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Abstract.
The evaluation of bike networks is important for improv-
ing cycling infrastructure and supporting sustainable travel
behaviors. While bikeability indexes are widely used, cur-
rent methods typically rely on straightforward metric ag-
gregation, often overlooking nuanced interactions between
evaluation elements. In this study, we introduce a novel ap-
proach to integrate a Knowledge Graph (KG) of bikeabil-
ity evaluation studies with the Analytic Network Process
(ANP), a decision modeling technique. The KG, which
comprises more than 270 bikeability metrics and 41 qual-
itative criteria, provides a structured foundation for index
development, reflecting the trends in existing evaluation
approaches. ANP enhances this framework by capturing
the interdependencies in the use of qualitative criteria and
quantitative metrics, ensuring a more rigorous and trans-
parent aggregation process. As a case study, we apply this
methodology to Zurich’s road network and evaluate net-
work bikeability at the segment level. Further, we conduct
a sensitivity analysis of how changes in the KG structure
impact the network evaluation results. By treating bike-
ability index development as a decision-making task, our
study strengthens the methodological foundation of bike-
ability index design. Future research will scale this frame-
work to larger networks, extend the sensitivity analysis,
and benchmark our approach against established bikeabil-
ity indexes.
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1 Introduction

A robust evaluation of bike networks is crucial to assess
their effectiveness and plan new infrastructure (Grisiute
et al., 2024). Various methods evaluate the expected cy-

cling quality based on infrastructure, traffic, safety, and en-
vironmental factors. Among these, bikeability indexes are
widely used to coherently integrate multiple existing met-
rics and criteria (Ahmed et al., 2024). Although significant
effort has been made to identify and select relevant metrics
based on literature reviews and urban analytics, less atten-
tion has been paid to how these metrics are integrated into
a single index.

Existing bikeability indexes often use survey-based met-
ric weighting, expert-determined classification schemes,
or domain-specific methods such as cost-benefit analysis,
as summarized by Grisiute et al. (2024) and Ahmed et al.
(2024). However, the implications of how individual met-
rics interact within the index (e.g., their compensatory ef-
fects or information transfer) are rarely addressed. Design-
ing effective bikeability assessments requires transparent
decisions about how metrics are derived, weighted, and
aggregated.

To address this challenge, we propose a novel bike-
ability index design that integrates a graph database of
bike network evaluation studies (Grisiute et al., 2024),
with a multi-criteria decision analysis (MCDA) technique.
MCDA provides a formal framework for structuring and
solving complex decision problems involving multiple, of-
ten conflicting criteria (Malczewski and Rinner, 2015). We
achieve this by using a Knowledge Graph (KG), which
compiles bike network metrics and qualitative criteria
from 25 academic studies, with the Analytic Network Pro-
cess (ANP), an MCDA technique specifically designed to
model interactions and feedback loops between decision
elements.

As a case study, we apply this methodology to Zurich’s
road network and perform a sensitivity analysis on the im-
pact of the KG structure on the results of the bikeability in-
dex. By systematically assessing these influences, our ap-
proach strengthens the methodological foundation for bike
network evaluations.
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Figure 1. Overview of bikeability metrics and qualitative criteria extracted from the KG. The figure illustrates the frequency of metrics
used in bike network evaluation studies and their corresponding qualitative criteria as well as positive or negative contribution to
bikeability.

2 Background

This section reviews the current landscape of bikeability
indexes, highlighting both their common design patterns
and key gaps. We also discuss how index modeling ap-
proaches using MCDA can address these gaps and im-
prove the overall decision-making process in bike network
evaluations.

2.1 Approaches to Modeling and Aggregating
Bikeability Indexes

Bikeability indexes are typically designed by integrating
various data sources to derive specific metrics and linking
these metrics to qualitative criteria that reflect public ob-
jectives (Grisiute et al., 2024). This integration reflects a
collective understanding of what constitutes an effective
bike network by blending various perspectives into a co-
hesive framework.

Two key steps are common in a bikeability index design:
(1) selecting which metrics to integrate and how to mea-
sure them, and (2) determining an appropriate method for
aggregating these metrics into a single index. The first
step has been extensively studied, with clear trends emerg-
ing (Ahmed et al., 2024). For example, Weikl and Mayer

(2023) and Grisiute et al. (2024) have systematically iden-
tified common evaluation metrics for bike networks. The
latter developed a Knowledge Graph (KG), a graph-based
database, containing over 270 metrics from 25 bike net-
work evaluation studies. Using the VeloNEMO ontology,
this KG formally organizes metrics by qualitative crite-
ria, spatial aggregation features, units, and thematic cat-
egories.

However, the second step is more ambiguous. The ag-
gregation of metrics in bikeability indexes is often based
on methods such as weighted linear combination (WLC)
(McHenry and Rinner, 2016) or decision trees (Mekuria
et al., 2012), which have notable limitations. WLC may
not account for compensatory effects, where infrastructure
improvements cannot fully compensate for the negative ef-
fects of high traffic or noise pollution. Similarly, although
decision tree-based indexes can potentially simplify inter-
pretation, they risk oversimplifying complex relationships.

2.2 Leveraging MCDA for Bikeability Evaluations

Multicriteria decision analysis (MCDA) investigates mod-
eling decisions and the interplay of criteria and stakeholder
preferences in the evaluation of alternatives (Cinelli et al.,
2020). Although domain agnostic, MCDA is widely ap-

AGILE: GIScience Series, 6, 25, 2025 | https://doi.org/10.5194/agile-giss-6-25-2025 2 of 8



Figure 2. Priority vectors for metrics and criteria derived from our KG-MCDA workflow. The figure illustrates the relative importance
of each evaluation element in the final bikeability assessment, highlighting the most influential metrics and qualitative criteria based on
the pairwise comparison process.

plied in spatial contexts (Malczewski and Rinner, 2015),
including evaluations of bike networks (Lin and Wei,
2018; Zuo and Wei, 2019; Zagorskas and Turskis, 2020;
Terh and Cao, 2018; Pais et al., 2022; Hsu and Lin, 2011;
Güldü et al., 2024), with the Analytic Hierarchy Process
(AHP) being the most common technique. AHP hierarchi-
cally decomposes criteria and assigns importance weights
based on pairwise comparisons provided by stakeholders.
The process involves comparing two criteria at a time,
using a numerical scale (1-9) to express the preference
strength. In an AHP hierarchy, elements at one level in-
fluence those below them.

However, when applied to bikeability indexes, AHP can
overlook the interdependencies between qualitative crite-
ria and quantitative metrics. For example, Grisiute et al.
(2024) notes that the semantics of criteria, as defined by
the linked metrics, can overlap, complicating the distinc-
tion of unique criteria. Furthermore, the easy retrieval
of metrics can lead to their frequent use across crite-
ria, further blurring the line between individual criteria.
These challenges suggest that alternative methods, such
as network-based decision models, can better capture the
complex relationships between the evaluation components
in bikeability indexes.

The Analytic Network Process (ANP), a generalization of
the AHP, models decision problems as networks that cap-
ture feedback loops and interdependencies (Saaty, 2016;
Taherdoost and Madanchian, 2023). Unlike AHP’s hier-
archy, ANP allows mutual influence between metrics and
criteria. ANP employs supermatrix operations to synthe-
size pairwise comparisons, a process Saaty compares to
a Markov chains due to their use of matrix representa-

tions and stochasticity (Malczewski and Rinner, 2015).
The supermatrix consists of submatrices that represent re-
lationships between different clusters (criteria and met-
rics). These relationships are explicitly captured in the KG
with the VeloNEMO ontology, allowing a straightforward
integration of the KG and ANP. For a detailed explanation
of the KG design, please refer to Grisiute et al. (2024).

3 Methods

This section outlines our methodology for developing a
bikeability index for Zurich’s road network. We begin with
data acquisition and preparation, using a KG to select rel-
evant metrics and enriching the network with contextual
information. Next, we describe the implementation of our
ANP-based approach to derive a segment-based bikeabil-
ity ranking. Finally, we present the initial sensitivity anal-
ysis for our approach.

3.1 Data Acquisition and Preparation for Bikeability
Index Development

Bike Network Evaluation Metrics. The bikeability met-
rics used in this study were derived from the KG developed
by Grisiute et al. (2024), which compiled 25 global bicy-
cle network evaluations (detailed in Section 7). Each study
in the KG, structured using the VeloNEMO ontology, rep-
resented usage relationships between metrics, criteria, and
other evaluation properties, while also capturing various
metric preferences across studies. Metrics used fewer than
twice or unsupported by Zurich’s data were excluded from
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Figure 3. Spatial distribution of the Bikeability Index across Zurich’s District 6 road network. The map visualizes the relative priori-
tization of road segments based on our methodology integrating infrastructure, traffic conditions, environmental factors and so forth.
Higher index values indicate more bike-friendly segments.

further workflow. Figure 1 presents the final list of inter-
connected metrics and criteria, along with their frequen-
cies, which we used as proxies for the metric preference
strength in the ANP model.

Road Network. We pre-processed the Zurich road net-
work into a simplified structure following the methodol-
ogy of Ballo et al. (2024). Each network segment was
enriched with metric values derived from contextual data
sources (e.g., population, noise pollution, traffic volume).
Metric values were normalized to a consistent range to en-
sure an equal effect in the ANP, regardless of their origi-
nal scales or units. Furthermore, the outlier values across
attributes were remapped to the 95th percentile prior to in-
tegration into the ANP framework to prevent distortion of
pairwise comparisons by outliers.

3.2 Analytic Network Process Model Construction

To assess bikeability using ANP, we structured the deci-
sion problem with the goal of assessing the bikeability of
the Zurich road network segments. The model incorpo-
rated key criteria, each associated with specific evaluation
metrics (see Figure 1). In this framework, the segments of
the road network served as alternatives (the entities com-
pared).

To account for bidirectional dependencies, where metrics
influence criteria and vice versa, we incorporated feedback
loops, transforming the traditional hierarchical structure
of AHP into a network. For example, metrics like slope
can influence multiple criteria (e.g., safety, comfort) due
to their relevance in different aspects of bikeability. We
captured this influence in the ANP framework by allowing
metrics to affect the weighting of criteria through addi-
tional pairwise comparisons. For example, the impact of
the slope metric on safety and comfort can be compared
by analyzing the respective criteria frequencies.

The decision model is represented by a supermatrix that
integrates pairwise comparisons between criteria, metrics,
and alternatives with the general structure introduced in
Section 2.2. Figure 1 illustrates the full list of elements
used. Due to the complexity of applying ANP to large-
scale networks (more than 10,000 segments), we initially
implemented our approach in a single district of Zurich
with almost 900 segments. Even within this smaller area,
the number of alternatives far exceeded the typical counts
in MCDA applications, remaining the main challenge of
our model. The initial unweighted supermatrix W is struc-
tured as follows:
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W =

WC WCM 0c×a

WMC WM 0m×a

0a×c WAM Ia×a


where WC ∈ [0,1]c×c represents influences between
criteria, WCM ∈ [0,1]c×m and WMC ∈ [0,1]m×c cap-
ture metric-criteria interactions and vice versa, WM ∈
[0,1]m×m denotes influences between metrics, WAM ∈
[0,1]a×m reflects metric-alternative relationships and fi-
nally I ∈ [0,1]a×a is the identity matrix.

Criteria and metric influences are computed by pairwise
comparison of frequencies:

W{C,M} =


1 f1

f2
. . . f1

fn
f2
f1

1 . . . f2
fn

...
...

. . .
...

fn
f1

fn
f2

. . . 1


where fi represents the frequency in the KG of the crite-
ria or metric, respectively, which serves as a proxy for the
preference strength.

The metric-criteria and criteria-metric interactions are
computed as follows:

1. For each criterion (or metric), construct a pairwise
comparison of frequencies P between metrics (or cri-
teria) similar to WM (or WC) but limited to the fre-
quency under the criterion (or metric).

2. Compute the priority vector w as eigenvector of P
corresponding to the maximum eigenvalue λmax:

Pw = λmaxw

3. Use the normalized priority vector w as column of
matrix WMC (or WCM ).

To ensure logical consistency in pairwise comparisons, the
Consistency Ratio (CR) was checked and confirmed to be
between 0 and 0.1 for all pairwise comparison matrices. A
CR below 0.1 indicates acceptable consistency in pairwise
comparisons, while a CR above 0.1 suggests inconsistency
that requires revision (Malczewski and Rinner, 2015).

Next, we constructed WAM , which compares alternatives
based on the actual metric values associated with the seg-
ments. Before storing them as a matrix, all metric values
were normalized to ensure the same value range [0,1], with
some metric ranges inverted according to their positive or
negative impact on bikeability (e.g. Slope and AirPollu-
tantConcentration negatively affect bikeability) (see Fig-
ure 1). The direction of these effects was based on the
study description in the KG.

Finally, the weighted supermatrix W ∗ was created by the
following normalization:

W ∗(i, j) =
W (i, j)∑
jW (i, j)

where W (i, j) represents the original unweighted value in
row i and column j, and

∑
jW (i, j) is the sum of all val-

ues in column j. This normalization ensured that each col-
umn sums to one, which is required for ANP computa-
tions. The final limit supermatrix W∞ was obtained by
iteratively raising W ∗ to higher powers until convergence:

W∞ = lim
k→∞

(W ∗)k

where the steady state values in W∞ define the final bike-
ability index for the chosen road network.

3.3 Sensitivity Analysis Design

Sensitivity analysis is a crucial step in MCDA, as it allows
us to evaluate how variations in input (Bottero and Ferretti,
2010), specifically changes in the KG structure, affect the
final results. This variation in metric and criteria inclusions
is rarely applied in bikeability assessments.

To systematically assess the robustness of our approach,
we implemented two sensitivity analyses: (1) criterion per-
mutation, where individual criteria (along with associated
metrics) are removed and the KG and bikeability index is
recalculated, and (2) metric permutation, where individual
metric types (along with linked criteria instances) are re-
moved from the KG before recomputing the index. These
permutations allowed us to define an expected error inter-
val that quantifies the variation in road segment bikeability.
Assuming a normal distribution, we define this interval as
the 95% confidence range (±2 standard deviations), rep-
resenting the range within which the bikeability value of a
segment is expected to fall.

4 Results

In this section, we present the results generated from our
KG-MCDA integration for developing a bikeability index.
First, since the limit supermatrix W∞ for Zurich District
6 has dimensions 922× 922, we focus on presenting the
priority vectors only for metrics and criteria (see Figure
2). These vectors highlight the most influential evaluation
elements (criteria and metrics), aligning with the trends
observed in previous studies (Ahmed et al., 2024; Grisiute
et al., 2024; Weikl and Mayer, 2023). For example, Sin-
uosity and GreenSpaceShare occur five times in the KG,
but are weighted differently since the latter is related to
Attractiveness (a more influential criterion).

Figure 3 illustrates the spatial distribution of the bikeabil-
ity rankings across network segments, showing how the
chosen combination of factors shapes the final index and
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Figure 4. Sensitivity Analysis of Bikeability Index. The top panel illustrates the impact of removing individual metric types on bikeabil-
ity scores, while the bottom panel shows the effect of removing individual criteria types. Each point represents a segment’s bikeability
score after permutation, with blue triangles indicating maximum, red inverted triangles indicating minimum, and yellow circles repre-
senting mean bikeability score. Yellow error bars indicate the expected variability in bikeability scores due to permutations.

highlighting the variations in bikeability throughout the
network. Since our focus is on structuring the aggregation
of criteria and metrics into a cohesive framework, we do
not analyze specific bikeability values in detail. However,
we spot-checked several segments with the corresponding
street views for consistency. A more comparative evalu-
ation of the performance of our approach would require
benchmarking it against existing bikeability assessment
methods.

Finally, we analyzed the sensitivity of our bikeability in-
dex with respect to the structure of the KG. First, we re-
moved individual criteria types (and associated metrics)
and recalculated bikeability scores. Figure 4 shows how
each permutation affects bikeability at the segment level,
allowing us to define expected error intervals relative to the
original values. The second analysis followed the same ap-
proach, but we removed individual metric types (and asso-
ciated criteria) before recalculating the bikeability index.
The variation in scores increases with the original bike-
ability value, particularly in the case of metric permutation
where some metric removal results in significantly lower
bikeability scores. For criteria permutation, the mean bike-
ability index remains relatively stable, with minimum and
maximum values fluctuating within the expected error in-
terval. This highlights that highly bikeable segments are
more sensitive to metric exclusions than to criterion exclu-
sions. This is likely because bike network evaluations typi-
cally contain more metrics than criteria. Removing metrics
leads to greater weighting changes, as more elements are
excluded from the KG.

5 Discussion

This study introduces a novel approach to developing a
bikeability index by integrating a KG of existing bike
network evaluations with the ANP technique. ANP mod-
els interactions among the evaluation elements, while the
KG provides a comprehensive knowledge base with com-
monly used evaluation criteria linked to quantitative met-
rics. To our knowledge, no previous MCDA application
for bike network evaluations has addressed the interdepen-
dence between metrics and criteria, making this integra-
tion a promising direction for future research.

Our approach offers a transparent, data-driven workflow
for eliciting criteria and metrics for bikeability index de-
velopment, as opposed to manual literature reviews that
are commonly used. In addition, the proposed method-
ology can handle a large number of alternatives, almost
900 road segments, which can be repeated throughout the
Zurich road network. By defining the expected error in-
terval in our sensitivity analyses, we established a system-
atic framework to evaluate the impact of changes in the
KG structure on bikeability rankings while accounting for
varying selection of evaluation criteria and metrics. We
demonstrated how a KG can be integrated with a formal
decision-structuring method to address a critical, yet often
overlooked, component in bikeability index design.

Despite these contributions, several limitations remain.
Additional sensitivity analyses are needed, e.g., to de-
termine whether different spatial scales (such as nodes,
zones, or grids) for segment enrichment adequately sup-
port certain metrics. In addition, the inherent ambiguity in
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linking metrics to criteria, where a single metric can influ-
ence multiple criteria or vary in naming, requires further
investigation. For example, membership functions could
be tested to better capture qualitative vagueness and ad-
dress overlapping indicators (e.g., green space share ver-
sus greenery presence) to avoid potential double count-
ing. Finally, our model currently assumes compensatory
effects, where factors such as high greenery can offset
poor road surface quality. While this approach is common
in many bikeability indexes, it may not reflect real-world
evaluation processes and could be reconsidered with non-
compensatory aggregation methods.

In summary, integrating KG with ANP provides a vi-
able framework to build generic bikeability indexes. The
results underscore the need to assess interdependencies,
accommodate varying evaluation preferences, and utilize
research-based knowledge to derive metric and criteria
weighting.

6 Conclusions and Future Outlooks

In this study, we developed an ANP-based bikeability in-
dex by integrating MCDA with a KG, containing vari-
ous approaches to evaluate bike networks. We proposed
an initial framework to systematically structure relevant
bike network metrics and qualitative criteria, effectively
capturing the complex interdependencies among various
bikeability factors. Using a KG, which synthesizes exten-
sive research, our methodology organizes a large body of
scientific work and trends in bike network evaluations into
a coherent structure.

Future work will extend this framework to the entire
Zurich road network, expand the KG, and conduct fur-
ther sensitivity analyses to validate the robustness of the
index. We will focus on refining this methodology, explor-
ing alternative aggregation techniques, and benchmarking
our index against other established bikeability evaluation
frameworks. These steps will improve the utility of our
bikeability index, supporting informed decision-making
for the development of urban cycling infrastructure.

7 Data and Software Availability

The research data supporting this publication are avail-
able on Zenodo and are accessible via the following DOIs:
spreadsheet of bike network evaluations that were used
to repopulate the KG, the road network and related con-
textual data for metric estimation (https://doi.org/10.5281/
zenodo.14839760). The computational workflow support-
ing this publication is published on GitHub with in-
structions included in the file README.md in the fol-
lowing repository: https://github.com/mie-lab/anp_bike_
network_evaluation.
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