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Abstract.
The hyperlink reference networks of company websites of-
fer a promising approach to modeling inter-firm collabo-
ration and provide valuable insights into e.g. technology
diffusion. However, most existing studies analyze these
networks without considering the geographic embedding
of company locations, disregarding potentially significant
spatial factors. To address this gap, we investigate spatial
patterns and structures in collaboration networks within
the German federal state of Baden-Württemberg. Compar-
ing results from network community detection and unsu-
pervised clustering approaches, we examine firstly, how
the collaboration networks are structured in geographic
space and secondly, assess whether companies with sim-
ilar characteristics are also geographically close. Our find-
ings reveal three distinct classes, namely regional, cross-
regional, and hub-centered spatial network embeddings,
even though a clustering of node attributes did not reveal
substantial spatial similarities. These results highlight the
important interaction between the virtual hyperlink refer-
ences of companies and their embedding in geographic
space.
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1 Introduction

Inter-firm collaboration has been identified as a key driver
of regional innovation (Hervás-Oliver et al., 2021). Since
traditional innovation research primarily relies on the anal-
ysis of patents or surveys, insights about such collabora-
tions are often limited to rather small firm samples (Kinne
and Axenbeck, 2020). An alternative is the analysis of firm
activities through corporate websites. While the textual
content reflects a firm’s technological expertise, a hyper-
link between two firm websites suggests ongoing collabo-
ration, based on the assumption that hyperlinks are deliber-
ately set (De Maeyer, 2013). While individual hyperlinks
may have been created for reasons unrelated to collabo-
ration, the overall hyperlink network can thus serve as a
proxy for inter-firm relationships, reflecting broader social
and cultural structures (Halavais, 2008). As many com-
panies maintain a website, this approach enables large-
scale analyses of collaboration between companies (Bai-
ley et al., 2018). Most companies act at a geographic lo-
cation indicated by their firm address. Assuming collab-
oration does not only occur in virtual spaces through in-
ternet technologies, the hyperlink network also provides
a way to analyze inter-firm collaboration and knowledge
flow between geographic regions (Abbasiharofteh et al.,
2023). Most studies focus on the virtual hyperlink network
structure and do not explore the geographical environment
nor the geographic embedding of collaboration networks
in conjunction with the virtual network structure. Thus, we
identified a research gap that we address with this research
work.

Therefore, this study uses hyperlink network data of firms
in the German state of Baden-Württemberg (BW) to iden-
tify how inter-firm collaboration is structured in geo-
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graphic space. BW was chosen due to its multicenter struc-
ture, long-term economic growth (Glückler et al., 2020),
high-tech clusters (Schlossstein and Yun, 2008), and in-
herent diversity regarding both industrial sectors and pop-
ulation density (Hoffmann et al., 2024). We intentionally
chose a state-level rather than a nation-level study area:
The firm-level network of Germany is dominated by com-
panies in urban centers with many companies that have an
extensive collaboration networks (Schmidt et al., 2025).
These firms exert a strong "pull" on the network, therefore
overshadowing interesting regional structures.

Our study addresses the following research questions
(RQ):

• RQ1: How does the hyperlink network of firms in
BW manifest in geographic space?

• RQ2: Based on firm characteristics derived from the
company website text, how do similar companies
cluster in geographic spaces?

For RQ1, we hypothesize that the spatial proximity be-
tween firms dominates the network structures, rather than
trans-regional collaborations facilitated by virtual commu-
nication technologies. For RQ2, we expect to find spatial
clusters that correspond to technology clusters inspired by
Markusen (1996).

To answer these research questions, we modeled the hy-
perlink network between firms in BW and additionally re-
trieved information derived from website text character-
izing each firm. For RQ1, we intend to detect clusters in
network structure only, i.e. disregarding the firm-level in-
formation. For RQ2, the network structure is disregarded
and instead, unsupervised Machine Learning (ML) algo-
rithms are trained on the firm data to detect structures
based on the firm’s similarities. Finally, both clustering re-
sults are spatially visualized, analyzed for spatial patterns,
and compared to understand the underlying collaboration
patterns.

Understanding the spatial clustering of point features
in geographic space typically involves using measures
of spatial autocorrelation (Boots and Tiefelsdorf, 2000)
(Getis and Ord, 1992). These methods conceptualize spa-
tial neighborhoods through a spatial weight matrix and
identify local clusters of specific features. They are, how-
ever, less suitable for analyzing spatial clusters in higher-
dimensional data. We intend to answer RQ2 by identi-
fying clusters based on features derived from firm web-
sites and assessing their spatial embedding. Unlike the
mentioned traditional methods, our approach leverages the
capabilities of ML algorithms and does not require the
conceptualization of a predefined geographic neighbor-
hood. Similarly, we analyze the company network for clus-
ters independently of any geographical method and ex-
pect the emergence of spatial structures. This approach
has been applied to social networks, where studies have
demonstrated that virtual communication networks ex-
hibit structures aligned with spatial boundaries (Arthur

and Williams, 2019), (Ratti et al., 2010), (Scellato et al.,
2011).

2 Data Retrieval

We retrieved all firms in BW from the ORBIS database
(Bureau van Dijk, 2023), which contains information
about the firm’s domain, founding year, the number of em-
ployees and its address. We geocoded the latter using the
Nominatim API. Each corporate website was then scraped
with a depth of 25 subpages in April 2023, following the
general workflow introduced by Kinne and Lenz (2021).
Based on the extracted texts, we calculated various firm-
level indicators, representing the relative importance of
each topic for the respective firm. For this, we applied clas-
sification models on innovation, sustainability, artificial in-
telligence, and 3D printing (see table 1).

Furthermore, hyperlinks were extracted from the HTML
content to analyze connections to other corporate web-
sites in BW, following Abbasiharofteh et al. (2023). Based
on these hyperlinks, a collaboration network of companies
was modeled: Each company was represented as a network
node with a unique company identifier, while a hyperlink
from company A to company B was modeled as a directed
edge between their respective nodes. Additionally, we re-
moved 152 company nodes with very high number of in-
or outgoing links, which had little informative value in the
context of collaboration analyses such as domain service
providers. For the node attribute clustering described in
3, all 147,269 company nodes were analyzed. The clus-
tering of the network considered only the fully connected
graph, i.e. network isolates with no other hyperlink refer-
ence were removed. Accordingly, the resulting company
collaboration network in BW contained 63,542 nodes and
142,581 hyperlink edges.

3 Methods

The overall goal of this research is to study the spatial
manifestation of a) firm clusters due to the hyperlink
network structure, disregarding the node attributes, and
b) clusters due to companies attribute similarity, disre-
garding the network structure.

For case a), we employed the Louvain community detec-
tion method (Blondel et al., 2008). This algorithm clusters
the network into components by optimizing the modularity
score, i.e. nodes in the identified component have stronger
internal connections than external ones. As the Louvain al-
gorithm is not deterministic, we used a sampling method
and ran the community detection n= 100 times. For each
run, we calculated the modularity score of the communi-
ties and selected the run with the highest modularity score.
Since each company node has a position in geographic
space, the resulting network clusters can be mapped and
visually examined for geographic patterns.
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Figure 1. The workflow followed in this analysis.

Table 1. Firm-level indicators used as node-level features. The intensities and innoprob were calculated based on the website texts.

Variable Description Source Mean Std Min Max

employees Number of employees Bureau van Dijk (2023) 70.83 2,333.3 1 402,614
age_years Firm age (in years) Bureau van Dijk (2023) 27.9 26.6 1 749
sustainability_intensity Relative importance of sustainability-

related topics
Schmidt et al. (2022) 0.09 0.32 0 5.82

ai_intensity Relative importance of artificial intelli-
gence

Dahlke et al. (2024) 0.009 0.08 0 2.96

3d_printing_intensity Relative importance of 3D printing Schwierzy et al. (2022) 0.005 0.07 0 4.21
innoprob Predicted innovativeness of a company Kinne and Lenz (2021) 0.3 0.19 0.03 0.93
indegree Number of links by other firms Website text 0.96 8.23 0 2,069
outdegree Number of links to other firms Website text 0.96 4.85 0 1,376

For case b), we clustered the company-related features
listed in table 1 with the density-based clustering ap-
proach OPTICS (Ordering Points To Identify the Cluster-
ing Structure) (Ankerst et al., 1999), an extension of DB-
SCAN (Ester et al., 1996). OPTICS creates an ordered rep-
resentation of data points based on their density connectiv-
ity. Two key concepts are the reachability distance, which
identifies how close points are to each other in terms of
density, and the core distance, which determines the min-
imum distance for a point to be considered a core point.
Through analyzing these distances, a reachability plot is
generated. This plot visually represents the structure of the
data and reveals clusters. We used OPTICS and the reach-
ability outcome to identify clusters for the node features
listed in table 1.

To further improve the results of the node-level clustering,
we performed a dimensionality reduction from din = 8 to
dout = 2 using the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) algorithm (Van der Maaten and Hinton,
2008). The t-SNE algorithm begins by computing pairwise
similarities in the high-dimensional space using a Gaus-
sian distribution. In the lower dimensional space, a Stu-
dent’s t-distribution is utilized to model similarities. The
distribution’s shape leads to more distinct clusters, pushing
dissimilar points apart and grouping similar points closer
together. The alignment between the high-dimensional and
low-dimensional similarity distributions is quantified us-
ing the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) as the objective function, which is then iter-
atively minimized through a gradient descent optimization
process.

Both OPTICS and t-SNE require hyperparameter opti-
mization to achieve optimal performance. For OPTICS,
we evaluated the min_points parameter within a range of
50 to 450 in increments of 100. For the metric parameter,
we used the cosine and Minkowski distance with p= 2,
as preliminary experiments with p= 1 did not produce
promising results. For t-SNE, we optimized perplexity, the
maximum number of iterations, and the distance metric.
The perplexity parameter was selected in the range 80 to
200 in increments of 20, while the maximum number of
iterations was chosen from 1,000, 1,500, and 2,000. We
again considered the cosine and Minkowski distance with
p= 2. The choice of perplexity range was guided by the
need to balance local and global structure preservation,
as lower values focus on fine-grained local relationships,
while higher values capture broader global patterns.

4 Results

The dataset utilized in this work consists of
147,260 unique firm data points and their features
are analyzed in the following section with Figure 2 indi-
cating their correlation. Notably, the age of the company
does only correlate very slightly with the innovativeness
of a company. The other noteworthy interaction is the
weak correlation between the innovativeness and the
features describing sustainability, as well as AI.

Table 1 provides statistical key information about the dis-
tribution of the entire study data, i.e., including isolates.
The standard deviation (2342.34) of the variable employ-
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Figure 2. Correlations of the features in this dataset.

ees suggests high variability in the employee count of
companies. The mean indegree is 0.96, with a standard
deviation of 8.23. While most firms have low incoming
links, some experience high connectivity, possibly indi-
cating hubs in a network or highly interconnected com-
panies. The same conclusion can be drawn for the variable
outdegree. The values for the variables innoprob, sustain-
ability intensity, ai intensity, 3d_printing_intensity, and
age_years all exhibit substantial variation. This demon-
strates severe data skewness, thus, a log transformation
was applied as a preprocessing step. Additionally, the data
was standardized using z-scores.

Several columns contained a large proportion of missing
data. To enhance data quality, we applied feature impu-
tation using linear regression models. However, this ap-
proach did not yield meaningful improvements in both
predictive accuracy and consecutive clustering perfor-
mance. As a result, missing values were instead re-
placed with either zero or the median. For instance, the
columns employees and age_years exhibited 37% and
29% missing data points, respectively, which were re-
placed with the corresponding median. Similarly, the
columns innoprob, sustainability_intensity, ai_intensity
and 3d_printing_intensity had a high amount of missing
data ranging between 16% and 19%. Those values were
set to zero.

4.1 Results of Network Analysis

Selecting the sample with the highest modularity from the
Louvain community detection algorithm outcome, as de-
scribed in 3, resulted in 2,157 communities with a mod-
ularity score of 0.68. Focusing on the 20 largest com-
munities, we conducted a visual analysis and identified
three primary structural types: cross-regional, regional,
and hub-centered communities.

Figure 3 illustrates three representative examples of these
categories. The node size reflects the number of incom-
ing links, with larger nodes representing companies with a
higher amount of references by other companies.

• The cross-regional community (A) has a con-
siderable concentration of nodes in the Stuttgart
metropolitan area. However, the overall distribution
of company nodes is geographically wide and con-
nects urban areas across the whole state of BW.

• The hub-centered community (B) is characterized
by the dominant cities Karlsruhe and, to a lesser de-
gree, Stuttgart. These hubs dominate the overall net-
work structure. Despite a broad geographic distribu-
tion, the community is shaped around a single influ-
ential company.

• The regional community (C) has a densely con-
nected cluster of nodes primarily in the north of Ulm
and the west of Stuttgart. Unlike the cross-regional
structure (A), the geographic spread is narrower and
more localized.

In addition, a small amount of communities shared fea-
tures of both the cross-regional and hub-centered cate-
gories and were classified as a mixed-form. Appendix A
summarizes all community visualizations for complete-
ness.

4.2 Results of OPTICS

Figure 4 presents one example of our approach to clus-
tering the data using only node level attributes. The
reachability plot originates from a run of OPTICS with
min_samples= 350 and metric = Minkowski, as this
configuration depicts a clean reachability graph. The cut-
off was set to 1.1, resulting in four distinct clusters.

As a next step, we examined if the detected clusters also
exhibit spatial structuring and visualized them, see Fig-
ure 5. However, the data points of the individual OP-
TICS clusters do not show any discernible spatial orga-
nization or localized aggregation (see individual plots in
Appendix B1), suggesting a lack of inherent spatial clus-
tering in the dataset.

To further assess the presence of any meaningful separa-
tions, Table 2 presents the mean values of each feature,
stratified by cluster-ID. The mean number of employees
in Cluster 1 is approximately 50% higher than across the
other clusters, suggesting a difference in organizational
size or workforce distribution. The standard deviation val-
ues reflect the variability in the number of employees
within each cluster, with Cluster 2 exhibiting the highest
dispersion (2,382) and Cluster 3 the lowest (1,331).
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Figure 3. Exemplary results of the community detection: A cross-regional (A), hub-centered (B), and regional (C) community structure.
Node size indicates the indegree.

Figure 4. OPTICS reachability plot and detected clusters.

Figure 5. Exemplary visualization of OPTICS cluster 1. No dis-
cernible spatial patterns have been identified across clusters.

Cluster 0 1 2 3

Feature
employees 47.8 63.1 41.4 43.6
indegree 0.8 0.84 0.83 0.84
outdegree 0.93 0.94 0.92 1.02
sustainability_intensity 0.089 0.091 0.08 0.086
ai_intensity 0.006 0.007 0.006 0.007
3d_printing_intensity 0.004 0.003 0.004 0.003
age_years 28.2 28.8 27.4 27.3
innoprob 0.304 0.306 0.307 0.305

Table 2. Mean feature values per OPTICS cluster result.

4.3 Results of t-SNE

Figure 6 visualizes the clustered t-SNE embeddings, illus-
trating the data structure. Following hyperparameter opti-
mization, t-SNE was configured with a perplexity of 140,
2,000 iterations, and a cosine distance metric. Clustering
was subsequently performed using the DBSCAN algo-
rithm (Ester et al., 1996), setting the parameters eps to
3 and min_samples to 75 To refine results, clusters with
fewer than 300 data points were reclassified as noise. This
adjustment was deemed necessary due to the proliferation
of small clusters, particularly in the lower-left region (low
emb_x and emb_y values) of the plot.

The t-SNE embeddings generated with the cosine metric
exhibited an improved separation of clusters compared to
those computed using the Euclidean metric. Notably, a dis-
tinct, comparatively large, circular cluster is visible at the
midpoint of Figure 6. This cluster was observed across all
t-SNE embeddings derived with the cosine metric, irre-
spective of other parameter settings. However, when the
Euclidean metric was used, this structure was significantly
less pronounced.

AGILE: GIScience Series, 6, 29, 2025 | https://doi.org/10.5194/agile-giss-6-29-2025 5 of 11



Figure 6. Depiction of the clustering of the t-SNE embedding.

To assess whether the clustering results exhibited any spa-
tial relationships, the clustered t-SNE embeddings were
visualized in Figure 7. However, no clear spatial relation-
ships were present, suggesting that the clustering was not
driven by spatial proximity.

Figure 7. Spatial visualization of the t-SNE clustering result.

5 Discussion and Conclusion

This study analyzed how the collaboration networks in
the German federal state of BW cluster based on hy-
perlink network structure and node properties, and how

these clusters manifest geographically. Addressing RQ1
and studying the network edge based clustering, we iden-
tified three primary types of communities: cross-regional,
regional, and hub-centered, akin to suggested structures
in (Markusen, 1996). In contrast to our initial hypothe-
sis, these structures were equally present in the hyperlink
network of BW. We further observed that firms in larger
urban centers, such as Stuttgart and Karlsruhe, form hub-
centered communities, which is likely due to their size
and reach in a region. The regional, spatially confined net-
work structures suggest different collaboration patterns,
potentially due to local specialized industry or a regional
tech cluster. To address RQ2, we applied node-attribute-
based clustering. Although OPTICS identified four clus-
ters, substantial within-cluster variability limited clear dif-
ferentiation. Similarly, t-SNE embeddings suggested dis-
tinct clusters, though their structure was largely driven
by parameter settings rather than intrinsic data separation.
Density-based clustering revealed no clear geographic pat-
terns, indicating that cluster membership was not location-
dependent. The absence of clear spatial structures in the
node clustering may result from features lacking suffi-
cient information for the study. Many node attributes came
from website texts describing firms in specific technolo-
gies like 3D printing or AI, thus representing only a sub-
set of firms. In addition, the ORBIS dataset contained a
substantial amount of missing data. While this issue was
addressed through feature imputation, the results proved
unsatisfactory. Non-linear models or multiple imputation
might have improved data quality but risk amplifying mi-
nor effects and introducing bias into the clustering. More
comprehensive data with detailed firm-characterizing fea-
tures are needed to identify meaningful clusters. The pre-
sented results reveal distinct spatial structures within the
collaboration network of BW through the analysis of hy-
perlink data — an approach that can be readily extended to
international contexts, where such analyses remain largely
unexplored. Examining these global collaboration patterns
can provide valuable insights into the structure of inter-
national partnerships, which, in turn, may support their
strengthening and contribute to the advancement of the
United Nation’s Sustainable Development Goal 17.

6 Data and Software Availability Section

The code used for this analysis is fully available. Due to
commercial issues with the data, an anonymized sample
is provided together with the full code in this repository.
The full dataset is available upon request from Sebastian
Schmidt (sebastian.schmidt@istari.ai).
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The authors declares that they have used Generative AI
tools in the preparation of this manuscript. Specifically,
the AI tools were utilized for language editing, improving
grammar, word usage and sentence structure, but not for
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generating scientific content, research data, or substantive
conclusions. All intellectual and creative work, including
the analysis and interpretation of data, is original and has
been conducted by the authors without AI assistance.
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Appendix A: Network Communities

Here, we provide a detailed overview over the communi-
ties detected as described in section 3. The three exem-
plary results in section 4.1 illustrated the detected classes,
namely regional (Figure A1), cross-regional (Figure A2)
and hub-centered (Figure A3) communities. Some com-
munities featured traits of two classes and were therefore
categorized as mixed form (Figure A4).

Appendix B: Geospatial Visualization of Node
Clustering Results

B1 OPTICS Clustering Results

In Figure B1, we visualized the resulting clusters of the
OPTICS clustering as described in section 4.2. Although
the reachability plot indicated distinctly separated clusters,
they do not show any spatially distinct features.
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Figure A1. Regional network communities.

Figure A2. Cross-regional network communities.
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Figure A3. Hub-centered network communities.

Figure A4. Mixed-form network communities.
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Figure B1. Geo-spatial visualization of OPTICS clusters.
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