment,
2024). In Switzerland, extensive efforts are underway to
control their spread, requiring considerable human and
financial resources (Federal Office for the Environment
(FOEN), 2022). Beyond their ecological impact, inva-
sive plant species pose threats to infrastructure such as
roads and railways, disrupt agricultural productivity, and,
in some cases, even have adverse health effects on humans
(Kumar Rai and Singh, 2020). A deeper understanding of
their distribution patterns can facilitate more efficient man-
agement strategies and targeted interventions.

Predicting the geographical distribution of invasive plant
species is a key component of their control and poten-
tial eradication (Jarnevich et al., 2023). Identifying the
environmental and human-related factors that drive their
spread can lead to more effective mitigation and manage-
ment measures.
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This study evaluates the distribution of invasive plant
species in Switzerland, with a particular focus on three
high-priority species for eradication in western Switzer-
land: Prunus laurocerasus, Buddleja davidii, and Robinia
pseudoacacia. The research is conducted in the cantons of
Vaud and Neuchâtel. The primary objective is to utilize
environmental and climatic variables as well as informa-
tion on human settlements to model the distribution of the
mentioned invasive plant species and address the follow-
ing research question:

Can the integration of environmental factors and human
activity patterns enhance predictions of invasive species
spread and inform more effective management strategies?

The structure of this article is as follows: The next sec-
tion discusses the role of species distribution modeling in
policymaking. This is followed by a detailed methodology
section covering dataset description, data processing, ex-
ploratory analysis, and modeling approach. The results of
the modeling are then presented, followed by a discussion
of key findings and concluding remarks.

2 Species Distribution Modeling for Policy
Management

Species Distribution Modeling (SDM) has been widely
used for many years to predict the most probable areas for
species presence based on a combination of environmental
and physical factors (Elith and Leathwick, 2009; Miller,
2010). SDM plays a crucial role in biodiversity conserva-
tion efforts, helping policymakers in identifying priority
areas for intervention as well as biodiversity loss hotspots
(McSHEA, 2014).

For invasive plant species, SDM is particularly effective
in supporting eradication efforts by identifying areas with
a high probability of species occurrence and evaluating
the factors contributing to their proliferation (Jarnevich
et al., 2023). Additionally, SDM can be useful in moni-
toring eradication success by assessing whether previously
targeted areas remain free of the invasive species or if re-
colonization has occurred (Cho et al., 2022).

There are various SDM methodologies, among which
MaxEnt(Elith et al., 2010) is one of the most known for
ecological modeling. MaxEnt relies on presence data (lo-
cations where the species has been observed) and and con-
trasts them with background data sampled from across the
study area to estimate the relative environmental suitabil-
ity of different locations. In contrast, many machine learn-
ing models require both presence and absence data for
more comprehensive modeling(Elith et al., 2020; Lotfian
et al., 2022). This study employs the Random Forest al-
gorithm to generate distribution models for three selected
invasive plant species. The reason for the choice of Ran-
dom Forest is that it is a robust ensemble learning method
that handles non-linear relationships, accommodates high-
dimensional datasets, and automatically captures interac-

tions among predictor variables (Simon et al., 2023). Ad-
ditionally, it provides measures of variable importance,
which can support interpretation and inform management
decisions (Fox et al., 2017).

The following section presents the dataset and the method-
ologies employed for modeling.

3 Methodology

3.1 Dataset

The dataset used in this study consists of records on inva-
sive plant species and various environmental and climatic
variables. The key components of the dataset are detailed
below:

Invasive plant species: This study focuses on two cantons
in western Switzerland—Vaud and Neuchâtel—located in
the French-speaking region. Data on invasive alien plant
species for these cantons were obtained from the National
Data and Information Center on Swiss Flora, known as
Info Flora (2025) (see Figure 1).

Info Flora utilizes the citizen science platform InvasiveApp
to collect observations on invasive plant species. While
data quality and participation inequality are common chal-
lenges in participatory science projects (Moradi et al.,
2021; Lotfian et al., 2023), citizen-generated data of-
ten represents the best available resource, particularly for
ecological research (Callaghan et al., 2024). Info Flora’s
dataset is no exception to these challenges, including spa-
tial biases, as seen in Figure 1. However, despite these
limitations, it remains one of the most comprehensive
and valuable sources of plant species data in Switzerland,
thanks to the dedicated contributions of volunteers.

The dataset from Info Flora includes 39 features that can
be categorized into five groups: observation details, tax-
onomic information, geographical information, manage-
ment and invasive status, and abundance/phenology.

Although absence data are available in the dataset, they are
extremely limited. For instance, in the Info Flora dataset,
presence points for Prunus laurocerasus, Buddleja da-
vidii, and Robinia pseudoacacia are in total 2,829, 5,390,
and 3,997, respectively. However, only a single absence
record exists for Buddleja davidii. Therefore, we gener-
ated pseudo-absence (background) data to enhance model
performance.

To create the pseudo-absence/background dataset, we ran-
domly generated absence points in locations where pres-
ence points were not recorded. To reduce spatial bias, we
applied a 1 km buffer around each presence point and
randomly generated an equal number of pseudo-absence
points for each species outside these buffered areas.

Land use: To assess the impact of human infrastructure
on the spread of invasive plants, we introduced a land-use
feature that quantifies proximity to various infrastructure

AGILE: GIScience Series, 6, 37, 2025 | https://doi.org/10.5194/agile-giss-6-37-2025 2 of 7



Figure 1. The observations points from Info Flora for the three
selected invasive plant species within two cantons of Vaud and
Neuchâtel in Western Switzerland. Prunus laurocerasus (blue),
Buddleja davidii (red), and Robinia pseudoacacia (green)

elements. OpenStreetMap (OSM) data were accessed via
the Overpass API, using the OSMnx Python library. We
extracted features within a 250 m buffer around each ob-
servation, including:

• Building areas (average and total)

• Distance to the nearest buildings

• Distance to highways, railways, and waterways

Meteorological data: To account for local climate condi-
tions, we obtained yearly normals of temperature, precipi-
tation, and sunshine from the Federal Office of Meteorol-
ogy and Climatology (MeteoSwiss). This data, provided in
NetCDF format, and has a spatial resolution of 1 km.

NDVI (Normalized Difference Vegetation Index): To
capture vegetation health and density around observation
points, we used Landsat 8 satellite imagery to compute
NDVI at a 30 m resolution. For each observation point,
we calculated the mean and standard deviation of NDVI
values within 30 m, 250 m, and 500 m buffers. To ensure
accurate representation of peak vegetation activity, we fo-
cused on NDVI values from the summer months.

Altitude: Finally, we obtained altitude data from Federal
Office of Topography known as swisstopo (2025) at a 2
m resolution to compute the average elevation and slope
surrounding each observation point.

3.2 Exploratory analysis and data pre-processing

Before training the model, an exploratory analysis was
conducted to visualize the behavior of the three selected
plant species. This included using box plots to visualize
the distribution of species based on average annual cli-
matic conditions, average elevation, and proximity to dif-
ferent land-use types. These visualizations provided an ini-
tial understanding of the spatial distribution of data points
within the study area.

Next, the data was prepared for the machine learning
model. To account for spatial autocorrelation, we avoided
randomly splitting the dataset into train, test, and valida-
tion sets. Instead, we first applied the k-means clustering
algorithm to group nearby observations. Once clustering
was complete, the data was divided into training (70%),
testing (15%), and validation (15%) sets (See Figure 2).

Figure 2. The observations were split into clusters using K-
means clustering. This similarity approach ensures that the train-
ing, validation, and test sets are spatially distinct, reducing spatial
autocorrelation biases.

3.3 Model training

As mentioned earlier, this study employs the Random For-
est algorithm to predict the distribution of the three inva-
sive plant species. Random Forest has been widely recog-
nized in the literature as an effective method for tabular
data analysis (Grinsztajn et al., 2022). We chose Random
Forest because they efficiently handle both numerical and
categorical data, perform well even with default settings,
and provide insights into feature importance, an essential
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aspect of ecological studies. Additionally, this ensemble-
based approach is robust to outliers and captures complex
interactions among predictors, making it particularly use-
ful in ecological modeling, where multiple factors influ-
ence plant presence.

For implementation, we used the scikit-learn library, keep-
ing most parameters at their default values since they
yielded satisfactory results in preliminary tests. Specif-
ically, we set the number of estimators (trees) to 100,
used the Gini criterion for determining splits, and retained
the default maximum tree depth (None), allowing trees
to grow until all leaves are pure or contain fewer than
the minimum split samples. While further hyperparame-
ter tuning may improve performance, our primary objec-
tive was to demonstrate the feasibility of using an enriched
dataset to enhance predictions of invasive plant presence.

3.4 Data and Software Availability

The code and the dataset used in this research can be found
here at Zenodo.

4 Results

4.1 Explanatory analysis:

A preliminary analysis was conducted to assess the dis-
tribution of observation points across different land use
types, climatic conditions, and altitudinal ranges.

The box plots in Figure 3 illustrate that the distributions of
the three climatic variables for the three species are rela-
tively similar. The data suggests that these species thrive
better in regions with higher mean yearly temperatures,
as reflected by the medians near 11°C. While they are
adaptable as well to cooler conditions, their primary dis-
tribution aligns with warmer climates, which may enhance
their invasive potential in such areas. Additionally, the box
plots show that, beyond temperature, broader adaptabil-
ity to precipitation and sunshine duration—particularly for
Buddleja davidii—suggests that temperature alone does
not dictate their invasive success. Instead, their ability to
persist across diverse environmental conditions, coupled
with moderate climatic conditions, likely plays a signifi-
cant role.

For land use analysis, the proximity to different land use
types indicates that the three species are predominantly ob-
served in forests, grasslands, and residential areas. Prunus
laurocerasus is particularly common in residential zones
(Figure 4), where it is frequently used as a hedge plant in
private gardens to provide privacy.

As expected, since the species are predominantly observed
in urban areas, their presence points are concentrated at
lower altitudes. Figure 5 illustrates that Prunus laurocera-
sus is primarily distributed around 400 meters in altitude,

Figure 3. Comparison of meteorological variations (yearly mean
temperature, precipitation, and sunshine duration) for the three
selected invasive plants and across canton Vaud and Neuchâtel,
Switzerland.

which aligns with its preference for residential environ-
ments.
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Figure 4. Distance to building for presence versus absence points
of Prunus laurocerasus species. Presence points are mostly dis-
tributed at close vicinity of the buildings.

Figure 5. The distribution of presence points of Prunus lauro-
cerasus versus the absence points, across various altitudes, with
an average altitude calculated within a 5-meter radius around
each point.

4.2 Model evaluation and feature importance

Model Evaluation: The model was evaluated on a held-
out development set to assess its performance. The confu-
sion matrices generated for each species indicate a gener-
ally high classification accuracy, with only a few misclas-
sifications. The classification report confirms strong pre-
cision and recall for both presence and absence classes,
with overall model accuracy exceeding 90% for all three
species.

Feature Importance: To better understand the ecological
drivers of invasion, we analyzed feature importance using
the trained Random Forest models (Figure 6):

• Buddleja davidii: The most important variable is
mean temperature, followed by mean elevation at 5m
and 250m scales. This suggests its preference for spe-
cific temperature ranges and elevation gradients.

• Prunus laurocerasus: Total building area and mean
temperature are the dominant features, highlighting
its strong association with urban areas and particular
climatic conditions.

• Robinia pseudoacacia: Mean temperature, mean ele-
vation (5m and 250m scales), and proximity to high-
ways emerge as key features, reflecting its adaptabil-
ity to temperature gradients and human infrastruc-
ture.

Figure 6. Top feature importances for predicting the presence of
Buddleja davidii, Prunus laurocerasus, and Robinia pseudoacacia

Finally, the trained models were applied across the entire
study area, producing maps that illustrate the probabil-
ity of distribution for all three invasive plant species. The
maps show that these species are predominantly observed
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in urbanized areas or near human infrastructure, such as
roads. This highlights the importance of incorporating fea-
tures that capture information related to human activity
patterns, rather than relying solely on environmental and
climatic variables.

Figure 7. Example of the spatial probability map for Prunus lau-
rocerasus

5 Discussion and conclusion

The spread of invasive alien plant species poses a signif-
icant threat to biodiversity, ecosystem stability, and hu-
man infrastructure (Kumar Rai and Singh, 2020). As these
species establish and expand, they can outcompete na-
tive flora, alter habitat conditions, and impose considerable
economic costs (Linders et al., 2019). Predicting their dis-
tribution patterns is a key step toward more effective man-
agement and mitigation efforts (Jarnevich et al., 2023).

In this study, we used species distribution modeling to
analyze the environmental and human-related factors in-
fluencing the spread of three of the high-priority invasive
species in Switzerland: Prunus laurocerasus, Buddleja da-
vidii, and Robinia pseudoacacia. Using a dataset combin-
ing citizen science observations, land-use data, meteoro-
logical variables, and topographical features, we trained
Random Forest models to predict their potential distribu-
tion. Our results highlight the dominant role of mean tem-
perature, elevation, and proximity to human infrastructure
in shaping the presence of these species.

The spatial probability maps generated in this study
provide valuable insights for conservation practitioners.
These maps can guide targeted intervention efforts by pri-
oritizing high-risk areas for eradication, optimizing re-

source allocation, and ultimately preventing the further
spread of invasive plants.

However, it is important to acknowledge that the obser-
vational data used in this study, particularly those derived
from citizen science contributions, are subject to spatial
sampling bias. Many species records are clustered along
roads or in accessible areas, potentially influencing model
outputs—especially in relation to distance-to-road vari-
ables. Future work should explore strategies to correct
for this bias, such as effort-aware sampling designs, bias-
corrected background selection, or integrating sampling
effort covariates into the modeling process.

In addition, future research should explore dynamic mod-
eling approaches to assess both historical trends and future
expansion under different climate change and land use sce-
narios. Integrating additional socio-ecological data could
enhance predictive accuracy and better capture the influ-
ence of human activities and landscape changes on species
spread. Another crucial step is to raise public awareness
and encourage citizen scientists to contribute data, particu-
larly in underrepresented areas, to minimize observational
biases and improve dataset reliability.
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