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Abstract. Information Retrieval is a set of techniques re-
lated to identifying and selecting documents from a very
large collection of candidate documents based on their
content. Traditionally, information retrieval is based on
text documents and terms and various techniques for rank-
ing the relevance of terms in documents. As an extension
and to simplify the interaction of a user, however, tech-
niques have been added enabling facet search. In this case,
a search based on keywords or phrases is conducted. While
doing this step, statistics on very specific low-rank proper-
ties of the documents are collected, e.g., price range, user
ratings, color, manufacturer. This is then presented to the
user together with search results in order to allow the user
to filter or refine the search with respect to these queries. In
this paper, we ask the question how meaningful facets can
be computed for spatial databases and how this can be used
to explore spatio-textual datasets exploiting such facets as
an intuitive yet powerful information discovery mecha-
nism beyond semantic categories. We show the feasibil-
ity of this approach on synthetic datasets, OpenStreetMap
data, Wikipedia data, and social media data.

Submission Type. Algorithm; Software;

BoK Concepts. [AM10] Data mining; [AM2] Query op-
erations and query languages

Keywords. Geospatial Information Retrieval; Social Me-
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1 Introduction

The rise of social networks, positioning, navigation, and
ubiquitous Internet access has led to a situation in which
an ever growing amount of textual information (e.g., social
media messages, encyclopedia entries, messages, news ar-
ticles) has become available for processing. At the same
time, a lot of information related to human population is
georeferenced, either explicitly by giving place or coor-

dinate information, or implicitly as the information con-
tent of a data object has a local relevance. As a conse-
quence, we are left with datasets in which a small amount
of the data is explicitly georeferenced, while the majority
of the available data are not. For these datasets, novel tech-
niques are needed that combine developments from the
text search community and the spatial computing commu-
nity (Hu et al., 2022). With this paper, we present a new
idea towards this direction.

Information retrieval is a family of techniques that finds a
set of documents from a large set of candidate documents
following a concept of relevance. Traditionally, specific
document models have been employed in which a docu-
ment is represented as a set of terms together with their fre-
quencies. In this context, term refers to words in the sim-
plest approach. However, it commonly refers to the word
stem which is a certain representation of the set of all flec-
tions of a word. For example, “company” and “companies”
are mapped to their word stem “compan”. Finally, terms
can also refer to other information such as n-grams repre-
senting sequences of characters. In this setting, a common
measure of importance for terms in documents is given
by its relative frequency within the document. Roughly
speaking, if a term appears more often, then it is more rel-
evant to the document.

Now, the collection of documents, often called corpus, is
transformed into a data structure for efficient lookup, most
often into some sort of inverted index. In this case, the
relation of a term being an element of a document is “in-
verted” in the sense that the index does not list the words
in documents, but the documents for given words. By sort-
ing both the set of terms and the set of documents for each
term, quite efficient lookups can be made not only for doc-
uments that contain certain words, but as well as for doc-
uments that contain multiple words. During this approach
to information retrieval, two basic query semantics can be
distinguished wherein one model is called Boolean search.
In this case, a query consists of an expression built from
terms using relations AND, OR, and NOT combined with
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parantheses for precedence modification. The other model
is known as probabilistic ranking queries. In this case, the
Information Retrieval system is supposed to rank docu-
ments based on some notion of relevance for the given
query and enable the quick retrieval of the top k docu-
ments according to this ranking function.

In order to empower the user with additional features be-
yond formulating queries manually, three major lines of
work have been established: query augmentation, rele-
vance feedback, and facet search.

In query augmentation (Carpineto and Romano, 2012), the
set of documents mined from a given query is used to ex-
tend the query with additional terms probably expanding
across semantic relations, otherwise hidden. In this case,
a query is used to construct a small result set. Then, the
top terms from the result set can be carefully added to the
query and the query is re-run. In fact, this means that words
that are important to the top results of an initial search are
used to broaden the coverage of the ranking function. This
can be helpful to overcome barriers created by synonyms
across languages. However, this scheme will also diverge
from the initial meaning of the query such that one has
to control the amount of terms being added and integrate
user feedback in the search expansion in order not to ac-
cidentally reduce the specificity of the query beyond what
is intended. Some authors present results on text datasets
that even claim query expansion is often at least not posi-
tive for the power of the search system (Peat and Willett,
1991).

The second mechanism of relevance feedback is quite sim-
ilar (Harman, 1992). The aim is to expand the query with
more relevant information. But this time, the relevant in-
formation is obtained by presenting the user with a few
results, either top results or maybe a sample, and asking
the user to mark some of these results as either “good”
or “bad” in terms of the query intention. Then, the Infor-
mation Retrieval system can use the probabilistic model
reversely to identify the terms which would have realized
a minimal average score for the set of “bad” results and a
maximal average score for the set of “good” results from
the initial search. This refinement can be iterated.

The third technique is known as faceting or facet search.
Facets are typically categorical properties that are associ-
ated with each document. For example, a hotel might be
associated with the number of hotel stars or a shirt might
be associated with all colors in which it is available. The
most common case of using facets is to enable the user to
quickly narrow down a search by proposing him the facet
values of the initial research result (e.g., the price range or
number of hotel stars) in order to filter the result set of the
otherwise quite unspecific search. For example, searching
for a hotel in a tourist city near the beach is likely not very
specific as there will be thousands of offers. But presenting
the user with semantic key information like price range,
availability of services such as parking or restaurant, and
distance to the beach, can help identify more relevant re-
sults that would be difficult to obtain by pure text search.

The main contributions of this paper in this context are:

• The introduction of a novel concept of supervised and
unsupervised spatial facet search;

• The implementation of a scalable interactive system
for spatial facet search;

• The demonstration of the power of a novel and inter-
active query mechanism in multiple, large real-world
datasets.

In contrast to most related work, spatial facets are not ap-
plying spatial information directly within the search. In-
stead, we mine textual representations of the involved spa-
tial objects. It is worth noting that the mechanism is de-
signed to work on hybrid datasets where some, but not all
of the documents, are georeferenced. This makes it signif-
icantly different from other related work in which a spatial
component is prescribed for all documents. This is also
the nature of common big datasets of text such as those
mined from social media (e.g., from Twitter or X) or from
Wikipedia wherein not all documents have geolocation at-
tached.

The remainder of this paper is structured as follows: In
Section 2, we present traditional facet search as part of in-
formation retrieval and introduce our novel spatial facet
search queries in this context and give examples on syn-
thetic data. Then, in Section 3, we explore the behavior on
two real-world datasets including (1) a high-quality cor-
pus of rather long documents mined from OpenStreetMap
and German Wikipedia and, (2) a huge real-world dataset
of noisy and low-quality short text taken from the Twitter
public sample. Based on the insights of the case studies,
we remark on open problems and research directions in
Section 4. Section 5 gives links to related work in informa-
tion retrieval and spatial keyword search. Finally, Section
6 concludes the paper.

2 Spatial Facet Search and Spatial Facet Mining

In this section, we describe some aspects of the class of in-
formation retrieval system underlying our implementation
and experiments, then introduce the spatial facet queries.

2.1 Motivation and Setting

Most information retrieval systems have two basic opera-
tions. One is indexing which is bringing a given document
into a searchable representation by organizing it inside an
optimized data structure called index. The second one is
querying in which the index is exploited to quickly scan
candidates for search results, rank them based on a crite-
rion of relevance and present them to the user.

For the indexing operation, keyword search engines are
usually based on a data structure of an inverted index.
These data structures are based on indexing strings by
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managing ordered lists of document identifiers of all the
elements containing a given keyword.

For the basic keyword search operation, each keyword of
the query gives rise to an ordered list of document identi-
fiers and thus, they can be iterated together in an ordered
fashion by advancing the list pointer with minimal doc-
ument ID. In this way, even negated terms can be easily
tracked and documents that contain the given word can be
removed.

These indices can be augmented to define a query exten-
sion mechanism. Given a set of document IDs, one can
efficiently propose keywords to add to the query in order
to maximize the rank of the set of given document IDs.
In order to do this, a second inverted index is maintained
in which all terms are indexed on documents. That is, we
can easily retrieve all terms given in a document. This fa-
cility is useful for query augmentation as in the following
definition.

Definition 1. Given a database of documents D com-
posed of documents di each consisting of weighted terms
(tj ,ωj), a keyword query Q, and a set of documents E =
{ei}, the augmentation query for (Q,E) in D returns a
set of terms to add (OR or AND) to the query in order to
maximize the rank of the elements of E. These keywords
can be used to “augment” the query.

One design consideration for such information retrieval
systems is that the index files contain the right amount
and selection of information. The documents themselves
are usually held in some background storage and are only
materialized on an explicit request, e.g., when presenting
the top 10 results to the user. But, it is equally important
to include additional information in the index itself such
that it can be used in ranking and, for more complex query
semantics to avoid unnecessary document materialization.

For example, positional information of terms (where in
the text they are observed in relation to other keywords)
allows for phrase queries and precedence queries giving
all documents in which a word precedes another.

In addition to positional information, some information
can be put into the index as well which helps the user in-
teract with the search. A generic way is to assign a handful
of arbitrary values to each of the documents. For example,
we can add Boolean terms for metadata such as the file-
type allowing for querying only documents in the PDF file
format.

One common practice for embedding such information is
by prefixing. For the sake of keyword search, text is of-
ten preprocessed (lower-cased, stemmed, cleaned). But if
only lowercase letters appear, it is a natural choice to pre-
fix terms with upper case letters and to form queries using
these prefixes. For example, we could index a PDF file
generating a set of terms contained in the PDF file. We
prefix all of these terms with the letter ‘Z’. We then add a
term “Tpdf” where the prefix “T” is understood as filetype.
Then a query like “keyword query words filetype:pdf”

could be translated to a query “Zkeyword Zquery Zwords
+Tpdf” actually searching for content words as given,
but constraining the search to documents that have been
marked as being a PDF file.

The downside of embedding data with prefixing is that
the data itself is represented as a subset of the terms. For
some data, this does not make too much sense, and there-
fore, additional values can be stored with each document
in a special place that is materialized to the main mem-
ory on index traversal. At the same time, it is inefficient to
look up keywords given a document ID in the secondary
inverted (document=>terms) indices during index traver-
sal in the primary index (term=>document) as this would
lead to frequent cache misses, paging overhead, and ran-
dom disk I/O. That is, we might want to embed certain
values such as a file type specification directly into the
primary index being traversed. In addition, certain values
with complex semantics including timestamps or measures
will need special treatment during search and could not
even be covered by adding prefixed keywords. Hence, we
need to be able to store a selected amount of special in-
formation together with our document IDs right within the
primary inverted index.

One central technique that needs such non-keyword values
is facet search. In traditional facet search, a query is run
over a much larger range of results in the background and
the values of the result are collected and presented to the
user as options to narrow down the search.

Definition 2. Given a database of documents D composed
of documents di each consisting of weighted terms and a
few values vk, e.g.,

di = ({(tj ,ωj)} ,v0,v1, . . .)

and a query Q, the facet query of depth N on a value slot
vk with aggregation function C is defined to be the query
that evaluates the N very well-ranked documents1, reads
their value slot vi and maintains an aggregate of all visited
documents using an online aggregation function C.

In a web shop, value slots can be, for example, assigned
to price and color. Then, the search engine visits a few
thousand objects fulfilling the given query, counts the oc-
currences of values and presents the most frequent values
as additional filters in a sidebar. In practice, for the val-
ues in such facets, suitably prefixed terms are added to the
documents in order to run the facet-augmented queries ef-
ficiently.

2.2 Supervised Spatial Facet Search

Our approach to facets in spatio-textual databases is now
to turn this faceting mechanism into a spatial search tool.
First, we reserve a slot for the location of a document given

1For implementation efficiency, neither ordering nor strict
top-k is enforced in this setting, instead the probabilistic bounds
used for efficient index traversal introduce a small error.
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as a pair of coordinates. Then, a given query is executed
and we collect information from this value slot for a com-
parably large number of well-ranked documents resulting
in a set of points.

Introducing spatial operations and relations on this set of
points now defines spatial facet search:

Definition 3. Given

1. a database D of documents di, some of which asso-
ciated with spatial location pi,

2. a keyword query Q,

3. a number N of documents to inspect,

4. and a spatial polygon P .

The supervised spatial facet query

1. builds a set from the document IDs of the top N well-
ranked documents regarding Q,

2. filters this set with respect to P ,

3. computes augmentation terms using any query aug-
mentation scheme extending Q to maximize the rank
of the document in P .

In this setting, the spatial predicate “being contained in
P ” can be replaced with more complex spatial predicates
and the query augmentation scheme can involve the user
through term proposal or “blindly” augment the query with
the proposed terms.

If the documents from the selected spatial region can be
characterized by a text query to some extent, this mecha-
nism will propose suitable search terms to the user. While
this is similar to a spatial filter in which only documents
within the polygon P are being returned, it differs in two
important aspects:

• First, by representing the spatial constraint as a tex-
tual representation, the search is still applicable for
retrieval from non-spatial documents,

• Second, the user can observe the importance of a se-
lected region for certain terms by observing the aug-
mentation scheme for the same query in different spa-
tial regions P .

In this context, the supervised spatial facet for a given
tuple of a database, a query, a number of documents to
inspect, and a spatial predicate are defined to be the set of
proposed terms.

2.2.1 Example of a Supervised Spatial Facet Search
Scenario

Consider Figure 1(a) which shows a domain X wherein
documents are located as points with two colors. The red

and green bullets represent documents “red green” and,
similarly, the red and blue bullets represent documents of
content “red blue”. The figure further depicts three re-
gions: U and V which cover similar documents and U−

which covers only a single document “red green”.

Now, assume you are searching for the term “red”. This
term is contained in all depicted documents, therefore, all
points are results of the same rank.

When running a supervised spatial facet query (Q=
red,U), the search for the keyword “red” will visit all
documents. The supervision from the polygon U , how-
ever, reveals all documents of the type “red green”. As
a consequence, the information retrieval system will pro-
pose to add the keyword “green”. That is, the augmented
query will be Q= red OR green. Similarly, when faceting
(Q= red,V ), the outcome would be the opposite. This
means the system will propose to add the keyword “blue”.
However, if the polygon does contain green and blue in the
same proportion, it won’t propose a keyword for an exten-
sion. Finally, when faceting on (Q= red,U−), we will as
well be proposed to add the keyword “green”. The result-
ing query for “red OR green” would then be able to extend
over the whole spatial region U .

In summary, when we create a facet out of all documents
that lie within the set U or even the smaller set U− that are
discovered in a search, we will discover the word “green”
and add it to the query.

By running this augmented query (irrelevant of whether
augmented on U or on U− as weights are not relevant in
this example), we will recover the set of documents within
U in our search.

From an application point of view, this means that we can
induce a spatial constraint on the query in this dataset, but
neither by constraining document locations (result set fil-
tering) nor by extending the information retrieval model
(spatial information retrieval), but just by finding words
that support our expected result set.

Note that even in this oversimplified example, the power-
ful aspect is that given a specific spatial object (e.g., U−),
a spatially extended result set is generated. In other words,
queries can extrapolate spatial inputs. This is not true for
traditional spatial information retrieval based on filtering
or extending with spatial predicates.

Furthermore, note that the whole system is nowhere con-
strained with respect to connectivity. The polygon U could
be split into a multipolygon of many pieces which would
not affect the efficiency of the approach beyond a more in-
volved point in a multipolygon test. This is in contrast to
many spatio-textual indexing approaches in which space is
represented by rectangles and query processing complex-
ity is increasing with the number of rectangles. This means
non-local facets, like facets for all major cities of a coun-
try, can be generated comparably easy.

On the negative side, however, note that we expect the spa-
tial features to be expressible as a query. If this is not the

AGILE: GIScience Series, 6, 12, 2025 | https://doi.org/10.5194/agile-giss-6-12-2025 4 of 12



= „red green“ = „red blue“

𝑈−

𝑈 𝑉

(a) A simple example of a dataset. To the left, within the set
U , documents contain the two colors as terms, and similarly
on the set V

(b) Result of Facet Clustering in the Unsupervised Facet Min-
ing Example

Figure 1. Synthetic Datasets for Illustrating Spatial Facet Search

case, the system must fail. Or more concretely, we can only
focus our search on spatial facets that are supported by
words with a sufficiently local spatial distribution giving
a limit to the applicability of this approach. In real-world
spatio-textual datasets, such words are very common as
local place names.

2.3 Unsupervised Spatial Facet Search

We introduce an unsupervised variant of spatial facet
search by not relying on a given spatial predicate but
rather, mining spatial specifications using clustering:

Definition 4. Given

1. a database D of documents di, some of which asso-
ciated with spatial location pi,

2. a keyword query Q,

3. and a number N of documents to inspect.

The unsupervised spatial facet query

1. builds a set from the document IDs of the top N well-
ranked documents regarding Q,

2. clusters the point data using any spatial clustering
algorithm

3. computes a spatial summary (e.g., convex hull, α-
shape) of the relevant clusters.

Thus, an unsupervised spatial facet query returns a set
of spatial predicates for which supervised spatial facet
queries seem reasonable. Such proposed regions can be
ranked by the difference in the average rank of the doc-
uments in the region for the query Q and the aug-
mented query Q̃ documents, simply speaking by their
“augmentability”.

Note that the probabilistic weighting of the documents
identified could be integrated into the spatial clustering,
but we leave this as an area for future work.

We introduce a final query in this context which completes
our spatial information retrieval system in the following
sense: while the supervised spatial facet query takes spatial
knowledge to steer a search and the unsupervised spatial
facet query mines spatial knowledge from the search, the
spatial response map query mines spatial information from
the behaviour of text search.

Definition 5. Given a database D of documents di, a spa-
tial subdivision of space (e.g., a grid) and a term t, the spa-
tial response map of t is defined to be the map coloured
from the weight of the term t for augmenting the query Q
towards the current region of the grid. If the term is not
proposed by a spatial supervised facet query at all in a
specific region, the weight is considered a missing value.

2.3.1 Example Unsupervised Spatial Facet Query

For illustrating the unsupervised spatial facet mining ap-
proach, we create a simple clustered dataset similar to the
dataset before. We create a dataset of spatial documents
from three bivariate normal distributions N2 with means
and covariances as follows:
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U1 =N2

(
µ=

(
−10
0

)
,Σ=

(
1 0
0 1

))
, “black red”,

U2 =N2

(
µ=

(
10
0

)
,Σ=

(
2 0
0 2

))
, “black green”,

U3 =N2

(
µ=

(
0
10

)
,Σ=

(
3 0
0 3

))
, “black blue”,

X = U1 ∪U2 ∪U3

This dataset is used for querying “black”, which is con-
tained and relevant for all documents. Therefore, the spa-
tial values observed consist of all points. We run a cluster-
ing algorithm (DBScan with ϵ= 5,minPts = 3, Ester et al.
(1996)) on top of this and get the three clusters colored in
Figure 1(b).

For each of these clusters, the search engine is asked for
keywords maximizing the rank of the documents within
these clusters and the engine reveals, as expected, that
the most helpful words are “red” for the first cluster
(bottom-left, documents of type “black red”), “green” for
the second cluster (bottom-right, documents of type “black
green”), and “blue” for the third cluster (top-middle, doc-
uments of type “black blue”)2.

2.4 Spatial Information Retrieval Process

With this paper, we extend the information retrieval pro-
cess with the following queries exploiting spatial informa-
tion assigned with documents:

• The supervised spatial facet query mining the most
relevant keywords in a given polygon (Def. 3),

• The unsupervised spatial facet query clustering the
location of high-ranked documents providing both
spatial summaries (e.g., polygons) and terms charac-
terizing spatial clusters (Def. 4),

• The response map query in which the spatial rele-
vance of a given keyword for a given query is visual-
ized (Def. 5).

Based on the availability of these queries, the information
retrieval process is refined as depicted in Figure 2. One
starts with a search based on a given basic query input by
the user. As usual in the domain of keyword-based search,
this query can consist of ranking terms, Boolean terms,
temporal range expressions, negations, wildcards, quota-
tions to avoid stemming and use positional information.

The user now enters a query. For example, “Rathaus
+ "München"”. This query searches for documents,
where Rathaus (German word for town hall) is rele-
vant and which contain (Boolean search) the unstemmed

2The two synthetic experiments can be run from Simple-
Datasets.ipynb in the published source code repository https:
//www.github.com/tumbgd/spatial_facet_search

term “München” (German spelling of Munich). Putting
“München” in quotation marks is important as the stem-
ming mechanism would otherwise turn “München” into
“Munch” which refers to a widely known Norwegian
painter.

This search is conducted and while searching for the most
relevant results, we collect location and score information
for all documents visited in this search.

In a second step, we visualize this spatial information
mined during result set generation as depicted in Figure
4. In this visualization, a spatial selection takes place ei-
ther by user input or by clustering. These selected sets of
documents can be used for steering the search towards this
set or away from this set by negating the augmentation ex-
pression. With this spatial selection in place, we compute
the most meaningful terms from the involved documents
separating them from the rest of the database. That is, a
set of terms that would increase the ranking of the selected
documents while decreasing the rank of others.

Finally, some of these augmentation sets can be added or
added with negation to the query refining the search. As
the result of this process is a valid query, we can iterate this
process in a loop until a convincing result is generated.

2.5 Data and Software Availability

In general, data and code for this publication are available
according to the following details:

The demonstrative implementation is available from https:
//github.com/tum-bgd/spatial_facet_search and is licensed
under Apache 2.0 license (our code). Note that other open-
source licenses can apply to dependencies. The implemen-
tation supports all queries.

Due to legal constraints and privacy concerns, we do not
share the dataset based on Twitter data; the dataset derived
from OpenStreetMap, however, is available at https://api.
bgd.ed.tum.de/datasets/spatialfacetsearch.

3 Case Studies

In this section, we present some case studies on real-world
datasets in order to show the feasibility of this approach.

3.1 Case Study on Wikipedia and OpenStreetMap

For experimental validation, we created a spatial subset
of German Wikipedia. The OpenStreetMap project allows
for connecting OSM spatial objects like houses, points,
streets, or polygons with Wikipedia articles. This feature
has good coverage in Germany.

We joined both datasets using this link. For each object in
a Germany extract of OpenStreetMap that contains a link
to Wikipedia, we extracted both the spatial information
from OpenStreetMap and the textual information from

AGILE: GIScience Series, 6, 12, 2025 | https://doi.org/10.5194/agile-giss-6-12-2025 6 of 12

https://www.github.com/tumbgd/spatial_facet_search
https://www.github.com/tumbgd/spatial_facet_search
https://github.com/tum-bgd/spatial_facet_search
https://github.com/tum-bgd/spatial_facet_search
https://api.bgd.ed.tum.de/datasets/spatialfacetsearch
https://api.bgd.ed.tum.de/datasets/spatialfacetsearch


„blue“
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Spatio-Textual Dataset

Query

Candidates Grouping
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Facets

𝑈

Augment
„green“
Terms

Augmentation

Figure 2. Spatial Information Retrieval Process with Augmentation

Figure 3. The spatial distribution of the dataset integrating Open-
StreetMap references and German Wikipedia articles

Wikipedia including an explicit title and slightly cleaned
text.

The dataset contains about 72,500 different spatial ob-
jects. But as in some cases where more than one object
refers to the same Wikipedia page, our decision to index
on Wikipedia ID instead of OSM ID reduced the dataset to
an index of 56,287 documents (average document length:
1507.8 characters, 2,079,264 distinct terms). Figure 3 de-
picts the spatial distribution of this corpus.

In this example, we search for the term “Kirche” (church)
in the dataset. More concretely, we will search for church
and observe the set of documents touched during search
generating a spatial facet. This contains all documents to-
gether with their score that have been visited while travers-
ing the inverted index for the given query “church”. Now,
we spatially select some documents and compute the terms
for query augmentation that maximize the rank of selected
documents. Therefore, we use two datasets on different
scales: German states (“Bundesland”) as well as counties
(e.g “Kreise und Regierungsbezirke”).

Figure 4 shows the results of augmenting the search for the
counties Berlin, Munich and Rhein-Kreis Neuss. We show
both the spatial facet of searching for “Kirche” (church),
and the spatially augmented results from adding the top ten
terms to the ranking search. Obviously, adding the self-
discovered terms leads to a good focus on the selected
region without filtering away all documents that did not
exactly fit the spatial region. This is especially important

for Berlin where the size of the spatial selection is signif-
icantly smaller than the extent of the urban agglomeration
around the city.

We can as well look at the terms and their weight
that have been discovered through this spatial selection.
In the case of Munich, we discover “München” with
a score of 56.8, “Bürgermeister” (“mayor”) with score
38.77, “Bahn” (“train”) with score 34.0 and “oberbay-
erisch” (“Upper Bavarian”) with score 33.1. The first term
“München” is obviously a toponym. The terms mayor and
train are slightly surprising, and Upper Bavarian is again
a clear and nice toponym. The surprising terms are query-
and corpus-specific toponyms. That is, as soon as we are
already searching for Munich and church, giving some
politicians roles as keywords, is helpful within Wikipedia.

For the case of Berlin, we get some religious terms first:
kirch (21.5) which is a stem from Kirche meaning church,
Nazarene (17.2), jesus (16.16), and followed by very local
toponyms like Schöneberg (15.5) being a district of the
city of Berlin.

For Rhein-Kreis Neuss which is a large county near
Cologne, we reveal keywords “Neuss” (62.9), “Köln”
(“Cologne”, 36.06), “Grevenbroich” (30.79), “Meer-
busch” (30.67) and “Büderich” (30.49) for augmentation.
This is interesting as this is a representative set of cities
from this area. Only Cologne is not part of Rhein-Kreis
Neuss though these counties touch with each other. But
Cologne is the archdiocese for all churches in Rhein-Kreis
Neuss explaining the importance of this city for churches
in the area and the relevance of this city for the county
within Wikipedia.

These examples show that the proposed process of spa-
tially focusing to a region, not by means of integrating ex-
act spatial search with probabilistic information retrieval,
but rather by finding a probabilistic description of the spa-
tial region which can be combined inside the same frame-
work of probabilistic ranking queries is working as ex-
pected and beyond what spatial keyword search delivers.
This is, however, due to the nature of the corpus being an
encyclopedia: a spatially-referenced article is a long and
detailed description of this very location providing a tex-
tual keyword link to relevant areas outside focus.
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(a) The initial facet when
searching for “Kirche”
(church)

(b) Berlin (augmented) (c) München (augmented) (d) Rhein-Kreis Neuss (aug-
mented)

Figure 4. The original and augmented facets for three spatial areas in Germany. The yellow dots represent top 20% records according
to their score. One can clearly see how a yellow cluster is formed in the area of Berlin (North-East), the area of Munich (South-East),
and near the river Rhine (Middle-West).

We also want to show examples where this approach fails.
For example, when the spatial focus is not small enough
such that no toponyms exist that correctly and sufficiently
describe the spatially selected set of results. For this anal-
ysis, we used the German states in order to assess how
far such large-scale spatial selections can be represented
through query augmentation.

As you can see in Figure 5 for a few examples, this seems
not to work. While augmenting changes in the score distri-
bution as well as the set that is being visited by the search
algorithm, one cannot easily see a spatial pattern in all of
those examples with the exception of Sachsen.

For Sachsen, it is interesting that Sachsen and Sachsen-
Anhalt are now covered by yellow dots indicating a signifi-
cant increase in hits in this area. Looking into the augment-
ing word gives us an explanation. For North-Rhine West-
falia, the search has been extended with a stem “kirch” of
“Kirche” (church) and stop words only (von [of], ist [is],
ein [a or one], im [in], die [the]). These words will appear
in all documents of Wikipedia as they belong to the core
of the German language. In a certain sense, the query aug-
mentation has modelled noise and finding out that these
terms have higher scores in the documents found in North-
Rhine Westfalia as opposed to the general.

For Sachsen, as well as “kirch” stemmed from “Kirche”
meaning church, has been added and stop words like
(“dem, wurde, ein”) and words obviously irrelevant to the
task (“ort” [place], “jahr” [year]). But, the word “Sachsen”
itself has been identified leading to the fact that a signif-
icantly higher score is given to hits in “Saxen” (Saxony)
and Sachsen-Anhalt (e.g., Lower Saxony). In this case, the
toponym Sachsen that is somehow relevant to Sachsen has
been correctly identified though it also applies to docu-
ments related to Sachsen-Anhalt (Lower Saxony).

In summary, we can conclude that injecting spatial infor-
mation on a county-scale does not work in general but, if

there exist widely-used toponyms at this scale, they will
most likely get identified.

3.2 Experiments on a Twitter social media corpus

In this section, we analyze a sample of the Twitter social
network API observed during 2017. We first index 13 mil-
lion tweets (12,940,000) with georeference for a database
with an average document length of 28.12 words.

As a first step, we implement an interactive search tool in a
web browser in which we can define polygons and search
for terms getting either the top results or the top augmen-
tation queries for a query polygon that can be interactively
edited.

Figure 6 depicts selected queries performed with the inter-
active web browser interface and their results. Within the
given Twitter dataset, we first search for the term “apple”
which refers to a fruit and a well-known computer com-
pany at the same time.

When running this query with faceting regions on very
large scales, we are proposed with keywords like “iphone”,
“iphone x”, and “tim cook”. This is within our expec-
tations as in these scales, the computer company Apple
clearly dominates tweets. However, when faceting East of
Sacramento, we also see proposals for “applehill” getting
quite strong. This is a local association of farmers3. Fur-
thermore, we can ask for the spatial response of the key-
word “iphone” in relation to the query “apple”. Figure 6(e)
and Figure 6(f) depict the spatial response of this keyword
in the top 20 query augmentation terms. The more red a
rectangle is displayed, the stronger the weight of the term
“iphone” in this area for faceting to this area. The interpre-
tation of such maps actually depends on the context, for
the term “iphone” on a global scale, we see urbanization

3https://applehill.com/
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(a) The initial facet when
searching for “Kirche”
(church)

(b) North-Rhine Westfalia
(augmented)

(c) Sachsen (Saxony) (d) Bayern (Bavaria)

Figure 5. The original and augmented facets for three states in Germany. No clear spatial trend is visible with the notable exception of
Sachsen (Saxony, Lower Saxony) giving rise to a yellow cluster in the Middle-East of Germany.

(a) Faceting “apple” over Belarus finds
Cyrillic words. A nice example of the
power of query augmentation.

(b) Faceting “beer” over Munich reveals
Oktoberfest (The world’s largest beer fes-
tival).

(c) Faceting “beer” over Cologne reveals
Gaffel and Kölsch (Gaffel is a famous
beer from around cologne and the type of
beer is known as “Kölsch”).

(d) Faceting “Bier” over Brugge reveals
“Straffe Hendrik” (a famous beer from
Brugge, see https://www.straffehendrik.
be/en/home).

(e) A High-resolution Response Map for
the keyword “iphone” in relation to a
query “apple”.

(f) A low-resolution response map for the
keyword “iphone” in relation to a query
“apple”.

Figure 6. Spatial Facet Examples on Twitter Real-World Datasets

patterns (more coastal areas, strong Europe, strong China)
showing that a meaningful, expected spatial feature was
revealed.

Finally, consider Figure 6(a) in which we facet the query
“apple” roughly to Belarus. In this case, it is nice to see
that we discover words in Cyrillic script for mobile phone
and photography. This could be used to conduct further
searches in documents in Cyrillic script.

A second experiment on this real-world social media data
reveals the power of the approach on the topic of beer.
When faceting beer over Munich, we are left with propos-
als of “munich”, “oktoberfest”, “festival”, “hellomunich”,
“sausage”, “hofbräuhaus”, “knuckle”, and “german” (and
some noise terms), see 6(b). This is a very reasonable
breakdown of the Munich beer culture as reported by
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tourists and local newspapers (e.g., “hellomunich”) in Mu-
nich.

Moving the window to Cologne brings up “köln”, “gaffel”,
“koelsch”, “instabeer”, “colonia”, and “dom”, among
other keywords. This, as well, is a good breakdown of
tourist messaging including beer types and traditional
words. See Figure6(c).

When moving the same frame over to Brugge (a Flem-
ish city in Belgium), see Figure 6(d), and adjusting the
search word to “Bier” which better captures the French
and German word (“bière”, “Bier”), we discover key-
words “straffe”, “brugs”, “hendrik”, “brugsezotbruges”,
“quadrupel”, “tripel”, “belgium”, “smelling”, “admiring”,
“yeast” and “gezelligheid”. All these words are related
to the beer culture around Brugge. For example, the old-
est brewery of the town, “Halve Maan” (founded 1546),
is discovered together with their beers “Brugse Zot” and
“Straffe Hendrik”. Furthermore, quadrupel and tripel are
specific types of Belgian strong ales.

This experiment shows the remarkable exploration power
of spatial facet searching and also, that tourists social me-
dia activity are a good measure of local cultural heritage
like the history of beer brewing and drinking in Western
Europe.

3.3 Discussion

We have presented two series of experiments on spatial
facet search. In the first series, we took very high-quality,
long text from the German Wikipedia with georeferences
mined from OpenStreetMap. It revealed that spatial facet
search in such clean data is very powerful and allowed us
to discover relevant keywords and to extrapolate from a
given spatial region. For example, identifying Cologne as
the kernel and connection of many smaller cities around
the river Rhine.

In addition, we showed that very weak text (Twitter with-
out advanced pre-processing) with very limited availabil-
ity of spatial information could successfully be mined spa-
tially using our proposed framework.

Hence, we have shown that spatial facet search follow-
ing the approach of this paper is a promising candidate
for practical geospatial applications. The real value of
the method, however, can only be evaluated in domain-
specific research in the next years.

4 Remarks on Open Questions and Future Work

With this paper, we extend the literature with an example
and process how modern information retrieval techniques
such as facet search and relevance feedback can be com-
bined in a spatial information retrieval setting. Though not
covered in this article, it is obvious that the same approach
can be used for temporal and spatio-temporal data by ex-
tending the polygon to a polytope in the space-time cube

and the clustering from spatial to spatio-temporal. In prac-
tice, timestamps can be added in an additional value slot
to allow for arbitrary influence on weighting.

In this section, we highlight a few open issues and areas of
research which we think are both interesting and promis-
ing as follows:

Determine the Number of Documents for Facet
Generation

One central parameter for this work is the number of doc-
uments that are visited during search. As a minimum, we
will visit those documents that allow us to proof that we
have found the top-k elements of the query. As a max-
imum, we could explore all documents. The first one is
most likely too small as facets are only generated from as
few results as are going to be displayed on screen. The last
one is maybe too heavy reducing interactivity.

Incremental Weighted Stream Clustering

An obvious candidate technique for scale detection and
automatic spatial augmentation is to apply unsupervised
clustering methods combined with cluster quality obser-
vations. In this work, we relied on clustering approaches
that need spatially local access to all points (e.g., k-means,
DBScan, OPTICS). It is interesting to research how such
algorithms can be replaced with incremental ones. Further-
more, the weight relative to the query should be incorpo-
rated into the query.

Toponym Quantification and Spatial Stop Words

We have seen in the example that some of the spatial query
augmentations revealed toponyms and some revealed stop
words. One interesting option is to query for all terms in-
dexed in the database and quantify the spatial distribution.
If it is sufficiently local - whatever this means - we have
detected toponyms. If the spatial distributions remain com-
parable, however, we have clearly identified words without
spatial meaning which might or might not be stop words.
Such classification could be interesting both for exploring
the corpus as well as for text mining on this corpus.

5 Related Work

This paper combines two major lines of research and de-
velopment in computer science. First of all, it is related
to keyword search, which is at the heart of the research
field information retrieval. At the same time, it is related
to spatial computing, most notably with papers related to
spatial keyword search in which spatial and textual as-
pects are combined.

Information Retrieval (IR) is a traditional research topic
in computing providing the backbone of the search engine-
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empowered Internet. The basic model of information re-
trieval is a document model in which a document is a
set of terms. Terms are scored relative to the document
itself and to the overall set of documents trading of the
frequency of the word in a document with the expected
frequency of a word. One widely-known and highly tra-
ditional approach for this weighting is based on TF-IDF
where the frequency of words within a document is re-
lated to the inverse document frequency capturing aspects
of the fraction of documents that contain this word Jones
(1972); Church and Gale (1999). This balances between
so-called stop words like “and”, “the”, and “for” appear-
ing frequently in all documents, and corpus-specific stop
words like “References” when indexing scientific papers
and the assumption that frequent words are more impor-
tant than infrequent ones.

In our paper, however, we rely on the BM25 weight-
ing scheme Robertson et al. (1999). A nice overview of
common weighting schemes is given in Cummins and
O’Riordan (2006).

Spatial data has attracted interest in the information re-
trieval community quite early. For example, the paper of
Larson dating back to 1996 presents a nice introduction to
spatial information retrieval, especially in putting it in con-
trast to exact database search Larson (1996). They already
proposed a spatial browsing application bridging between
term-based information retrieval and spatial querying. A
more recent paper of Hariharan et al. discusses how spatial
and textual information can be combined in a geographic
information retrieval system: by means of separate indices
as well as by hybrid indexing structures Hariharan et al.
(2007).

This paper links the topic of this work to the domain of
spatial computing and especially to a track of work re-
lated to spatial keyword search. A recent survey pro-
vides in-depth discussion of this field Chen et al. (2020).
In this survey, the authors distinguish three types of
queries: Boolean-Boolean (BB) in which spatial and tex-
tual queries are exact, Boolean-Ranking (BR) queries in
which the spatial proximity is used for ranking (e.g., a
top-kNN set of documents matching the query), and a Full
Ranking Query in which a monotonous combination of a
spatial and a textual relevance measure is used. Examples
and related work for these three directions are given in the
survey.

It is worth noting that these three query semantics do not
fit our work. We differ in the fact that we use a purely tex-
tual ranking wherein spatial information is not used dur-
ing ranking. But in order to make this spatial-aware, we
encode the spatial nature in toponyms found in the cor-
pus. Therefore, we represent a novel and fourth class of
queries. We term this as Proposal-Ranking queries in the
sense that the spatial information is used for keyword pro-
posal and query augmentation while the ranking remains
purely textual with the described advantages (covers non-
spatial elements as well, can detect informative corpus-
specific toponyms, remains fully explainable, avoids the

tradeoff between spatial and textual aspects) and disad-
vantages (if such spatial toponyms don’t exist, the search
cannot be focused and the spatial information remains in-
effective).

Recent work trying to combine information retrieval and
deep learning-based natural language processing is an in-
teresting development. This presents an interesting area of
future research, especially in how geometric representa-
tions of text embeddings can be used to propose keywords
or to induce an artificial geometry for spatial faceting
within this geometry. Some initial work on spatial key-
word search combined with text embedding is given in Oh
et al. (2018) and the behavior of such models on Twitter
has been discussed in Häberle et al. (2019).

6 Conclusion

With this paper, we introduced the novel problem of facet
extraction from spatial information retrieval systems and
proposed a few solutions to this which are useful in vary-
ing scenarios. We showed how the visiting of high-rank
search results’ associated spatial information can be used
to provide advanced query augmentation interaction pos-
sibilities to users. It also provided that spatial search in
the probabilistic document model is sometimes possible
in practice.

This is an important aspect as many other papers try to ex-
tend information retrieval systems with exact spatial pred-
icates which we think are not ultimately useful given the
underlying assumption that all meaning of a document is
encoded in the relations between terms, documents, and
the corpus. With this assumption, a spatial search for doc-
uments is only sensible if there are keywords with a clear
spatial focus. We show a mechanism, how such words can
be found.

In contrast to many approaches from the deep learning and
text mining field coming up today, it is worth noting that
the whole system is explainable by design. As we encode
all information retrieval parameters in a set of weighted
terms and as we modify the terms only with user interac-
tion, with which a user of the system is able to explain
the search results. In practice, this means that words that
might be subject to bias (including toponyms, gender, race,
etc.) could be proposed by the algorithm. However, we can
expect the user to be able to see this problem and to, prob-
ably, remove these problematic terms.

In summary, we propose a novel paradigm of information
retrieval in spatial datasets that do not require all docu-
ments being spatial. Instead, we rely on the expectation
that the interesting spatial aspects can be covered by key-
word search. We provide a highly efficient open-source
search engine including our techniques with a web user
interface for easy adoption.
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