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Abstract. Generalised Additive Models (GAMs) with
Gaussian process bases have been proposed as a frame-
work for constructing spatially varying coefficient (SVC)
and spatially and temporally varying coefficient (STVC)
regression models, that overcome many of the theoreti-
cal problems and technical limitations associated with ge-
ographically weighted approaches. Recent work has con-
sidered the SVC case in detail and this is being extended to
the temporal case. However, while spatial lags and depen-
dencies are well handled by many existing methods, one
of the critical issues in space-time modelling is how to de-
termine appropriate temporal lags for individual predictor
variables that may exhibit different temporal dependencies
with the target variable. This paper demonstrates an out-
line approach for optimising these. Additionally, lags de-
termined in this way may be used to inform on the tempo-
ral margins used to parameterise space-time tensor prod-
ucts smooths in GAM based STVC approaches.
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1 Introduction

Spatial analysis increasingly involves working with time-
series spatial data – repeated measurements made at or
over the same locations. This extends analysis consider-
ations into the temporal dimension and requires methods
able to determine how statistical relationships vary tem-
porally as well as spatially, and that capture process het-
erogeneity and any spatial and / or temporal dependen-
cies (non-stationarities). Approaches based on Geographi-
cally Weighted Regression (GWR) (Brunsdon et al., 1996)
are commonly used to construct spatially varying coef-
ficient (SVC) models (Comber et al. (2022) document
this), and have been extended into time via Geographically
and Temporally Weighted Regression (GTWR) (Huang

et al., 2010; Fotheringham et al., 2015). However, there
are a number of long standing operational concerns and
methodological limitations to geographically weighted
(GW) approaches, around their re-use of data, limited form
(often only Gaussian responses) and their inability to un-
dertake out-of-sample prediction.

To address this situation, a number of researchers have
started to develop varying coefficient approaches using
Generalised Additive Models (GAMs) (Fan and Huang,
2022; Comber et al., 2024a, b) with some recent exten-
sions into the temporal domain (Hong et al., 2025b, a;
Comber et al., submitted) Ongoing work by the authors re-
ported elsewhere describes the thinking around informed
GAM-based regression approaches for constructing spa-
tially and temporally varying coefficient (STVC) models.
This includes the need for workflows that i) explicitly cap-
ture the nature of any space-time dependencies (interac-
tions) in the data, and ii) then specifies them appropriately
within the model (e.g. as parametric terms or within GAM
smooths), ensuring appropriate model specification (see
@stgam), rather than making assumptions about space-
time dependencies, as is done in all other space-time mod-
elling approaches in geography including GTWR.

In space-time GAMs with smooths, each predictor vari-
able may take one of 6 forms: it may be absent, it may
take a standard parametric form, be specified in a smooth
with location, a smooth with time, in a single smooth with
location and time, or in 2 separate space and time smooths.
However, a further consideration is how to specify tempo-
ral dependencies - i.e. how much time and space to in-
clude local coefficient estimates. GWR based approaches,
for example, determine spatial dependencies by optimis-
ing the bandwidth (size) of a moving window (kernel).
The various GTWR extensions take different approaches.
Huang et al. (2010) define a parameter ratio (ρ) to match
and join the temporal and spatial distances, facilitating
a linear combination of temporal and spatial distances.
This difficulty in identifying a suitable space-time metric
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is similarly found in specifying space-time variograms for
geostatistical models with respect to separability (Gneiting
et al., 2006). Fotheringham et al. (2015) took a different
approach. They proposed a kernel function to identify op-
timal spatio-temporal bandwidths to account for variations
in relationships over space and time. However, because of
the computational overheads of calibrating across this, 5
years of temporal data were selected from the 19 years
available and introduced sequentially into the model as
lagged data, from which optimal spatial bandwidths were
determined for each year. However, both of the approaches
to STVC modelling with GTWR are predicted on the as-
sumption that the relationship between the target and pre-
dictor variables do indeed vary over time and space simul-
taneously, and any temporal dependencies are the same for
each predictor variable. That is, the space-time bandwidths
are not multi-scale. Some previous work has dealt with
model form, and GAMs with smooths have been shown to
deal with how much space (Comber et al., 2024a, b). Here
the questions of how much time is addressed by optimising
lag periods for each predictor variable and the exploratory
research described in this paper investigates whether and
how temporal lags should to be accommodated in space-
time regression models, rather than treating each predictor
variable has having a simultaneous association with the
target variable.

2 Data and Methods

This study uses a dataset describing average annual house
prices over 13 years (2008 to 2020) in 792 neighbourhoods
(lower super output areas - LSOAs) in Leeds and Bradford.
The data includes predictor variables of annual data de-
scribing population proportions of unemployment (JSA),
neighbourhood population change (Churn), and new na-
tional insurance registrations (NINO) as a measure of in-
migration. By way of illustration, the spatial distribution
of mean house price for 2017 is shown in Figure 1.

A general GAM-based STVC was specified with Tensor
Product (TP) smooths with Gaussian Process (GP) bases,
parameterised with observation location and time for each
predictor variable, of the following form:

y = β0(ui,vi, ti)+

j=1∑
m

βj(ui,vi, ti)xij + ϵ(ui,vi, t1)

where for observations i= 1 . . .n, y is the response vari-
able, (ui,vi, ti) describes the spatial location of the ith

observation at time lag ti, β0 is the intercept term, βj is
the regression coefficient for the jth predictor variable,
with βj(ui,vi, ti) a realization of the continuous function
βj(u,v, t) at point i, and ϵ is the independent random error.
Note that no spatial lags were applied or investigated.

The spatio-temporal terms were fitted via a TP smooth that
contained marginal spatial and time smooths, both speci-

fied with a GP basis. This treated space-time in a three-
dimensional way, that is, an a priori assumption of space-
time dependencies was made. A 2D spatial GP smooth was
specified for the first margin and a 1D temporal GP smooth
for the second. (Note that the use of tensor products here
is a methodological shift to from our previous, and it turns
out fallacious, investigations of STVC GAM models using
GP smooths - for example see Comber et al. (2023) - and
we are in the process of revising these approaches and the
accompanying ‘stgam‘ R package (Comber et al., 2024c)).

For tensor product smooths, the length scales (penalty or
range parameters) (ρ) need to be specified. These deter-
mine the distance at which the correlation function falls
below some small value, and in space-time smooths they
define the spatial and temporal scales of interaction (i.e.
the space-time dependencies). Here, spatial and temporal
ranges were specified with a power exponential of 3, in-
dicating the a spherical range distance decay: ρspace was
set to 25km for the spatial smooths and rhotime to 7 years
for the temporal smooths. These were based on the aver-
age distances and time frames (mid-points) in the data. A
series of GAM models with the TP smooths specified in
this way were implemented in R using the ‘mgcv‘ pack-
age [@mgcv], with each predictor variable lagged from 0
to 5 years. Thus for k predictor variables there are 6k po-
tential lagged STVC motels, resulting in the investigation
of 216 models in this case. Each model was evaluated us-
ing a probability based approach using the Bayesian Infor-
mation Criterion (BIC) (Schwarz, 1978). BIC can be used
to derive the probability of each individual model being
the correct model given the data, and the the *marginal*
or *relative* or probability between each model and the
best model. The derivation of this is described in Bruns-
don et al. (2023). Here BIC was calculated for each lagged
model from which probabilities were calculated allow dif-
ferent model specifications to be ranked and compared.

3 Results

Table 1 shows the relative probabilities the best 10 space-
time models (i.e. with the lowest BIC scores). In this case,
the probabilities indicate that the second ranked house
price model has a probability of less than 1% chance
(<0.00)) of providing a better lagged model than the first.
This indicates the optimum lag periods for each individual
predictor variable, and potential suggests the periodicity of
the cause and effect response in house prices:

• a lag of 4 years for neighbourhood population change
(Churn).

• a lag of 4 years for new national insurance registra-
tions (NINO) indicating in-migration.

• a lag of 5 years for unemployment benefit recipients
(JSA).
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Figure 1. LSOAs in the study area and mean house price for 2017, with an OpenStreetMap backdrop.

These were used to construct a final model, and the
spatially and temporally varying coefficient estimates
were extracted using functions in the stgam R package
(Comber et al., 2024c), which in turn can be summarised
and mapped.

The optimised lagged model is reasonably accurate, with
an R2 of 0.78, a RMSE of 38.4 and a MAE of 26.3. Sum-
maries of the STVC model estimates and their variation
over space and time are shown in Table 2. Interestingly,
each predictor variable flips in sign at some point in space-
time. It is instructive to examine some of this temporal and
spatial variation as in Figures 2 and 3. The plots in Figure
2 show the median coefficient estimates for each year over
LSOAs. The Intercept increases over time, the relationship
between house price and Churn (4 year lag) is generally
less negative until 2014, and then plateaus from 2014 to
2019 (is this Brexit?), JSA (5 year lag) is moderately neg-
ative, declining after 2017 and NINO (4 year lag) is nega-
tive but increasing to 0 in 2020 . The changes of the JSA
coefficient estimates over time are shown in Figure 3 and
show the highly localised emergence of an increasingly
negative relationship with house price in certain locations.

4 Discussion

This paper introduces an approach for determining how to
specify the temporal lags in space-time regressions. It uses
GAMs with Tensor Product smooths (Hastie and Tibshi-
rani, 1990) specified with GP bases. These were param-
eterised with location and time and used to create multi-

ple models with different temporal lags for each predictor
variable. In doing so, it sought to answer the question ‘how
much time’ to include in spatio-temporal regressions, by
determining the most probable lagged model. This is one
in which the time taken for the potentially causal effects
of each predictor variable to manifest themselves is ex-
plicitly identified. Here, a lag of 4 years was found for the
effects of Churn (neighbourhood in- and out-migration)
on house price was found. For unemployment (JSA) it was
5 years and for national insurance registrations (NINO) the
lag was 4 years.

The framework for determining how to most appropriately
determine temporal lag time series spatial data described
in this short paper is part of a wider set of activities that
are seeking to move away from plug-and-play approaches,
in which little consideration is given to the model form in
space-time analyses. One potential advantage of this ap-
proach, is that it explicitly captures the scales of lagged
temporal dependencies. Optimising temporal lags as done
in this paper, could be used to determine the individual
ρ parameters for each temporal predictor variable, in a
space-time tensor product smooth, that is the distance at
which the correlation function falls below some value.

A key objective the approach taken to space-time analysis
described in this paper concerns process inference (under-
standing) rather than prediction. Thus, it is important to
consider the nature and reasons for any observed variation
n the coefficient estimates. High variation in these (large
changes in magnitude, flipping signs) is commonly found
in spatially varying coefficient models. These may be
found for a number of reasons including a poor conceptual
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Table 1. The 10 best models, and the time period used to lag each predictor variable, the model BIC value and the associated probabaility
of the model being the correct given the data.

Churn NINO JSA BIC Pr(M)

4 4 5 66206.22 –
5 1 5 66226.59 0.00
5 1 4 66227.41 0.00
5 4 5 66244.77 0.00
5 3 4 66247.20 0.00
4 5 4 66248.29 0.00
5 2 4 66250.14 0.00
4 2 5 66253.39 0.00
5 5 5 66253.47 0.00
4 5 5 66253.83 0.00

Table 2. Summaries of the STVC coefficient estimates and their variation over space and time.

Min. 1st Qu. Median Mean 3rd Qu. Max.

middlehline ntercept -527.5 119.6 173.6 187.5 227.3 789.6
Churn -2171.9 -380.5 -120.4 -208.2 -11.2 2102.7
NINO -6874.8 -368.8 -116.5 -168.6 53.6 8697.9
JSA -28042.1 -2872.3 -1470.7 -2145.5 -589.1 14324.0

bottomhline

model, variations due to human dimensions (behaviours,
preferences, attitudes etc - geography is not physics), bad
measurements, unaccounted for local factors, or because
of process spatial heterogeneity. Therefore in such situa-
tions, the analysts has to decide whether, for example, it is
reasonable that factors such as unemployment are some-
times very negatively and sometimes very positively corre-
lated, whether the model is missing some key driving vari-
able - i.e. whether variations in coefficient estimate (and
thus change in house price) may rather be due to unob-
served effects - or potentially whether the model is over-
fitting.

It is also importation to note that the results lags were
determined using arbitrarily set length ranges (ρ param-
eters) for space and time of 25km for ρspace for the spa-
tial smooths and rhotime to 7 years for the temporal ones.
These specify the distances spatial and temporal depen-
dencies ranges, in the same way as bandwidths in GWR-
based approaches. Future work will develop approaches
to optimise these in tensor product space-time smooths.
Other work is also developing methods to determine ap-
propriate model specification and how each predictor vari-
able should be included in models, for example in para-
metric form, in separate space and time GP smooths, or
in a combined space-time smooth. This is because most
approaches to space-time analysis do not explicitly exam-
ine either model form or how variables should be lagged,
and thereby implicitly assume the presence and nature of
space-time dependencies i.e. that the measurements de-
pend on previous values and those of nearby locations,
without testing that assumption. A final limitations is

that BIC values are potentially problematic for compar-
ing mgcv GAM models - something that has emerged
since submission and acceptance of this short paper - and
current ongoing work is exploring the use of un-biased
risk estimators and Generalized Cross-Validation (GCV)
scores to do this. These developments will be included in
future updates to the stgam (Comber et al., 2024c) pack-
age and future research papers. Finally, although tempo-
ral lags are commonly used, for example in econometric
models, ongoing work continues to combine and refine
these model specification investigations, considering how
best to lag temporal variables and to determine the nature
of the space-time interactions and dependencies present in
the data. For example it is still unclear how optimal time
lags should be used to inform modelling decisions beyond
the specific case study, and the degree to which they are
context-dependent.
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Figure 2. The temporal variation of the median coefficient estimates, 2008 to 2020.
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Figure 3. Detail of the spatial and temporal variation of the JSA (unemployment) coefficient estmates, 2008 to 2019.
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