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Abstract. The routes displayed on maps by navigation
support systems are intended to help users to orient them-
selves towards reaching the destination and to infer infor-
mation related to their navigation. Inferring how complex
a route is, including how well you think you can remember
it and the likelihood of getting lost, may influence expecta-
tions on how it is navigated. However, it is not well under-
stood when and where a route displayed on a map is per-
ceived as complex and why someone perceives it this way.
Current methods for assessing complexity tend to focus
either on (i) the complexity of the route or on (ii) the com-
plexity of the environment as a static and global property.
By taking inspiration from navigational map reading and
how routes and street networks are perceived on a map,
this paper investigates how environmental complexity in-
fluences route complexity and length. We developed a new
approach to gauge the alignment between the orientation
of a route’s origin and destination with respect to the ori-
entation of the streets within the network, and we inves-
tigated how this measure relates to route complexity and
length.
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1 Introduction

The display of routes between locations on a digital map
is one of the many ways modern navigation support sys-
tems can help users. As a representation of how two loca-
tions are connected to each other, it can support building a
mental map of the environment and inferring information
about it (Zhang et al., 2014). Its main purpose is to be fol-
lowed (with or without instructions) or to inform planning

by showing time and traffic estimates or alternative public
transport modes (Topete et al., 2024).

Research on environmental complexity has identified sev-
eral different factors that influence the ease with which
we learn and navigate different environments. In research-
ing the environmental complexity of buildings, Gärling
et al. (1986) developed a conceptual framework of envi-
ronmental complexity that includes the following: the de-
gree of architectural differentiation i.e., the visual simi-
larity of different parts of the environment; Visual access,
i.e., the extent to which you can see other parts of the
environment within it; the complexity of the layout, i.e.,
the size and number of possible routes in an environment.
Layout complexity is measured as the density of intercon-
nections between decision points (ICD) by O’Neill (1991)
who found that buildings with a higher ICD was correlated
with less accurate cognitive maps and poorer navigation
performance. In a similar study, Li and Klippel (2012) em-
ployed space syntax to model a library’s visibility, layout
complexity (ICD), and connectivity, noting higher point-
ing task errors when participants were in regions with high
layout complexity and low visibility and connectivity.

Environmental complexity has also been researched as a
factor influencing the ease with which we navigate differ-
ent routes in an environment. Including the branching fac-
tor at the intersections that a route visits, and the availabil-
ity of landmarks, signage, and other features that can al-
low for simpler instructions and wayfinding (Giannopou-
los et al., 2014a).

Properties linked to the complexity of routes and environ-
ments are also related to their perceived complexity. Weis-
man (1981) discovered that disorientation is less frequent
in buildings where the layout is seen as simpler. Routes
that change direction more frequently are also perceived as
more complex (Horned et al., 2024; Schwartz-Chassidim
et al., 2014a), and require complex instructions (Klippel
et al., 2003). Similarly, maps of street networks that are
more densely interconnected are also perceived as more
cluttered (Schwartz-Chassidim et al., 2014b).
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When judging how complex a route is, human map read-
ers appear to judge the complexity of routes differently
from what computational models estimate as complex in
the route and environment (Horned et al., 2024; Tang et al.,
2020). The route is perceived within the context of the
surrounding environment displayed on the map, including
how the origin and destination are connected and oriented
within the environment. This includes the orientation and
alignment of the streets with the route and other linear fea-
tures such as rivers or district boundaries (Lynch, 1960,
p.62). In addition, map readers can perceive the route in
relation to features of the street network. Research in spa-
tial cognition shows that humans perceive geometric reg-
ularity and complexity (Campbell et al., 2024), and that
4-year-old children have already an informal awareness of
parallel relations (Sinclair et al., 2013). So one might ex-
pect that routes on a grid with parallel lines might be more
intuitive for users.

Alignment has been studied as a factor influencing envi-
ronmental learning and spatial memory (Tang et al., 2020).
Alignment has often been measured in terms of how much
you need to rotate yourself, a real/sketch map, or a per-
spective for them to match or partially match. In a labora-
tory experiment by Aretz and Wickens (1992) they found
that mental map rotation involves two sequential rotations:
First, rotating the map to align it with your egocentric
frame of reference (e.g., matching the map with your for-
ward view); and then rotating the map to align it with
an external frame of reference (e.g., matching North on
the map with North in the environment). However, the
participants shifted to an analytical strategy for match-
ing the map with more complex environments. Alignment
also affects navigation performance when an environment
is learned by reading a map, reducing performance when
not aligned to the orientation from which the environment
was learned (Richardson et al., 1999). You-are-here maps
(Levine et al., 1982) show another example of alignment
effects, where the map is more easily comprehended if the
perspective of the map-reader is aligned with primary axes
of the map (e.g., up on the map is forward to the map
reader).

The street network is one of many potentially compet-
ing external frames of reference that can influence spa-
tial memory and navigation (Werner and Long, 2003). For
example, Montello (1991) found that people stopped on
streets that are misaligned with respect to the angular-
ity/orientation of streets in the local environment made
larger errors in pointing to cardinal directions and lo-
cal landmarks. The degree of parallelity and alignment
of streets with each other was studied by Boeing (2019)
who developed an entropy-based measure of how ordered
a street network is in relation to other aspects of street net-
work complexity (Boeing, 2018).

So far, most research on alignment effects has concerned
users navigating or orienting themselves within an envi-
ronment, but not from a map reading perspective. From
this perspective, the layout of the street network, potential

landmarks for navigation, and how they are configured in
relation to a destination are made visible. Moreover, align-
ment is one of the ways in which the street network com-
plexity of the environment can interact with route com-
plexity.

2 Methods

This study investigates different factors that can influence
the complexity of a route as calculated by the shortest
and simplest path algorithms (Duckham and Kulik, 2003).
Most importantly, we analyze whether and to what extent
the alignment of the bearing of the direct line between an
origin and a destination with the predominant bearing of
the street network impacts route complexity. As a further
factor, this impact may be affected by how grid-like the
street network is. In addition, we look at how two simpler
measures, the density of intersections and the average node
degree (or InterConnection Density by O’Neill (1991)), re-
late to our findings. We performed this analysis following
these steps:

1. Determining origin-destination pairs.

2. Finding the shortest and simplest route from an origin
to a destination.

3. Truncating the graph and calculating the average
node degree and intersection density.

4. Assessing the grid-likeness of the street network.

5. Computing the alignment with the street network.

The methods applied at each step are described below.

Step 1. Determining origin-destination pairs and routes
between those.

As a starting point, we use the 100 cities listed in Boeing
(2019). We use Overpass to download the road network of
these cities from OpenStreetmap, with the city name and
the predefined network type “drive” as a query. Road net-
works are analyzed as multidirected graphs using OSMnx
in Python (Boeing, 2024). Furthermore, road networks are
simplified only by retaining nodes at intersections, and all
parallel directed edges are removed except the edge with
the shortest length. Then, three random nodes are selected
in each city as origin locations for our origin-destination
pairs.

To find possible destinations for every origin, we first find
all nodes within a 10% margin of 4000 meter distance
away from the origin (i.e. 3,800–4,200 meters) to ensure
we find a large enough sample of nodes in all directions. At
this point, the number of possible destinations around an
origin can range from below a hundred nodes to thousands.
To avoid having some of these origins and cities skew the
data, we create a smaller sample. The possible destina-
tions are divided into 36 bins according to their bearing
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from the origin. Then nodes are added to the sample by
cycling through the bins and picking a node at random,
beginning each cycle at a random bin, and stopping if 18
bins in a row are empty or if 144 nodes are found (see Fig.
1 for an example). These form the origin-destination (OD)
pairs for our further analysis. This is done to ensure that
the selected destinations are representative of all bearings
around an origin in all environments.

Figure 1. Three random origin locations in Chicago and the
shortest path to a sample of 144 nodes within a distance of 3,800
and 4,200 nodes meters away.

Step 2. Finding the shortest and simplest route from an
origin to a destination.

For each origin-destination pair, we find the shortest and
simplest route. The shortest route is retrieved using Dijk-
stra with the distance between the nodes as the cost of the
edges. The simplest route is computed using the algorithm
described in Duckham and Kulik (2003). The complexity
in this algorithm is a cost that is derived from edge pairs
and the kind of turn that takes place moving from one edge
to the next following the rules displayed in figure 2. As an
example, the complexity of turning in an intersection with
a node degree greater than two is calculated as 5+deg(v),
unless it is a turn after entering a T-intersection that has
a static cost of 6. Later, we use the same turning costs to
measure and compare the complexity of the routes, as the
number and complexity of decision points are linked to
route complexity (Giannopoulos et al., 2014b).

Step 3. Truncating the graph and calculating simpler en-
vironmental complexity.

After both the simplest and the shortest route have been
obtained for an origin-destination pair, we truncate the
graph to contain the part of the street network that is “be-
tween” the origin and destination, and not necessarily the
part of the street network that the routes travel through.
All the edges contained in (or intersecting) a square sur-
rounding the OD pair are kept, which is a polygon defined
by the points of the origin and destination together with
the points of a perpendicular line intersecting the first line

v

v

vv

vv 1 slot

4 slots

6 slots

5 + deg(v)

slots

Straight on

Turn

(not at intersection)

Turn left or right

at T-junction

Turn left or right

at other junction

Figure 2. Diagram showing the cost of turns at different types of
intersections, adapted from Duckham and Kulik (2003).

at its midpoint. In this rectangle, we calculate the density
of intersections (number of nodes relative to area of the
rectangle in km2), along with the average node degree.

Step 4. Assessing the grid-likeness of the street network.

Next, we measure how aligned OD pairs are to the street
network in the truncated graph. Both network and origin-
destination bearings are added to a distribution with 36
equally sized bins each representing 10°, with the first bin
beginning at 355°. The bearing from the origin to the des-
tination and its reverse bearing are calculated on the basis
of their coordinates in an appropriate UTM projection.

In order to create a distribution of bearings in the street
network, the bearings of the streets are computed as the
forward and reverse bearing of all edges in an undirected
version of the graph, along with the length of the edge as
a weight for bearings in the distribution. Furthermore, the
entropy of this distribution is calculated and then normal-
ized to compute a score indicating how grid-like the street
network is following Boeing (2019). Both distributions are
normalised by the total number of bearings so that the den-
sity of the bearings can be compared in later steps.

Step 5. Computing the alignment with the street network.

To determine how aligned the origin-destination bearings
are to the bearings of the street network, the two distri-
butions are compared using fast Fourier transform cross-
correlation. The alignment between the two distributions
is then measured as the number of steps one distribu-
tion needs to be rotated to find the strongest, closest cor-
relation. This is found by penalizing the correlation by
the number of steps divided by the maximum number of
steps. As an example, an OD pair in a very grid-like city
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is aligned with the network if the strongest correlation is
found at a rotation of 0, ±9 or ±18 bins (i.e., a difference
of 0◦, 90◦ or 180◦). If it is slightly misaligned in the grid,
as shown in Figure 3, the closest and strongest correlation
is found at 2 counterclockwise steps, with equally strong
correlations at 7, -11, and 16 steps, but receiving a higher
penalty.
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Figure 3. Visualization of an example: the bearings of the origin-
destination (OD) pair are red, and the bearings of the street net-
work are blue. The alignment score of the OD pair here is 2, since
this is the closest and strongest correlation.

3 Results

This section presents the results of our analysis regarding
how the alignment of OD pairs may affect the complexity
of the route, given the complexity and grid-likeness of an
environment.

3.1 The Dataset

Across all cities, a total of 34,192 origin-destination pairs
were selected, and after removing outliers identified as
pairs with a complexity or length above the median of
the third quartile, a total of 29,579 OD pairs were left,
which we use for computing shortest and simplest paths.
The mean complexity for the shortest route was µ= 101
(Std. Deviation: σ = 38), whereas for the simplest route
it was µ= 66 (σ = 19). We normalized the complexity of
the routes by the maximum route complexity.

The environments surrounding each route were grouped
into 5 categories depending on their grid-likeness, from
low to very high, which is calculated based on the street
orientation entropy. Almost half of the street networks
fell into the low grid-likeness category as Table 1 shows,
which is comparable to previous findings by Boeing
(2019). We also found that the level of grid-likeness in
the truncated street networks can vary greatly between OD
pairs within the same city. For example, between the 332
pairs selected in Baghdad, the grid-like value ranges from
0.15 to 0.91.

The distribution of OD pairs across alignment scores is
shown in Table 2 and it ranges from 0 to 8, with an align-
ment score of 1 being the most common.

Table 1. Distribution of OD pairs across different grid-like
groups in our dataset which follows a logarithmic function.

Grid-likeness thresholds Pairs % of Total
low [0.0,0.2) 14,579 49.1

medium [0.2,0.4) 4,763 16
high [0.4,0.6) 4,360 14.7

very-high [0.6,0.8) 3,396 11.4
extremely-high [0.8,1.0) 2,610 8.8

Table 2. Frequencies and percentages of alignment.

Alignment Score Levels Counts %ofTotal
0 3,177 10.7
1 4,094 13.8
2 3,837 12.9
3 3,713 12.5
4 3,345 11.3
5 3,128 10.5
6 2,955 9.9
7 2,875 9.7
8 2,584 8.7

3.2 Route complexity analysis

We investigated how alignment is related to the properties
of the route. Beginning with complexity, within each grid-
likeness group, we checked for differences in complexity
of the shortest and simplest route across different levels
of alignment (Table 2). An ANOVA of the complexity of
the shortest route between different levels of alignment in-
dicates that there are significant differences between the
levels in all grid-like groups except for the most non-grid-
like group. A post-hoc analysis shows that levels 4 to 6
are significantly more complex than levels 0 and 8 (with
the strongest mean difference being 0.1). For the simplest
route, an ANOVA indicates that there are some significant
differences between the alignment levels in the very-high
grid-like group (i.e., [0.6,0.8)) with the strongest mean
difference being 0.02.

To compare how the length of a route is related to align-
ment, we calculated the circuity of the route as the length
of the route divided by the direct-line distance between the
origin and destination in meters. Figures 6 and 7 show that
the circuity of the routes has an inverse u-shape relation-
ship to the alignment level of the OD pairs.

3.3 Environmental complexity analysis

In order to investigate how environmental complexity re-
lates to alignment, we computed the Pearson correlation
coefficient between the complexity of the routes and di-
verse measures of environmental complexity, starting with
the average node degree.

We found that the shortest-route complexity has a signif-
icant negative correlation with the average node degree
of the street network (r =−0.119, p < .001), indicating
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Figure 4. The shortest-route complexity at different levels of
alignment across increasingly grid-like street networks. Each
subplot shows results for a specific grid-likeness group, starting
from very-low to extremely-high. The complexity of routes for
each alignment score level (0-8) are shown within each group.
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Figure 5. The simplest-route complexity at different levels of
alignment across increasingly grid-like street networks.

that as the average node degree increases in the network,
the complexity of the route slightly decreases. The sim-
plest route also has a slightly stronger negative correla-
tion with the average node degree (r =−0.26, p < 0.001).
Moreover, we computed the Pearson correlation between
the complexity of the routes and the intersection den-
sity and we obtained that the intersection density is pos-
itively correlated with the complexity of the shortest route
(r = 0.453, p < 0.001), and it also has a positive correla-
tion with the complexity of the simplest route (r = 0.451,
p < 0.001). Moreover, there is a positive correlation be-
tween the grid-likeness of the street network and the aver-
age node degree (r = 0.469, p < 0.001).
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Figure 6. The circuity of the shortest route at different levels of
alignment across increasingly grid-like street networks.
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Figure 7. The circuity of the simplest route at different levels of
alignment across increasingly grid-like street networks.

4 Discussion

In this study, we investigated a potential relationship be-
tween how (well) an origin-destination pair aligns with a
street network and its corresponding route’s complexity,
moderated by the network’s grid-likeness. To this end, we
compute the distribution of bearings of the street network,
and then compute how well the OD pair fits this distri-
bution by finding the closest, strongest correlation. The re-
sults demonstrate that this method of measuring alignment
is related to a difference in route complexity and length in
street networks that are grid-like, but not in the majority
of street networks that are not grid-like (compare Figures
4 and 6).

In the street networks that are grid-like, we can observe
that alignment has a significant effect on the complexity
of the shortest route in particular. In perfectly symmetric
grid-like street networks the shortest route and the sim-
plest route would be equivalent in length. Therefore, the
effect of alignment on the shortest route but not the sim-
plest route in grid-like street networks implies that there
are irregularities that make a more “diagonal" route in-
volving more turns shorter. It also highlights the capability
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of the simplest path search algorithm in finding a simpler
route than the shortest route when the destination is mis-
aligned with the grid. With decreasing grid-likeness, the
bearing distribution resembles more and more a uniform
distribution, i.e., there is a decreasingly less pronounced
main orientation in the network. Therefore, increasingly
any bearing of an OD pair becomes a ‘good fit’ for the
given bearing distribution as differences in the correla-
tion strength between rotation steps become smaller and
smaller. In other words, it becomes increasingly less use-
ful to even talk about alignment in such networks since
they lack a clear global structure–at least one captured in
a bearing distribution.

We found no indication that the environmental measures
(i) intersection density and (ii) average node degree inter-
act with alignment and, thus, may adequately capture route
complexity. A higher average node degree is correlated
with less complex routes, but it also acts as an indicator
that the street network is more grid-like (four-way inter-
sections are more common in grid-like street networks) in
which the routes tend to be less complex.

Here we have looked at the orientation of the OD pair
within the street network as the primary direction, which
may be more or less aligned with the street grid. In that,
we took inspiration from spatial cognition research. As a
computational method, further research is needed to as-
sess how accurate or useful alignment is as a heuristic
for predicting route complexity, considering different lin-
ear features in the environment. Additional user studies
are required to investigate if alignment has any effect on
the perceived complexity of a route; and whether routes
aligned with the grid are perceived as more intuitive than
misaligned routes.

Other research indicates that people segment the route and
remember it as different segments in a physical or men-
tal map (e.g., studies on taxi drivers by Griesbauer et al.
(2025)). To take this into account, one can consider the
alignment of different segments of the route with the street
network, and to this end the route could be further ab-
stracted to the segments between the route-defining loca-
tions of the route (Teimouri and Richter, 2022).

The analysis in this paper examines the alignment with
the street network, whereas there are other studies in the
literature that consider the alignment between the map-
reader direction and the map orientation or the align-
ment of the perceived structure. A future research direc-
tion would involve an exhaustive assessment of possible
perceived alignment including other visual elements with
direction, such as water bodies (e.g. rivers), green areas
(e.g. parks) and/or the orientation and shape of buildings
and neighborhoods –and depending on the context of the
map reader– also the direction they are facing in the en-
vironment and the primary axes of the local environment
they are in.

Availability of data and software

The underlying geographic data used in our analysis
were downloaded from OpenStreetMap (https://www.
openstreetmap.org) on January 15th 2025, using the Over-
pass API (https://wiki.openstreetmap.org/wiki/Overpass_
API), the OSMnx package v2.0.1 for graph creation and
analysis (https://osmnx.readthedocs.io/en/stable/), and the
PyProj package for coordinate projection (https://pyproj4.
github.io/pyproj/stable/index.html).

The acquired dataset (after removing out-
liers) and additional tables can be found on
OSF here https://osf.io/u8k5m/?view_only=
23bc67c23f6f4f3094d937e08fd1a5f6. The different
data pre-processing, route calculation, and alignment
computation steps have been implemented in Python,
which can be found at https://github.com/ArvHor/
perceived-route-complexity/tree/agile-2025, where
scripts for rerunning the statistical analysis are also
provided..

Acknowledgements

Zoe Falomir acknowledges the funding by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
awarded by the Knut and Alice Wallenberg Foundation,
Sweden. Arvid Horned acknowledges the funding by the
Department of Computing Science at Umeå University. Fi-
nally, we wish to thank the reviewers for their comments,
which helped improve the quality of this paper.

References

Aretz, A. J. and Wickens, C. D.: The Mental Rota-
tion of Map Displays, Human Performance, 5, 303–328,
https://doi.org/10.1207/s15327043hup0504_3, 1992.

Boeing, G.: Measuring the Complexity of Urban Form
and Design, URBAN DESIGN International, 23, 281–292,
https://doi.org/10.1057/s41289-018-0072-1, 2018.

Boeing, G.: Urban Spatial Order: Street Network Orientation,
Configuration, and Entropy, Applied Network Science, 4, 1–
19, https://doi.org/10.1007/s41109-019-0189-1, 2019.

Boeing, G.: Modeling and Analyzing Urban Networks and
Amenities with OSMnx. Working Paper., 2024.

Campbell, D., Kumar, S., Giallanza, T., Griffiths,
T. L., and Cohen, J. D.: Human-Like Geometric
Abstraction in Large Pre-trained Neural Networks,
https://doi.org/10.48550/arXiv.2402.04203, 2024.

Duckham, M. and Kulik, L.: “Simplest” Paths: Automated
Route Selection for Navigation, in: Spatial Informa-
tion Theory. Foundations of Geographic Information Sci-
ence, vol. 2825, pp. 169–185, Springer Berlin Heidelberg,
https://doi.org/10.1007/978-3-540-39923-0_12, 2003.

Gärling, T., Böök, A., and Linberg, E.: Spatial Orientation and
Wayfinding in the Designed Environment – A Conceptual

AGILE: GIScience Series, 6, 27, 2025 | https://doi.org/10.5194/agile-giss-6-27-2025 6 of 7

https://www.openstreetmap.org
https://www.openstreetmap.org
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API
https://osmnx.readthedocs.io/en/stable/
https://pyproj4.github.io/pyproj/stable/index.html
https://pyproj4.github.io/pyproj/stable/index.html
https://osf.io/u8k5m/?view_only=23bc67c23f6f4f3094d937e08fd1a5f6
https://osf.io/u8k5m/?view_only=23bc67c23f6f4f3094d937e08fd1a5f6
https://github.com/ArvHor/perceived-route-complexity/tree/agile-2025
https://github.com/ArvHor/perceived-route-complexity/tree/agile-2025
https://doi.org/10.1207/s15327043hup0504_3
https://doi.org/10.1057/s41289-018-0072-1
https://doi.org/10.1007/s41109-019-0189-1
https://doi.org/10.48550/arXiv.2402.04203
https://doi.org/10.1007/978-3-540-39923-0_12


Analysis and Some Suggestions for Postoccupancy Evalua-
tion, Journal of Architectural and Planning Research, 3, 55–
64, 1986.

Giannopoulos, I., Kiefer, P., Raubal, M., Richter, K.-F., and
Thrash, T.: Wayfinding Decision Situations: A Conceptual
Model and Evaluation, in: Geographic Information Science,
edited by Duckham, M., Pebesma, E., Stewart, K., and Frank,
A. U., pp. 221–234, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-11593-1_15, 2014a.

Giannopoulos, I., Kiefer, P., Raubal, M., Richter, K.-F., and
Thrash, T.: Wayfinding Decision Situations: A Conceptual
Model and Evaluation, in: Geographic Information Science,
vol. 8728, pp. 221–234, Springer International Publishing,
https://doi.org/10.1007/978-3-319-11593-1_15, 2014b.

Griesbauer, E.-M., Fernandez Velasco, P., Coutrot, A., Wiener,
J. M., Morley, J. G., McNamee, D., Manley, E., and Spiers,
H. J.: London taxi drivers exploit neighbourhood bound-
aries for hierarchical route planning, Cognition, 256, 106 014,
https://doi.org/https://doi.org/10.1016/j.cognition.2024.106014,
2025.

Horned, A., Falomir, Z., and Richter, K.: Assessing Perceived
Route Difficulty in Environments with Different Complexity
(Short Paper), in: 16th International Conference on Spatial
Information Theory, COSIT 2024, September 17-20, 2024,
Québec City, Canada, edited by Adams, B., Griffin, A. L.,
Scheider, S., and McKenzie, G., vol. 315 of LIPIcs, pp. 29:1–
29:8, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
https://doi.org/10.4230/LIPICS.COSIT.2024.29, 2024.

Klippel, A., Tappe, H., and Habel, C.: Pictorial Representa-
tions of Routes: Chunking Route Segments during Com-
prehension, in: Spatial Cognition III, edited by Freksa, C.,
Brauer, W., Habel, C., and Wender, K. F., pp. 11–33, Springer,
https://doi.org/10.1007/3-540-45004-1_2, 2003.

Levine, M., Jankovic, I. N., and Palij, M.: Princi-
ples of Spatial Problem Solving, 111, 157–175,
https://doi.org/10.1037/0096-3445.111.2.157, 1982.

Li, R. and Klippel, A.: Wayfinding in Libraries: Can Problems Be
Predicted?, Journal of Map & Geography Libraries, 8, 21–38,
https://doi.org/10.1080/15420353.2011.622456, 2012.

Lynch, K.: The Image of the City, The MIT Press, Massachusetts
Institute of Technology, 1960.

Montello, D. R.: Spatial Orientation and the Angularity of Urban
Routes — A Field Study, Environment and Behavior, 23, 47–
69, 1991.

O’Neill, M. J.: Evaluation of a Conceptual Model of Archi-
tectural Legibility, Environment and Behavior, 23, 259–284,
https://doi.org/10.1177/0013916591233001, 1991.

Richardson, A. E., Montello, D. R., and Hegarty, M.: Spatial
Knowledge Acquisition from Maps and from Navigation in
Real and Virtual Environments, Memory & Cognition, 27,
741–750, https://doi.org/10.3758/BF03211566, 1999.

Schwartz-Chassidim, H., Meyer, J., and Parmet, Y.: Modeling
Route Complexity Ratings, Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting, 58, 1696–1700,
https://doi.org/10.1177/1541931214581354, 2014a.

Schwartz-Chassidim, H., Meyer, J., Parmet, Y., Ro-
gatka, E., and Amzaleg, O.: Perceived Density of

Road Maps, Applied Ergonomics, 45, 1579–1587,
https://doi.org/10.1016/j.apergo.2014.05.006, 2014b.

Sinclair, N., de Freitas, E., and Ferrara, F.: Virtual encounters:
the murky and furtive world of mathematical inventiveness.,
ZDM. The International Journal on Mathematics Education,
45, 239–252, 2013.

Tang, M., Falomir, Z., Freksa, C., Sheng, Y., and Lyu, H.:
Extracting invariant characteristics of sketch maps: Towards
place query-by-sketch, Transactions in GIS, 24, 903–943,
https://doi.org/https://doi.org/10.1111/tgis.12621, 2020.

Teimouri, F. and Richter, K.-F.: Abstracting Routes
to Their Route-Defining Locations, 91, 101 732,
https://doi.org/10.1016/j.compenvurbsys.2021.101732,
2022.

Topete, A., He, C., Protzko, J., Schooler, J., and Hegarty,
M.: How Is GPS Used? Understanding Navigation Sys-
tem Use and Its Relation to Spatial Ability, 9, 16,
https://doi.org/10.1186/s41235-024-00545-x, 2024.

Weisman, J.: Evaluating Architectural Legibility: Way-Finding
in the Built Environment, Environment and Behaviour, 13,
189–204, 1981.

Werner, S. and Long, P.: Cognition Meets Le Corbusier — Cog-
nitive Principles of Architectural Design, in: Spatial Cogni-
tion III, pp. 112–126, Springer, https://doi.org/10.1007/3-540-
45004-1_7, 2003.

Zhang, H., Zherdeva, K., and Ekstrom, A. D.: Different “Routes”
to a Cognitive Map: Dissociable Forms of Spatial Knowl-
edge Derived from Route and Cartographic Map Learning,
42, 1106–1117, https://doi.org/10.3758/s13421-014-0418-x,
2014.

AGILE: GIScience Series, 6, 27, 2025 | https://doi.org/10.5194/agile-giss-6-27-2025 7 of 7

https://doi.org/10.1007/978-3-319-11593-1_15
https://doi.org/10.1007/978-3-319-11593-1_15
https://doi.org/https://doi.org/10.1016/j.cognition.2024.106014
https://doi.org/10.4230/LIPICS.COSIT.2024.29
https://doi.org/10.1007/3-540-45004-1_2
https://doi.org/10.1037/0096-3445.111.2.157
https://doi.org/10.1080/15420353.2011.622456
https://doi.org/10.1177/0013916591233001
https://doi.org/10.3758/BF03211566
https://doi.org/10.1177/1541931214581354
https://doi.org/10.1016/j.apergo.2014.05.006
https://doi.org/https://doi.org/10.1111/tgis.12621
https://doi.org/10.1016/j.compenvurbsys.2021.101732
https://doi.org/10.1186/s41235-024-00545-x
https://doi.org/10.1007/3-540-45004-1_7
https://doi.org/10.1007/3-540-45004-1_7
https://doi.org/10.3758/s13421-014-0418-x



