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Abstract 
This study investigates the key factors influencing public 
transport mode shares in Uyo Urban area, Akwa Ibom 
State, Nigeria, with a focus on understanding the role of 
the built environment factors on public transport mode 
shares. The study employed a mixed-method approach, 
utilizing a structured survey for data collection, capturing 
key variables such as population density, transit supply, 
road network density, and commuter preferences. Data 
were analyzed using Principal Component Analysis 
(PCA), Multiple Linear Regression, and Geographically 
Weighted Regression (GWR) to explore spatial and non-
spatial relationships between the identified factors and 
public transport usage. The PCA revealed three key 
components influencing public transport mode share: 
accessibility and infrastructure quality (39.36%), 
environmental constraints (15.15%), and mobility and 
Travel behaviour (13.15%). Regression analysis indicated 
that environmental constraints were the most significant 
predictor, followed by mobility and travel behaviour and 
accessibility and infrastructure quality. The GWR analysis 
highlighted spatial heterogeneity, showing that the impact 
of these factors varied across different neighbourhoods 
within Uyo urban. The findings suggest that improving 
infrastructure, addressing environmental constraints, and 
aligning public transport systems with commuter 
behaviours are crucial for increasing public transport 
usage. Policy recommendations include enhancing transit 
supply, improving road connectivity, mitigating 
environmental challenges, and tailoring services to 
commuter needs. The study underscores the importance of 
a multi-faceted approach to public transport planning that 
considers both infrastructure and socio-environmental 
factors to improve public transport adoption and 
sustainability in Uyo Urban and similar urban contexts.

Key Words: Public Transport Mode Share, Built 
Environment, Uyo Urban Area, Spatial Analysis and 
Principal Component Analysis (PCA) 

1 Background to the Study
The rapid growth of urban populations is one of the most 
significant trends of the 21st century. Projections suggest 
that by 2050, over two-thirds of the global population will 
live in  urban  areas  (UN, 2022).  This  demographic  shift

places enormous pressure on cities to efficiently manage 
resources while addressing critical transportation and 
urban mobility challenges. One of the most pressing 
environmental and social challenges today is managing the 
mobility of people and goods. By 2030, passenger traffic is 
expected to exceed 80,000 billion passenger-kilometresa 
fifty percent increase while freight volume is projected to 
grow by 70 percent globally. Additionally, the number of 
vehicles on the road is forecasted to double by 2050, 
increasing the urgency for sustainable and integrated 
transportation solutions (Mohieldin and Vandycke, 2017). 
Regions such as India, China, sub-Saharan Africa, and 
South-east Asia are experiencing rapid urban expansion, 
accompanied by increasing mobility aspirations. This 
intensifies the demand for transportation systems 
(Mohieldinand and Vandycke, 2017). Failure to address 
these mobility challenges can result in worsening traffic 
congestion, environmental degradation, and socio-
economic disparities. The transportation sector 
significantly contributes to urban air pollution and 
greenhouse gas emissions, underscoring the necessity of 
sustainable mobility solutions that promote public transit, 
reduce commute times, and minimize private vehicle 
dependence. 

Urban mass transit systems play a crucial role in achieving 
sustainable, accessible, and equitable transportation, 
aligning with the United Nations Sustainable Development 
Goals (SDGs). These systems help reduce transport 
inequalities, improve road safety, and enhance energy 
efficiency—critical components of sustainable 
urbanization (World Bank, 2024). However, many cities in 
developing countries, including Nigeria, face significant 
barriers to implementing efficient transit networks, such as 
inadequate infrastructure, rising car ownership, and 
persistent congestion. 

While extensive research on travel behaviour has been 
conducted in developed countries, including Europe and 
the United States, there is limited empirical evidence on 
transit mode choices in African cities. Studies by Boarnet 
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(2011) and Stevens (2016) explore the relationships 
between urban form and transport choices, with findings 
suggesting that compact urban designs encourage transit 
use (Ewing and Cervero, 2010; Bento et al., 2005). In 
Latin America, Guerra et al. (2018) found that well-
integrated transit systems in densely populated urban areas 
significantly reduced private vehicle dependency. 

In Africa, studies on transport behaviour remain scarce but 
reveal important trends. Research on transport mode 
choices in Lagos by Olatoye and Oyelana (2019) shows 
that affordability drives public transport reliance, despite 
service limitations. Similarly, Fasina et al. (2020) found 
that travel time, safety, and comfort significantly influence 
mode choice decisions. These studies emphasize the need 
for targeted investments to enhance transit infrastructure 
and improve commuter satisfaction. 

To address these challenges, researchers are increasingly 
applying advanced spatial modeling techniques such as 
geographically weighted regression (GWR). Unlike 
conventional regression methods, GWR captures spatial 
variations in transport behaviours, offering localized 
insights. Cardozo et al. (2012) used GWR to predict 
passenger demand at Madrid metro stations, while Blainey 
(2010) employed it to forecast rail trips in the UK. Liu and 
Niu (2023) similarly analyzed inter-city population 
movements in China using the Multiscale Geographically 
Weighted Regression (MGWR) model, demonstrating the 
importance of regional spatial linkages. However, despite 
its proven utility, GWR remains underutilized in African 
transport research. Applying GWR to study urban mobility 
in Uyo can provide more accurate insights into spatial 
variations in transit use, aiding policy formulation and 
infrastructure planning. 

2 Theoretical Underpinning 
Public transport mode share in urban areas is shaped by 
intra-city mobility, which encompasses both physical 
movement and spatial interactions. Intra-city mobility 
involves the movement of people and goods within an 
urban environment, facilitating daily commuting and 
economic activities. Such movement is not random but is 
influenced by specific forces (Lloyd and Dicken, 1972). 

Ullman (1956) identified three fundamental principles 
governing urban mobility: complementarity, 
transferability, and intervening opportunity.
Complementarity and transferability determine the 
feasibility of movement between two locations, while 
intervening opportunity affects travel volume and 
direction. These principles influence the efficiency of 
public transit systems in accommodating commuter flows. 
Public transport mode choice in Uyo Urban Area is largely 
determined by the relative accessibility of destinations, the 

quality of transport infrastructure, and the availability of 
alternative transit options (Abler et al., 1972). 

Urban land use patterns significantly impact intra-city 
mobility. Ogunbodede (2002) observed that urban mobility 
serves to bridge spatial gaps between residential areas and 
key activity centres such as workplaces, schools, and 
commercial hubs. The frequency of trips taken by urban 
residents is influenced by the concepts of range and 
threshold. Ayeni (1975) defined range as the maximum 
distance individuals are willing to travel to access services, 
while threshold refers to the minimum population needed 
to sustain a particular transport service. 

In Uyo, land use characteristics including residential, 
commercial, institutional, and industrial zones generate 
movement patterns that influence public transport demand. 
The built environment factors that shape transit use, such 
as road network density, transit stop accessibility, land use 
diversity, and urban connectivity, play a crucial role in 
determining the efficiency of mass transit systems. 
Although emerging mobility solutions, such as ridesharing 
and non-motorized transport, are modifying travel patterns, 
public transit remains the dominant mode of commuting 
for most residents in Uyo. Understanding these 
relationships is essential for designing effective transit 
policies and infrastructure improvements. 

This theoretical framework underscores the 
interconnections between urban land use, built 
environment factors, and public transport mode choice. It 
provides a foundation for analyzing determinants of public 
transit use and evaluating the spatial variations in transport 
behaviours within Uyo Urban Area. 

3 Objectives of the Study 
The main objectives of the study include the following:- 
• To identify key built environment determinants that

significantly influences public transport use in Uyo
Urban

• To examine the relationship between built
environment characteristics and public transport mode
shares in Uyo Urban.

• To evaluate the spatial variations in the influence of
built environment factors on public transport mode
choice in Uyo Urban using GWR.

4       Geographical Setting of the Study Area
Uyo metropolis is located within longitude 7° 541 and  
8° 001 east of the Greenwich and 4° 591 and 5° 141 north 
of the Equator (Figure 1). The study covers an area of 15 
kilometres radius and is bounded by Nsit Ibom, Etinan, 
and Ibesikpo Asutan local government areas on the South, 
Uruan and Nsit Atai on the East, Itu, and Ibiono on the 
north and, Abak and Ibiono Ibom to the west. The Town 
is centrally located as the administrative center of Akwa
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Ibom State, which cuts across eight other Local 
Government Areas of Etinan, Uruan,  Itu,  Ibiono, 
NsitIbom, NsitAtai,  Nsit Ubium  and  Ibesikpo Asutan. It 
is easily accessible from other cities like Abak, Itu, Ikot 
Ekpene, Oron, Eket, and Etinan by road. The city can be 

reached under one hour driving from any part of the city 
and with improve roads, the time will considerably be 
reduced. The road from Aba to Calabar on the north-
western flank of the capital city further promotes the 
accessibility of the city. 

Figure 1: Uyo Urban area showing the study Location 

5 Data and Software Availability 
The data sources employed in this study are publicly 
available and are detailed in Table 2. The primary dataset 
was derived from OpenStreetMap (OSM, 2023), which 
provided comprehensive geographic data on the road 
network, public transport stops, and related infrastructure 
within the study area. To analyze and process the data, a 
range of software tools were utilized to ensure 
methodological robustness and spatial accuracy. SPSS 
(Version 2021) was employed for statistical procedures, 
particularly Principal Component Analysis (PCA), which 
enabled the identification of latent components influencing 
public transport mode choice.  

ArcGIS served as the primary platform for spatial analysis 
and mapping, allowing for the generation of standardized 
residual maps, zonal computations, and integration of 
GWR results. Microsoft Excel was used for organizing raw 
datasets, conducting preliminary statistical summaries, and 
formatting data for import into other analytical platforms. 
Furthermore, Google Earth provided an open-access 
environment for geospatial visualization and verification 
of physical features on the ground, supporting ground-

truthing and visual interpretation of spatial patterns. 
Collectively, these tools facilitated a seamless workflow 
from data acquisition through analysis to visualization, 
ensuring that the findings of the study are replicable and 
grounded in accessible, open-source, and standard 
analytical environments. 

6 Materials and Method 
This study utilized a survey-based research design, 
incorporating both primary and secondary data collection 
methods. It focused on examining macro- and micro-level 
factors of the urban built environment within the study 
area. A multi-stage sampling strategy was employed; 
combining purposive and simple random sampling 
techniques to ensure the dataset was both comprehensive 
and representative. 

6.1 Data Types and Collection 
Keymass transit indicators were derived from and 
calculated with the use of publicly available open datasets. 
These variables cover different aspects of both macro and 
micro urban built environment related to mass transit 
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indicators. According to the literature, these include those 
variables as detailed in table 1. Some of these data were 
extracted from free Google earth source, online Population 
data. Some of the secondary data were updated and 
reformatted to yield new data used in the current analysis. 
The mass transit survey was conducted to capture mass 
transit behaviours within urban environments by using the 
manual traffic counter. The survey was taken place 
between the hours of 7.30 am and 7.30 pm during 
weekdays at each selected point, whereas the interview 
survey was formulated by using a specific guideline. 

On the other hand, the inventory of macro built 
environment factors were outlined by a guideline adapted 
from the best practice of mass transit studies according to 
the identified elements, criteria and measures of the 
existing mass transit infrastructure. Spatial data were 
obtained from multiple sources, including GIS databases, 
open-access repositories, and field surveys. The main 
elements focused in both interview and inventory surveys 
are as shown in Table 1. 

6.2 Sampling Techniques and Data Collection The 
sampling and data collection process are as follows: 

Stage 1: Selection of Study Area and Delineation of traffic 
Analysis Zones 
The Uyo Urban Area in Akwa Ibom State was purposively 
selected as the study area due to its relevance to the 
research objectives and its representativeness of urban 
transport patterns in the region. The study area was 
stratified into three distinct zones urban core, middle core, 
and outer corerepresenting varying levels of urbanization 
and transport dynamics.To facilitate detailed analysis, 
these zones were further subdivided into 33 Traffic 
Analysis Zones (TAZs), which served as the primary data 
collection units as shown in the figure 2 below: 
The delineation of TAZs followed the "Network Bands" 
concept of neighbourhood as used by James and 
Ndehedehe (2014), which defines area units based on 
proximity along street networks. This approach considers 
natural and physical barriers to establish precise boundary 
definitions. 

Table 1:Public transport related variables 
S/N Variables Definition of Variables Unit of Measurement 

1 Average Distance to Transit 
Stops  

Measures how far people must travel to access transit meters 

2 Household size The number of people living in a single household. Number 
3 Population density Total number of  people/ per km2 Pop/sq.m 
4 Mean Household income the average income of all households in a particular area Naira 

5 Mean Road width The mean road width/ per km2 meters 
6 Transit Supply Measures availability of public transport services Number 
7 Educational level Percentage of certain level of education Percentage 
8 Street density Total number of  street divided by the area of  TAZ. sq.m 
9 Public Transport Stop Density Number of transit stops per TAZ. Number 
10 Intersection density the number of intersections  TAZ. Number 
11 Public transport mode shares public transport mode users Number 

Author’s field work, 2024 
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Figure 2: Uyo Urban area showing the TAZs 

Stage 2: Selection of Communities 
From the defined TAZs, 33 communitieswere purposively 
selected based on their socio-demographic characteristics, 
ensuring a comprehensive representation of factors 
influencing transport behaviour across the study area. 

Stage 3: Household Sampling and Questionnaire 
Administration 

Within each community, households were randomly 
selected to participate in the study. The sample size for 
each community was proportionally determined based on 
projected population figures. Population estimates were 
derived from the 2006 census and arithmetically projected 
to the end of 2023, applying a 2.5% annual growth rate as 
recommended by National Population Commission NPC 
(2006). 

The total number of households in each community was 
used to calculate a representative sample size, employing a 
modified version of the Tarro Yamane formula. The final 
sample size was set at 575 households. However,580 
questionnaires was correctly administered and returned 
valid, representing over 95% of the total questionnaires 
distributed, ensuring a robust response rate. 

7   Methods of Data Analysis 
This study employed a combination of analytical 
techniques, including PCA, MLR, and Geostatistics, with 
all statistical procedures conducted using the Statistical 
Package for the Social Sciences (SPSS). PCA was used to 
identify the key determinants influencing public transport 
mode choice among respondents within the study area. By 
reducing the dimensionality of the dataset, PCA extracted 
the most significant variables, thereby simplifying the 
dataset and highlighting the core factors driving variations 
in mode choice behaviour. 

7.1 Factor Analysis  
In this study, ten key variables identified as determinants 
of public transport mode choice were analyzed using 
Principal Component Analysis (PCA), a multivariate 
technique for dimensionality reduction. The analysis 
yielded three principal factors, which were subsequently 
used to compute factor scores. These scores served as 
input variables in the subsequent Multiple Linear 
Regression (MLR) analysis. 
The Kaiser criterion guided the selection of the optimal 
number of factors to retain. According to this rule, only 
factors with eigenvalues greater than one should be 
extracted from the correlation matrix (DeCoster, 1998). 
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Table 2: KMO and Bartlett’s test for the pedestrian 
variables 

Kaiser-Meyer-Olkin Measure of 
Sampling Adequacy. 

.638 

Bartlett's Test of 
Sphericity 

Approx. 
Chi-Square 

472.228 

Df 55 
Sig. .000 

Source: Author’s statistical analysis (2024) 

Table 3: Components extracted  
Components Eigen 

ValueContribution 
% 

Accessibility and 
Infrastructure Quality 

3.936 39.355 

Environmental 
Constraints 

1.515 54.503 

Mobility and Travel 
Behavoiur 

1.316 67.658 

Source: Author’s statistical analysis (2024) 

The extraction of factors was carried out using the 
principal components method. To enhance the 
interpretability of the resulting factors, a varimax 
orthogonal rotation was applied. This rotation technique 
maximizes the loading of each variable on a single factor, 
ensuring that each factor is strongly associated with a 
specific subset of variables. 

7.2 Factors Influencing public Mode share in Uyo 
Urban 

To identify the most significant factors influencing public 
Mode share, a PCA with varimax rotation was performed, 
considering ten variables such as estimated population, 
intersection density, transit supply, distance to transit 
stops, population density, household size, public transport 
stop density. Mean road width. Street density and mean 
household income. The results showed that three factors 
explained 80.032% of the variance in public Mode share 
(see Table 5). The Kaiser-Meyer-Olkin (KMO) measure of 
sampling adequacy was 0. 664, and Bartlett's test of 
sphericity was significant (Chi-Square = 472.228, p = 
0.000), indicating that the data was suitable for factor 
analysis. 

Table 4: Components Extracted  
Component matrix Rotated Component Matrix Communalities 

1 2 3 1 2 3 .837 
Estimated Population .892 -.165 .121 .820 .404 .523 
Intersection density .626 .206 -.299 .693 -.191 .747 
Transit Supply .579 .496 .407 .566 .653 .499 
Distance to Transit Stops(X4 .699 .690 .116 .588 
Population density .745 .766 .634 
Household size .763 .793 .829 
Public Transport Stop Density .899 -.128 -.128 .348 .348 .721 
Mean road width .170 -.738 -.738 .839 .839 -.132 .896 
Street density -.191 .558 .558 .691 .916 .491 
Mean Household income .259 -.490 -.490 .837 
Total  
% of Variance  
 Cumulative %  

3.936 
1.515 
1.316 

39.355 
15.148 
13.155 

39.355 
54.503 
67.658 

Source: Author’s statistical analysis (2024) 

From Table 4 above, the data on ten determinants 
variables from the field however, produced three (3) 
components with Eigen values exceeding 1, which 
together accounted for a total of 67.658% of the variance 
explained. The rotated solution showed that 9 variables 
loaded positively and 1 negatively on the first component, 
2 variables loaded positively and negatively on the second 
component while 2 variables loaded positively and 
negatively on the third component respectively. After 
identifying the component loadings and the variables they 
represent, the components were given titles that closely 
describe the pattern or structure of the positive 
loadings.PCA was conducted to identify key underlying 
dimensions influencing public transport mode share. Three 
components with eigenvalues greater than 1.0 were 

extracted, explaining a cumulative variance of 67.658%. 
The rotated component matrix and communalities are 
presented in Table4 

Component 1: Accessibility and Infrastructure Quality 
explained 39.36% of the total variance. It included strong 
loadings from variables such as (Estimated Population 
(X1) Intersection density (X2,), Transit 
Supply(X3),Distance to Transit Stops(X4), Population 
density(X5),Household size(X6)  Public Transport Stop 
Density X7 Mean road width(X8) Mean Household 
income (X10) and public). This factor captures features of 
the built environment that enhance or constrain public 
transport access. 
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regression model was public transport mode shares (Y), 
while the independent variables are the key determinants 
identified. The regression model was structured as:  

Y= 𝛽𝛽𝛽𝛽 + ∑ 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽=1 𝑋𝑋𝛽𝛽 +𝑒𝑒  (1) 

The above equation can be further expressed as follows; 
𝑌𝑌 = 𝛽𝛽𝛽𝛽 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋3 + 𝛽𝛽4𝑋𝑋4 
+ 𝛽𝛽5𝑋𝑋5 + 𝛽𝛽6𝑋𝑋6 + 𝛽𝛽7𝑋𝑋7 + 𝑒𝑒 (2) 

whereY denotes Public Transport Mode Share, X is the 
independent variable (i.e., accessibility and infrastructure 
quality, environmental constraints, mobility and travel 
behaviour); 𝛽𝛽𝛽𝛽 is the intercept constant term; 𝛽𝛽 = slopes 
coefficients. 𝑒𝑒 is the constant term, k x denote the 
explanatory variables, 1 tok are the coefficients associated 
with k explanatory variables. The regression outputs are 
presented in Tables 5-6 below. 

Component 2: Environmental Constraints, accounting for 
15.15% of the variance, had high loadings from Mean road 
width(X8) and Street density(X9), which may reflect 
contextual variables like crime, noise, or socio-political 
disruptions, which can discourage public transport use. 
Component 3: Mobility and Travel Behaviour, which 
explained 13.15%, was characterized by loadings from 
Mean road width(X8) and Street density(X9), suggesting a 
focus on user commuting patterns, preferences, and 
possibly travel time or frequency.Communalities ranged 
from 0.491 to 0.896, indicating that the extracted 
components adequately represent the variance in most of 
the original variables. 

7.3  Multiple Linear Regression Estimation  
To investigate the influence of the key determining factors 
on public transport mode shares. Three main factors that 
emerged from the factor analysis were employed further in 
multiple linear regression analyses. The factor scores were 
saved and used as dependent variables of public transport 
mode shares as shown in Table 5. 
Multiple linear regression analysis was conducted using 
the factor scores as predictor variables against public 
transport mode shares.The dependent variable in the 

Table 5: Model Summary of Regression Analysis 

Source: Author’s statistical analysis (2024) 

Table 6: Coefficientsa 

a. Dependent Variable: Traffic Volume
Source: Author’s statistical analysis (2024)

7.4 Regression Analysis Results 
A multiple linear regression analysis was conducted to 
examine the influence of three underlying factors on public 
transport mode shares. The model was found to be 
statistically significant, F(3, 29) = 9.977, p < .001, 
indicating that the combination of the predictors reliably 
explained variation in public transport mode shares. The 
model produced an R value of 0.713, suggesting a strong 
positive relationship between the independent variables 
and the dependent variable. The R Square value of 0.508 
implies that approximately 50.8% of the variance in public 
transport mode shares is accounted for by the three factors 

combined. After adjusting for the number of predictors, the 
adjusted R Square value stood at 0.457, indicating a 
moderately strong model fit. 

Further examination of the coefficients revealed that all 
three factors made significant contributions to the model. 
Factor 1 had an unstandardized coefficient (B) of 35.972 
(p = .011), suggesting that a one-unit increase in this factor 
is associated with a 35.972-unit increase in public transport 
mode shares, holding other variables constant. Factor 2 
was the most influential predictor, with a coefficient of 
48.189 (p = .001), while Factor 3 contributed with a 
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df1 df2 Sig. F Change 
3 29 .000 

Square Square the Estimate 
1 713a . .508 .457 74.40855 

R Square Change F Change 
9.977 .508 

Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

T Sig. 95% Confidence 
Interval for B 

Correlations 

B Std. 
Error 

Beta Lower 
Bound 

Upper 
Bound 

Zero-
order 

Partial Part 

(Constant) 264.950 12.953 20.455 .000 238.458 291.441 
Factor 1 35.972 13.154 .356 2.735 .011 9.070 62.874 .356 
Factor 2 48.189 13.154 .477 3.664 .001 21.287 75.091 .477 
Factor 3 39.528 13.154 .391 3.005 .005 12.626 66.431 .391 

.453 .356 

.562 .477 

.487 .391 

Change Statistics Model R R Adjusted R Std. Error of 



coefficient of 39.528 (p = .005). The standardized beta 
coefficients for Factor 1 (β = .356), Factor 2 (β = .477), 
and Factor 3 (β = .391) further indicate that Factor 2 had 
the greatest relative effect on traffic volume, followed by 
Factors 3 and 1, respectively. 

All predictors had statistically significant t-values, and 
their 95% confidence intervals did not include zero, 
reinforcing the reliability of their contributions to the 
model. The standard error of the estimate was 74.41, 
indicating the average deviation of observed traffic volume 
values from the predicted values. In summary, the 
regression model demonstrates that the identified factors 
significantly and positively influence public transport 
mode shares in the study area. These findings underscore 
the importance of the examined variables in shaping traffic 
conditions and provide a quantitative basis for policy and 
planning interventions. 

7.5 Geographically Weighted Regression (GWR) 
Estimation 

To achieve this objective, we employed GWR, a technique 
that allows for the exploration of spatial heterogeneity in 
the relationships between built environment factors and 
public transport mode choice across Uyo Urban. This 
method was chosen to examine how different urban 
characteristics, such as population density, road network 
density, and proximity to public transit, influence public 
transport use differently in various parts of the city. 
The study area was delineated into TAZs, which served as 
the spatial units for the analysis. TAZs are commonly used 
in transportation planning studies as they aggregate travel 
behaviour and urban characteristics in a way that aligns 
with transportation and land use patterns. These zones 
were selected to provide a meaningful scale for analyzing 
public transport mode share at a localized level. 

7.6 Data Preparation 
Built environment variables as documented in table 1 
were collected in each TAZ. To reduce multicollinearity 
and simplify the analysis, PCA was performed on the set of 

built environment variables. This technique helped identify 
underlying patterns and reduced the dimensionality of the 
dataset.Component scores were calculated for each TAZ, 
which quantified the strength of the various latent factors. 
These component scores were then used as independent 
variables in the GWR model to assess their relationship 
with public transport mode share. 

The study applied GWR to assess the spatial variations in 
the relationship between the built environment factors 
(represented by the PCA-derived component scores) and 
the public transport mode share at the TAZ level. GWR 
allows for the estimation of separate regression 
coefficients for each spatial unit, offering insights into how 
the effect of each built environment factor varies across the 
urban landscape. 

The public transport mode share was treated as the 
dependent variable, while the PCA component scores 
served as independent variables. The adaptive kernel 
method was employed to optimize the bandwidth of the 
GWR model, ensuring that spatial variations in the 
relationship were accurately captured. The bandwidth 
selection was guided by minimizing the Akaike 
Information Criterion (AICc). 

7.7 Spatial Visualization of Results 
The results from the GWR analysis were visualized 
through thematic maps, which displayed the local 
regression coefficients for each TAZ. These maps 
provided a clear picture of spatially varying relationships, 
showing areas where certain built environment factors had 
stronger or weaker influences on public transport mode 
choice as shown in Figure 3a-c below: 
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Figure 3(a) Showing accessibility and infrastructure quality in Uyo Urban area 

Figure 3(b) Showing distribution of environmental constraints in Uyo Urban area 
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Figure 3(c) Showing distribution of mobility behavior factors in Uyo Urban area 

The spatial variation in the influence of built environment 
factors on public transport mode choice in Uyo Urban was 
examined using GWR. The results, presented in three 
thematic maps (Figure 3(a-c)), reveal substantial spatial 
heterogeneity, indicating that the effects of built 
environment characteristics on public transport use differ 
considerably across TAZs within the study area. 

Figure 3(a) illustrates the spatial distribution of the local 
coefficients for the first built environment factor. The map 
shows both positive and negative associations with public 
transport mode choice across the urban space, suggesting 
that this factor encapsulates characteristics such as road 
network connectivity, land use compactness, and transit 
accessibility. Zones located in the south-eastern and 
central parts of Uyo particularly Zones 7, 9, 18, and 20 
exhibit high positive coefficient values. This implies that 
the built environment in these areas is conducive to public 
transport use. Conversely, the north-western zones, 
including Zones 28 to 33, show negative coefficient 
values, indicating that built environment conditions in 
these areas may be less favourable for public transport, 
potentially due to low population density, limited transit 
services, or car-dependent infrastructure. 
Figure 3(b) presents the local coefficients for the second 
built environment factor, which uniformly exerts a 

negative influence on public transport mode choice across 
all TAZs. Although the direction of influence remains 
consistent, the strength varies spatially. The strongest 
negative impacts are observed in the southern 
zonesparticularly Zones 4, 5, 6, and 7 suggesting that these 
areas may be characterized by urban sprawl, poor 
pedestrian infrastructure or limited transit coverage. In 
contrast, the north-western zones, such as Zones 29, 30, 
and 31, still exhibit negative coefficients but with 
relatively weaker magnitudes, possibly are reflecting more 
neutral or transitional built environment conditions. 

Overall, the thematic maps underscore the presence of 
significant spatial heterogeneity in the built environment’s 
influence on public transport mode choice. These findings 
point to the need for location-specific planning 
interventions. While transit-supportive zones may benefit 
from reinforcing existing infrastructure and services, zones 
where the built environment poses barriers to public 
transport use require targeted improvements. The spatial 
insights provided by the GWR and the accompanying 
maps offer a strong empirical foundation for evidence-
based land use planning, infrastructure investment, and 
policy formulation aimed at promoting sustainable urban 
mobility in Uyo Urban. 

AGILE: GIScience Series, 6, 14, 2025 | https://doi.org/10.5194/agile-giss-6-14-2025 10 of 17



Figure 4:  The WGR composite map of public transport mode determinants inUyo Urban 

The Figure 4 above illustrates the spatial distribution of 
factors influencing public transport mode share across 
Uyo Urban Area. The composite map illustrates the 
spatial variation of key built environment factors across 
TAZs in Uyo. TAZs 9, 10 and 5 for instance, reflect 
higher concentrations of positive built environment 
attributessuch as dense road networks, mixed land use, 
and access to transit conditions that are likely to 
encourage greater public transport mode share. 

Conversely, lighter zones TAZs 27, 28 and 
31exhibitslower built environment scores, indicating 
spatial disadvantage or car-oriented environments, which 
may discourage public transport use and increase 
reliance on private vehicles or walking for longer 
distances.This spatial disparity confirms that public 
transport mode share is not evenly distributed across the 
urban area, and is strongly influenced by built 
environment characteristics. Areas with higher scores 
align with transit-supportive urban form, reinforcing the 
study’s hypothesis that built environment plays a critical 
role in shaping transport behaviour. 

The analysis reveals notable spatial disparities across the 
TAZs. Zones with high positive deviations (red shades) 
are concentrated in areas with robust infrastructure and 
high road network density, suggesting efficient public 

transport service coverage. In contrast, zones with low or 
negative deviations (blue shades) are predominantly 
located on the urban periphery or in regions with limited 
connectivity, highlighting the need for targeted 
interventions to enhance public transport accessibility 
and service delivery. 

The WGR model underpins the spatial analysis, 
transforming quantitative findings into a spatially 
explicit representation. This approach provides a clear 
visualization of how determinants influence public 
transport mode share across the urban landscape, thereby 
facilitating the identification of priority intervention 
areas. 

8 Discussion of Findings 

Geographically Weighted Regression (GWR) Results 
The GWR analysis provided valuable spatial insights, 
revealing spatial heterogeneity in the relationships 
between built environment factors and public transport 
mode choice across Uyo Urban. By utilizing TAZs, the 
analysis highlighted how the impact of factors like 
population density, road network density, and proximity 
to public transit varied across different areas of the city. 
The GWR model, optimized by minimizing the Akaike 
Information Criterion (AICc), captured spatial variations 
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in how built environment factors influence public 
transport mode share. The thematic maps produced from 
the analysis showed that in some TAZs, factors such as 
accessibility and infrastructure qualityspecifically transit 
supply and proximity to transit stopshad a stronger 
impact on public transport use, whereas in other areas, 
environmental constraintslike street density and road 
width played a more significant role. These findings 
suggest that public transport policies and interventions 
must be tailored to the specific characteristics of each 
neighbourhood to address spatial disparities in public 
transport usage. 

8.1 Policy Implications 
The findings from this study have important implications 
for public transport policy and planning in Uyo Urban. 
First, improving accessibility and infrastructure qualityis 
essential for boosting public transport usage. 
Investments in expanding transit supply, enhancing road 
connectivity, and ensuring that transit stops are more 
accessible to residents can significantly improve public 
transport demand. 

Second, addressing environmental constraintsespecially 
in areas with high road widths and street densitiescan 
help alleviate factors that discourage public transport 
use. This might involve improving urban safety, 
reducing noise pollution, and addressing socio-political 
challenges that hinder the attractiveness of public 
transport. 

Lastly, the analysis of mobility and travel 
behaviouremphasizes the importance of aligning public 
transport systems with commuter preferences. This 
includes minimizing travel times and offering flexible 
schedules that cater to commuter needs. Understanding 
and adapting to commuter behaviours is key to 
improving public transport service delivery and making 
it a more appealing option. 

9 Conclusion 

This study demonstrates that public transport mode share 
in Uyo Urban is influenced by a combination of 
accessibility, environmental factors, and commuter 
behaviours. The findings from the PCA, regression 
analysis, and GWR highlight the need for a multi-
dimensional approach to public transport planningone 
that considers not only infrastructure improvements but 
also the social, environmental, and behavioural contexts 
that shape commuting patterns. Tailoring interventions 
to the specific needs and characteristics of different 
neighbourhoods is essential to fostering sustainable and 
efficient public transport systems in Uyo Urban and 
similar urban settings. 
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APPENDICES 

 

Appendix I 

KMO and Bartlett's Test 
Kaiser-Meyer-Olkin Measure of 
Sampling Adequacy. 

.527 

Bartlett's Test of 
Sphericity 

Approx. Chi-
Square 

147.573 

df 45 
Sig. .000 

 

Appendix 11 

Total Variance Explained 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulativ

e % Total 
% of 

Variance 
Cumulativ

e % Total 

% of 
Varianc

e 
Cumulati

ve % 
1 4.107 41.072 41.072 4.107 41.072 41.072 4.101 41.011 41.011 
2 1.303 13.030 54.102 1.303 13.030 54.102 1.304 13.036 54.047 
3 1.266 12.664 66.766 1.266 12.664 66.766 1.272 12.719 66.766 
4 .915 9.149 75.915       
5 .746 7.461 83.376       
6 .577 5.771 89.147       
7 .488 4.882 94.029       
8 .380 3.800 97.829       
9 .150 1.501 99.330       

10 .067 .670 100.000       
Extraction Method: Principal Component Analysis. 
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Appendix IV 

 

Rotated Component Matrixa 

 
Component 

1 2 3 
X7 .882  -.246 
X1 .880  -.159 
X6 .762   
X5 .760   
X4 .701 .120 .237 
X2 .657 -.108 .269 
X9 -.235 .907  
X3 .554 .666  
X8 .231  .782 
X10 .231  -.658 
Extraction Method: Principal Component Analysis.  
 Rotation Method: Varimax with Kaiser Normalization. 
a. Rotation converged in 4 iterations. 
 

Appendix v 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence 
Interval for B Correlations 

B 
Std. 
Error Beta 

Lower 
Bound 

Upper 
Bound 

Zero-
order Partial Part 

1 (Constant) 264.950 12.953  20.455 .000 238.458 291.441    
Factor Scores 1 35.972 13.154 .356 2.735 .011 9.070 62.874 .356 .453 .356 
Factor Scores 2 48.189 13.154 .477 3.664 .001 21.287 75.091 .477 .562 .477 
Factor Scores3 39.528 13.154 .391 3.005 .005 12.626 66.431 .391 .487 .391 

a. Dependent Variable: Public Transport mode Share 
 

Appendix v1 

 

Model Summaryb 
 

 

 

 

 

 

 

Model R 
R 

Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

Change Statistics 
R Square 
Change F Change df1 df2 

Sig. F 
Change 

1 .713a .508 .457 74.40855 .508 9.977 3 29 .000 
a. Predictors: (Constant), Factor Scores3, Factor Scores 2, Factor Scores 1 
b. Dependent Variable: Public Transport mode Share 
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Appendix v11 

 

ANOVAa 
Model Sum of Squares df Mean Square F Sig. 
1 Regression 165716.908 3 55238.969 9.977 .000b 

Residual 160562.348 29 5536.633   
Total 326279.256 32    

a. Dependent Variable: Public Transport mode Share 
b. Predictors: (Constant), Factor Scores3, Factor Scores 2, Factor Scores 1 

 

Appendix v111 

 

 

S/N Accessibility and 
Infrastructure  Quality 

Environmental 
Constraints 

Mobility and Travel 
Behaviour 

Public Transport 
Mode Share 

1 .00636 .24750 .19650 300.00 
2 .29243 1.38387 1.63815 380.00 
3 -.41524 -1.50749 -.83234 370.00 
4 .52015 -.49448 -1.03116 305.00 
5 -.56327 -1.07070 -1.44746 400.00 
6 -.29890 -.86230 -.68414 427.00 
7 .80690 .32335 -1.08710 293.00 
8 -.40940 -1.10950 .84872 200.00 
9 2.26393 .23200 -1.13485 425.00 
10 -.78681 .25926 -.65997 385.00 
11 3.32621 -.47711 .21315 385.00 
12 .27994 .61411 -.29821 234.00 
13 .58163 -.63098 -.12123 275.00 
14 -.33711 3.03058 .45545 285.00 
15 -.59807 .94566 -.79786 191.00 
16 -.57092 .27705 .82577 350.00 
17 -.25916 -.29759 -.09828 356.00 
18 -.86398 .05025 .19717 358.00 
19 -1.22892 1.28024 -.66704 373.00 
20 -1.25055 .84348 .25168 229.00 
21 -.69685 -.69051 -.08996 295.00 
22 -1.01703 .10840 1.52264 103.00 
23 -.78372 -.50645 -.39568 457.00 
24 -1.27744 -1.83619 .59832 336.00 
25 .06921 .95737 -1.42007 320.00 
26 1.44769 -.24901 2.32035 242.00 
27 1.07224 -.08733 .11633 170.00 
28 .80350 .36712 1.89366 178.00 
29 .11391 .32470 -.50980 168.09 
30 .02377 1.45704 -.76248 335.35 
31 -.23602 -1.42599 .87725 323.56 
32 .54278 -.71883 -1.30890 254.54 
33 -.55728 -.73753 1.39140 184.89 
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