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Abstract.  Growing numbers of biodiversity monitoring 
data recorded by camera trap devices are becoming 
increasingly difficult to manage and analyze. The 
WildLIVE platform is being developed to address these 
challenges by providing a comprehensive virtual 
research environment (VRE) that integrates citizen 
science, machine learning-based annotation, and 
geo-analysis functionality. Additionally, it serves as a 
centralized platform for FAIR (Findable, Accessible, 
Interoperable, and Reusable) data sharing. This paper 
presents the core concepts of the WildLIVE platform and 
its underlying data model, highlighting its potential to 
streamline biodiversity research and enhance data 
accessibility. 
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1 Introduction  

Humans impact the biosphere and all its habitats on a 
vast scale, contributing significantly to adverse effects 
such as faunal changes, deforestation, and desertification 
(Newbold et al. 2015). These effects culminate in a 
substantial loss of biodiversity, having significant 

negative effects on the benefits, known as ecosystem 
services (Gudde et al. 2024), that human societies derive 
from habitats. Long-term environmental monitoring 
across multiple geographic locations is therefore more 
important than ever for the quantification of these 
effects, and for providing a solid data basis for 
policy-makers, NGOs, and other stakeholders to develop 
effective and timely mitigation strategies (Haase et al. 
2018).  

In this respect, camera traps and passive acoustic devices 
are particularly valuable as non-invasive methods for 
documenting wildlife diversity, ecology, behavior, and 
conservation (Buxton et al. 2018; Jansen et al. 2020; 
Meißner et al. 2023). The application of autonomous 
devices for in-situ biodiversity monitoring is constantly 
evolving, generating increasing volumes of biodiversity 
data that support large-scale analysis and forecasting 
infrastructures, particularly in the context of the 
European Green Deal and associated dataspace projects 
(European Commission: Joint Research Centre 2021).  

Accordingly, both the amount of primary data (recorded 
digital photos, videos, and audio files) and of derived 
data (automatically assigned annotations such as labels) 
are expanding at a rapid pace (Delisle et al 2021). Even 
medium-sized camera trap projects,  deploying around 
50 to 80 camera traps,  can generate up to 100,000 
images per year (Palmer et al. 2021). The overwhelming 
volumes of data often push small teams of scientists to 
their limits, creating significant bottlenecks for 
conservation-driven data analyses.  
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Figure 1: The WildLIVE portal’s conceptual model and workflow: High throughput annotations are provided as a 
baseline by trained machine-learning models (a). Citizen scientists afterwards review and improve the annotations (b). 
Reviewed data are subsequently used as new training data (c). Central element of the workflow is the capturing of 
contextual (provenance) information from all human and machine-based operations in RO-Crate packages (d). Figure 
redrawn from Fig. 1 in Grieb et al. (2024).  

 

Furthermore, the large volumes of sensor data 
inherently possess a spatio-temporal component, 
dictated by the location and temporal configuration of 
the recording stations. This presents both opportunities 
and challenges. 

One key opportunity is the ability to contextualise 
sensor data with Earth observation data, enabling the 
assessment of land use changes and their effects on 
observed biodiversity. However, the challenge lies in 
publishing the data as openly as possible, while 
ensuring the protection of sensitive geolocation data 
for protected species. 

2 Solution 

To meet the requirements of biodiversity monitoring 
infrastructures, we developed an integrated data 
platform with dedicated data pipelines for the rapid 
analysis of critical ecological data (Grieb et al. 2024). 
Combined in a “Single Point of Entry”, the WildLIVE 
Portal (https://wildlive.senckenberg.de) provides 
comprehensive functionalities for the storage, curation, 
analysis, and publication of biodiversity monitoring 

data. It integrates pipelines for machine learning-based 
annotation and community-driven taxon determination, 
facilitating efficient and scalable data management.  

The primary objective of the WildLIVE platform is to 
facilitate community-based curation of digital images, 
audio, and video content from camera traps and 
acoustic recorders based on crowd-sourcing (Jansen et 
al. 2024). This process is supported by the deployment 
of machine learning pipelines to run automated species 
detection based on a trained artificial neural network 
for newly uploaded media to the platform (Figure 1a). 
The species detection is currently based on the 
Faster-RCNN model from the Detectron-2 object 
detection framework (Ren et al. 2015, Wu et al. 2019). 
The inferred species detections are stored as 
annotations to the original media. Citizen scientists can 
then focus on reviewing and refinement of the 
annotations  (Figure 1b), thus possibly being able to 
revise more sensor recordings in less time. Currently, 
under development is a pipeline designed to facilitate 
the subsequent mobilization of annotated data for the 
re-training process of the model (Figure 1c); a process 
known as Human-in-the-loop machine learning 
(Mosqueira-Rey et al. 2023). 
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Figure 2: Concepts of the WildLife Monitoring Ontology (WLMO) applied to an annotated observation, including 
wlmo:CaptureEvent for a series of observations that were triggered by the same event, wlmo:StationSetup 
representing the setup of one or several joint monitoring sensors and wlmo:MediaObject holding the media 
metadata and providing a URL to the actual media file. 

The WildLIVE platform is still under development. In 
the first prototype the trained neural network supports 
the detection of only a limited number of species. This 
initial species detector was designed to support the 
biodiversity monitoring project described in Jansen et al. 
(2024). However, the overall platform is intended  to 
support any audiovisual monitoring project, regardless of 
the geographic region. While the initial training and 
refinement of the neural network may take some time for 

each project,  running the inference afterwards is not 
computationally expensive and thus can also scale 
effectively for large data volumes. While no user studies 
have been conducted yet, it can be expected that the 
project will particularly benefit from the neural network 
quickly tagging the large amount of empty camera trap 
images or those depicting for example local cattle herds, 
thus enabling both citizen scientists and researchers to 
focus on the more relevant data. A possible issue is the 
underrepresentation of seldom occurring species in the 
training data, which in turn could lead to the neural 
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network not detecting such species even if they occur. It 
is planned to tackle this issue via employment of the 
general purpose detector Megadetector (Hernandez et al. 
2024), to annotate the occurrence of unknown fauna 
even when the specific species detector fails. 

Community projects like Megadetector underline the 
power of applying trained models provided by the 
community. In turn, this also highlights the need to share 
data published via WildLIVE in a way that it can easily 
found and reused by the community. Notably, the FAIR 
principles (Findability, Accessibility, Interoperability, 
and Reusability, Wilkinson et al. 2016) play a key role in 
guiding the discovery and processing of digital assets 
with minimal to no human intervention, a capability 
which is referred to as “machine-actionability” (Jacobsen 
2020). 

Accordingly, we developed a flexible, FAIR-compliant 
data model (Figure 1d and Figure 2) comprising all 
primary data from the biodiversity monitoring process. 
This model is bundled with rich provenance, metadata, 
contextual descriptions (such as the setup of sensors), 
and comprehensive workflow descriptions, leveraging 
the Research Object Crate (RO-Crate) approach 
(Soilent-Reyes et al. 2022). To further enable 
autonomous discovery of the data packages both within 
and across data space projects, an additional 
machine-interpretable layer was computed for every 
RO-Crate using the FAIR Signposting approach 
(Soiland-Reyes et al. 2024).  

Fundamental for the technical implementation of the 
WildLIVE platform is an ontology based on the Sensor, 
Observation, Sample, and Actuator (SOSA) ontology 
(Janowicz 2019). To comprehensively represent all 
relevant domain-specific concepts (Figure 2), we 
developed the WildLife Monitoring ontology (WLMO) 
which serves as the central data schema, with the 
CaptureEvent as the core entity. The latter is a collection 
of camera trap media files that include spatio-temporal 
proximity, such as a set of photos triggered by the same 
event. The media files are stored as FAIR research 
objects encapsulating both binary data and metadata. The 
WLMO provides the semantic framework for this 
metadata, which is both internally stored and externally 
provided in the RDF serialization format JSON-LD 
(Kellog et al. 2019). To further enhance data 
accessibility in WildLIVE, we employ the web-based or 
“webby” FAIR digital data approach, building on 
RO-Crate and FAIR Signposting. 

Besides the CaptureEvent, the station where a 
monitoring device was set up is another principal entity 
in the platform. CaptureEvents are linked to the stations 
where they occurred and they share the same 
geolocation. The location of these stations is the 

principal entry point into the (still under development) 
VRE for spatio-temporal patterns, which is based on the 
software Geo Engine1: in a  on a map viewer the stations 
(and the detected species at those) can be visualized 
together with pre-processed Earth Observation products 
facilitating for example the analysis of land use change 
and changes in the patterns of detected species. 

The integration of both VRE functionalities for 
biodiversity monitoring and FAIR sharing of audiovisual 
data in a single platform also leads to challenges such as 
preventing accidental exposure of sensitive geolocation 
data of species that are threatened or at risk of poaching. 
This issue is currently dealt with by the implementation 
of a simple obscuring mechanism which removes the 
precision of the decimal degrees coordinates for 
unauthenticated users of the WildLIVE platform or its 
API. Only authenticated users can see the real 
geolocation coordinates and only for their own submitted 
data, or after explicitly being granted access by another 
user. A promising implementation path for the future is 
to express the fact that more precise geodata can be 
obtained by users with certain rights in a 
machine-readable way based on the Open Digital Rights 
Language (ODRL2), for purposes of better accessibility 
and reusability. 

In summary, providing a platform which includes a VRE 
with machine learning, citizen science and earth 
observation tools, and where data is shared aligned with 
the FAIR principles, is expected to further accelerate and 
facilitate biodiversity monitoring by easier community 
access to valuable training data. 

2.2 Data and Software Availability Section 

All data that is uploaded to the WildLIVE platform will 
be openly available, with the restrictions regarding 
sensitive location data as mentioned above. An initial 
excerpt of the overall camera trap data from Bolivia is 
made available under CC-BY license at 
doi:10.12761/34zr-fh25.  

The WildLife Monitoring Ontology is accessible under: 
https://wildlive.senckenberg.de/wlmo. 
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