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Abstract. Proximity plays an important role in Ge-
ographic Information Sciences. It underpins our
understanding of spatial dependence and spatial
structure, and is a key component of many com-
monly used analytical techniques. Despite this, it
remains a difficult concept to rigorously define.
Describing one geospatial object as "near" an-
other implies much more than a simple geomet-
ric relationship - with factors such as accessibil-
ity, utility and function also playing an important
role. Previous work has shed light on these rela-
tionships through the application of sophisticated
mathematical models which attempt to encapsu-
late both spatial and non-spatial aspects of prox-
imity. In this paper, we present a novel method
that uses Large Language Models (LLMs) to ex-
tract perceived proximity relationships from natu-
ral language. Using 20000 AirBnB listings in Lon-
don, we identify locations which are described as
"near" to each property and analyse their spatial
distribution. Our results reveal complex patterns
linking perceived proximity to accessibility, utilisa-
tion, and administrative prominence. We show that
locations with a broader area of influence often
correspond to higher transit connectivity or higher
place-level categories. While the Airbnb dataset re-
flects a specific, tourism-focused demographic, the
approach is generalisable to other sources of user-
generated text. This work demonstrates how LLMs
can support data-driven spatial analysis by surfac-
ing nuanced, context-sensitive geospatial relation-
ships embedded in everyday language.
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1 Introduction

The concept of proximity plays an important role
in the communication of geospatial information in
natural language (Hall and Jones, 2022). Describ-
ing a geospatial object as "near" other objects of-
ten carries more semantic meaning than directly
offering the object’s geographic coordinates. De-
spite this, the concept of "nearness" is not well de-
fined. The distribution of an object’s "nearby" loca-
tions might depend on position, function, audience
or time, as well as multiple other factors (Brennan
and Martin, 2012). For a human audience, pick-
ing apart these factors based on contextual infor-
mation is a relatively trivial task. For algorithms,
however, the loosely defined concept of "nearness"
makes it a more challenging assignment.

The lack of a formal definition of proximity arises
from the complex nature of distance (Brennan and
Martin, 2012). Viewing distance in a purely eu-
clidean sense, it would be straightforward to con-
struct a notion of proximity which characterises
concepts such as "near to" or "far from" via some
threshold. However, when we view distance in
functional terms, this method quickly becomes in-
tractable (Guesgen and Albrecht, 2000). Compli-
cating factors such as accessibility, topography, or
utility might influence our notion of proximity. Fur-
ther, the characterisation of locations as "nearby" a
geospatial object might depend on the assumed de-
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gree of spatial knowledge our audience has about
those locations, or the function of the information
being conveyed. For example, one may choose to
describe an object as near to a transit station, or
to a well-known point of interest - even if there
are closer locations which are less well known.
This suggests a "platial" aspect to proximity that
surpasses simple geometric relationships (Mocnik,
2022).

The importance of a coherent definition of prox-
imity extends beyond semantic analysis. It is well
known that geospatial phenomena have a tendency
for both spatial autocorrelation and spatial hetero-
geneity (Miller, 2004). Analytic techniques such
as geographically weighted regression (GWR) at-
tempt to address these factors, relying on some
prior notion of proximity to achieve this (Jiale Ding
and Du, 2024). Many applications of GWR assume
a euclidean definition of proximity (Comber et al.,
2020), however, this is often insufficient for captur-
ing many geospatial effects. Binbin Lu and Fother-
ingham (2014) found that including hedonic inde-
pendent variables indicative of accessibility, such
as road networks and travel times, improved the
performance of GWR on predicting house prices
in London, compared to a purely euclidean model.
Similar work by Kai Cao and Wu (2019) found that
a travel-time based GWR model outperformed both
ordinary least squares regression and euclidean
GWR on predicting house prices in Singapore.
Jingyi He and Yu (2023) also found that incorporat-
ing a population mobility matrix into GWR greatly
improved the model’s ability to capture social and
economic systems. These attempts, however, tend
to account for just one or two non-eucledian prox-
imity factors. In reality, proximity is a complex re-
lationship with many diverse contributing factors.
This is addressed by Jiale Ding and Du (2024), who
present a neural network approach for construct-
ing highly non-linear spatial weighting matrices for
GWR, citing significantly improved performance on
house price estimation in Wuhan, China.

Many methods for assessing geospatial proximity
have taken a geometric approach. Earlier efforts
have used Voronoi diagrams to discretise space
into regions of proximity relative to a collection
of reference objects (Gahegan and Lee, 2000).
While computationally simple, such approaches
do not model any effects beyond Euclidean dis-
tance. Later work by She et al. (2015) introduces
network-weighted Voronoi diagrams to model the
spatial distribution of events in a way that accounts
for relative accessibility between locations. Even
while accounting for non-euclidean effects, these
methods lack sufficient flexibility to handle the nu-

anced and variable way in which humans perceive
and discuss proximity in natural language.

Grütter et al. (2010) propose a qualitative ap-
proach to spatial proximity which accounts for
both human cognition and linguistic interpretation.
Their model uses administrative hierarchies to as-
sess nearness on spatio-thematic grounds - treat-
ing proximity as a subjective concept. Brennan
and Martin (2012) suggested an analytical method
that combines both purpose and domain to de-
rive a context-aware Impact Area—a teleologically
grounded region of influence for a given location.
For instance, proximity to a highway might differ
depending on whether the context is noise pollu-
tion or accessibility. Grütter (2019) extends this
idea into a coherent framework of proximity rela-
tionships, which supports the identification of hi-
erarchical neighbourhoods and the assessment of
spatial proximity. These approaches lean heavily
on the concept of perceived proximity, proposing a
subjective and relativistic account weighted by hu-
man cognition, platial attributes, and the specific
function under which a location is being consid-
ered.

Even the more flexible approaches discussed above
rely on a set of underlying assumptions about what
constitutes proximity. These assumptions attempt
to encapsulate the key factors contributing to pla-
tial proximity, and generalise these factors to all lo-
cations. This generalisation of assumed contribut-
ing factors means that highly localised and spe-
cific factors might not be captured. This can, at
least to some extent, be addressed with the adop-
tion of data-driven approaches (Jiale Ding and Du,
2024). By analysing the way proximity is perceived
in user-generated data sources, we can develop a
notion of locality and proximity which is based on
observed, rather than assumed, factors.

Implementation of this data-driven approach, how-
ever, is challenging. In order to identify described
proximal locations in text, we require sophisti-
cated language models. Transformer-based natu-
ral language models, such as Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2019) have proven to be effective in
identifying spatial relationships described in text
(Stock et al., 2022; Shingleton and Basiri, 2024).
Such models, however require large amounts of
structured data to effectively train. Automated ge-
ographically informed tagging methods, such as
that employed by Shingleton and Basiri (2024), can
be effective for well-defined relationships, such as
containment or adjacency, but are challenging to
apply to the more nebulous concept of proximity.
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Large Language Models (LLMs) are very large,
transformer-based models which have been pre-
trained on vast quantities of unstructured data
(Bharathi Mohan et al., 2024). As a result, they are
able to generalise extremely well to linguistic com-
prehension and reasoning tasks without any fur-
ther training (Bianchini et al., 2024). The ability
for LLMs to parse complex natural language in a
"zero-shot" context makes them a good candidate
for identifying proximal relationship in text. In this
paper, we leverage the linguistic capability of the
Llama-3 LLM (Grattafiori et al., 2024) to parse de-
scriptions of 20000 AirBnB properties in London.
The model is tasked with identifying any locations
which are described as proximal to a property in
that property’s description. The spatial distribution
of these proximal locations is then assessed, from
which we identify nuanced relationships between
proximity, function and accessibility.

This novel application of LLMs to the problem
of geospatial proximity identification addresses
some shortcomings of previous approaches. For in-
stance, Derungs and and (2016) suggest a bag-of-
words approach, in which a large corpus of textual
data is mined for words and phrases indicative of
spatial proximity. By doing this, however, they risk
the introduction of both false positives - the use
of words like "near" to express something other
than proximity - and false negatives - the use of
phrases indicative of proximity which had not been
considered in the methods. Similar methods, such
as that of Stock et al. (2022), also have the same
limitations. By leveraging the linguistic flexibility
of LLMs, our approach addresses both sources of
error, without the need for large amounts of accu-
rately labelled training data.

The application of LLMs to such tasks is not with-
out risk (Li et al., 2024). Generative models are
prone to hallucination - either through the gen-
eration of unrelated or irrelevant information, or
through the occurrence of logical fallacies and in-
consistencies (Jiang et al., 2024). As such, system-
atic verification of the generated data is crucial to
the validity of this work, with minimisation of the
model’s false positive rate being a central goal. The
introduction of excessive hallucinations into our
processed data poses a serious risk to the validity
of our results.

In addition to the risk of hallucination, LLMs
also demand significant computational cost (Klang
et al., 2024). The use of of larger models (measured
in terms of number of parameters) can reduce the
risk of hallucination (Chrysostomou et al., 2024)
and improve performance on linguistic tasks (Bian-

chini et al., 2024), however they require signifi-
cantly increased computational resources to run.
For large datasets, such as that used in this paper,
employing the use of very large models is simply
not feasible. As such, we use a knowledge distil-
lation approach (Cantini et al., 2024), in which a
subset of our data is processed by a larger model,
the output of which is used to fine-tune the weights
of a more computationally efficient model. This re-
sults in a smaller, more task optimised model which
achieves comparable performance to the larger
model, at a fraction of the computational cost.

In this paper, we demonstrate a method for us-
ing LLMs to identify pereceived proximty relation-
ships in user-generated data. We have focussed
on AirBnB property descriptions for this work, al-
though the approach can be applied to other avail-
able datasets. The Airbnb dataset is a suitable
choice for this analysis because it both provides a
large volume of natural language descriptions an-
chored to specific point locations (properties), and
its touristic context naturally encourages refer-
ences to nearby landmarks and amenities. Through
this approach, we have generated a large dataset
of property descriptions with tagged proximal lo-
cations - a dataset which may be used for many
further applications. Through spatial analysis of
the generated data, we are able to develop new
insights into the different factors influencing per-
ceived proximity.

By employing this approach, we are able to test the
hypothesis that perceived proximity, as described
in natural language, reflects both objective spatial
features (e.g., accessibility, transit connectivity, ad-
ministrative hierarchy) and subjective, platial char-
acteristics (e.g. perceived utility, or cultural famil-
iarity). Specifcally, we investigate whether prop-
erties described as "near" to a given location are
more widely distributed when that location is well
connected, highly utilised or occupies a prominent
position in the urban, administrative and cultural
hierarchy.

2 Methods

The underlying data used to investigate reported
spatial proximity is comprised of a list of AirBnB
properties in London, UK. We use data posted on
the "Inside AirBnB" website (Murray Cox, 2025).
The full dataset contains a geolocation for each
property, along with a description of the property
given by the owner, a set of reviews for the prop-
erty, and other information including pricing, avail-
ability and occupancy rate. The validity of this
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dataset has come under some scrutiny, with par-
ticular concern around the reviews associated with
each listing (Alsudais, 2021). As such, we have not
included reviews in our analysis, instead using only
the property descriptions and geolocations. Prop-
erty locations are anonymised, so that the true lo-
cation of the property is somewhere within 150
meters of the listed location. Given that over 96%
of reference locations have a standard distance
greater than 1 km to associated Airbnb properties,
and none have a standard distance below 300m,
the 150m anonymisation offset is unlikely to mean-
ingfully affect the spatial analysis results, beyond
the introduction of a small degree of noise. All
properties in the full dataset were scraped from
AirBnB between 06/09/2024 and 11/09/2024.

For our analysis, we take a sample of 20000 listings
from the full dataset, with a further 2500 listings
sampled for model fine-tuning, and 100 for model
testing. Figure 1 (a) shows the distribution of the
20000 properties in our analysis set. The proper-
ties have been aggregated into a hexagonal grid
using the H3 spatial grid system (Sahr, 2011), with
resolution set to seven, so that each hexagon has
an approximate area of 5.16 km2.

We note that the test set used for this analy-
sis is very small compared to analysis dataset.
High-quality human annotation of the dataset is
highly labour intensive, making production of a
large validation set unfeasible within the time-
frame of this work. The validation set was de-
signed to cover a representative cross section of
listing styles, however its limited size means per-
formance metrics should be interpreted cautiously.
As such, we regard the results on model perfor-
mance as exploratory, rather than definitive. Fu-
ture work should aim to develop a larger, stratified
evaluation set to support more robust model vali-
dation.

2.1 Identification of proximal locations

We use the Llama-3 family of LLMs to identify lo-
cations described as "near to" each property in the
provided listings, noting that the prompt design,
along with the flexibility of LLMs, means that a
broad range linguistic indicators are used to iden-
tify proximity. The model is asked to identify any
explicitly named locations (such as "Hyde Park" or
"Richmond") and ignore any vague or ambiguous
locations (such as "restaurants" or "station"). The
model is also asked to avoid any locations which
the property is described as being "within", for ex-
ample if the description reads "A spacious property
in Brixton" the model should not identify "Brixton"
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Figure 1. (a) The distribution of properties in our analy-
sis dataset of 20000 listings, aggregated into hexagonal
bins of approximately equal area, (b) the average num-
ber of identified proximal locations mentioned for prop-
erties in each hexagon, (c) the total number of properties
with no proximal locations identified and (d) the propor-
tion of properties with no proximal location mentioned.
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as a nearby location. The full prompt is given in
appendix figure A1.

We ask the model to structure its response as a
JSON file, and provide a template to aid in this.
In some instances, the model output cannot be
successfully read as a JSON file. Where this hap-
pens, in the first instance, we use the JSON-Repair
package for Python (Baccianella, 2024) to perform
basic fixes, such as replacing single with double
quotes, and adding any missing brackets. Any out-
puts which remain unable to be read are returned
to the model with a request to fix the miscon-
structed JSON file. Further failure to successfully
construct a valid JSON formatted output results in
the listing not being assigned any proximal loca-
tions. We report the rate of misconstruction in the
results section.

Figure 1 (b) shows the average number of nearby
locations identified for properties in our analysis
set, discretised to an H3 hexagonal grid. The dis-
tribution of properties with no identified nearby lo-
cations is given in 1 (c-d). As well as true negative
results, this will include any properties for which
the model failed to identify an existing nearby loca-
tion, along with any properties for which the model
failed to provide a properly formatted output.

2.2 Model Assessment

We assess model accuracy on a subset of 100 hu-
man annotated examples which do not feature in
either the analysis or training sets. For each list-
ing, we count the number of locations described as
“near” the property which are correctly identified
by the model (true positives), those missed by the
model (false negatives), and those which are iden-
tified by the model but either do not appear in the
listing, or do appear in the listing but are not de-
scribed as "near" the property (false positives).

A total of 204 (non-unique) references to proximal
locations are identified in the test dataset. Thirty-
three of these entries have no proximal locations
mentioned, with an average of 3.1 proximal loca-
tions per remaining property.

Model performance is assessed through calcula-
tion of precision, P , and recall, R, calcuclated with
respect to the true positive count, TP , false posi-
tive count, FP , and false negative count, FN . Pre-
cision and Recall are calculated as follows:

P =
TP

TP +FP
(1)

R=
TP

TP +FN
(2)

We also report the F1 score, calculated as the har-
monic mean of P and R:

F1 =
2×P ×R

P +R
. (3)

Specifically, we report the micro P , R and F1

scores, since they are calculated using aggregated
TP , FP , and FN counts across the entire test set.
It is also possible to calculate the individual P , R
and F1 for each observation (i.e., the average ac-
curacy for each individual listing), known as the
macro accuracy. However, this approach can be bi-
ased by the occurrence of observations which con-
tain only a small number of true positives, of which
there are many in this dataset. As such, we report
only the micro statistics in this paper.

For the purposes of this analysis, false positives
are significantly more damaging than false nega-
tives. There are several ways in which false posi-
tive can occur. A model might hallucinate, identify-
ing locations which are not mentioned at all in the
text; it might extract irrelevant information from
the text, such as the identification of ambiguous or
non-specific locations; or it might erroneously iden-
tify parent locations as nearby. Further errors may
arise from misconstructed outputs which are un-
able to be read as a JSON file. We report the rates
at which these errors occur as a proportion of all
positive identifications.

2.3 Knowledge Distillation

Larger models typically perform significantly bet-
ter than smaller models on linguistic tasks, al-
beit with increased computational cost (Bianchini
et al., 2024). We adopt a knowledge distillation ap-
proach which uses outputs from a larger model to
fine-tune the weights of a smaller model. This ap-
proach, also known as a teacher/student method,
leverages the task generalisation capabilities of
the larger teacher model in an effort to produce
a smaller student model which is better optimized
to the specific task (Cantini et al., 2024).

For our teacher model, we use the 70 billion pa-
rameter Llama-3.3-70B-instruct model, quantized
to 4-bits (Jin et al., 2024) using the Unsloth pack-
age (Daniel Han and team, 2023). The teacher
model is used to processes 2500 listings in our
model development set, using the prompt de-
scribed above. This process takes a total of 42
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hours using an NVIDIA RTX A6000 Graphical Pro-
cessing Unit (GPU).

The output of the teacher model is used to fine-
tune the 8 billion parameter Llama-3.1-8B-Instruct,
again using the Unsloth package. This smaller,
more task-specific model (Pornprasit and Tan-
tithamthavorn, 2024) is then used to process the
full analysis dataset of 20000 listings. The fine-
tuned model takes around 20 hours to process the
full dataset using the same NVIDIA GPU. The fine-
tuned model is available on HuggingFace 1.

2.4 Cleaning model hallucinations

Generative models, such as Llama-3, are prone to
hallucination (Jiang et al., 2024; Semnani et al.,
2023). While fine-tuning does offer some mitiga-
tion (Semnani et al., 2023), it does not completely
eliminate the risk. Most often, hallucinations oc-
cur when a listing does not mention any nearby
locations. In most cases, the model will return an
empty list, indicating that it has not found any lo-
cations mentioned in the listing, however in some
instances it provides an inferred list of potential
nearby locations, given the prior knowledge that
the property is in London. While this is an infre-
quent occurrence, it clearly has potential to signif-
icantly influence our results.

Most hallucinations can be removed from the
model output with a simple check to see whether
the identified location actually occurs in the text.
However, care must be taken with this approach,
since it negates the flexibility of LLMs to mis-
spellings and ambiguous language. For example,
a listing which describes a property near “Water-
loo and Charing Cross stations” should identify
the nearby locations “Waterloo station” and “Char-
ing Cross Station”. Since the string “Waterloo Sta-
tion” does not appear in the text, a direct match-
ing method would erroneously mark "Waterloo Sta-
tion" as a hallucination. To address this, we em-
ploy a fuzzy matching system to remove substrings
which do not occur within the text (Bosker, 2021).

Fuzzy matching requires the setting of a threshold
ratio for acceptable similarity. If this ratio is too
strict (i.e. we only accept locations which are very
similar to that appearing in the text) we risk unduly
increasing the false negative rate of our model.
Since we know the number of hallucinations which
the model produces on our test set, we can set the
threshold so that the number of rejected locations
is approximately equal to the number of halluci-

1https://huggingface.co/JoeShingleton/ProxiLlama-
3.1-8b

nations. This approach minimises the increase in
false negatives, while reducing the number of false
positives.

We use the RapidFuzz library for python (Bach-
mann, 2024) to acheive this. The library uses the
Indel distance (Hyyrö et al., 2005) to calculate
the degree of similarity between sets of strings.
Strings which are identical have a similarity ratio
of 1.0, while strings with no common sub-strings
have a similarity ratio of 0. We find that a thresh-
old similarity ratio of 0.7 is sufficient for reducing
the number of false positives in our test set, with-
out any significant increase in the false negative
rate.

2.5 Spatial Analysis

To explore the spatial characteristics of proximal
locations, we consider the spatial distribution of
AirBnB properties which are described as "near to"
109 reference locations in London. This set of ref-
erence locations includes every location which is
mentioned in at least 50 property listings.

Reference locations can include points of interest
(POIs) such as Oxford Street or Trafalgar Square,
regions of interest (ROIs) such as Camden, Rich-
mond or Canary Wharf, and transit stations (Lon-
don Underground stations and national rail sta-
tions). We classify a location as an ROI if it is listed
as a "borough" or "suburb" in OpenStreetMaps
(OSM). This means small regions described in OSM
as "localities" or "quarters" (such as Angel, or
South Kensington) are classified as POIs. In many
cases, a POI or ROI may also be a transit station.
For example "Richmond" is the name of a station on
the District line of the London Underground, and
the London Borough in which the station is found.
Similarly, the popular tourist destination "Covent
Garden" also has an identically named station.

We assess the spatial distribution of the identified
proximal locations for each reference location by
considering their standard distance (Bachi, 1962).
For a reference location p, we have some set of
proximal locations q ∈Q, with coordinates (qx, qy).
The standard distance for location p, d̂(p), is then
defined as the square root of the mean squared
geodesic distance between each proximal location,
q = (qx, qy), and the mean coordinate of all proximal
locations q̄ = (q̄x, q̄y):

d̂(p) =

√∑
q∈Q dist(q, q̄)2

|Q|
, (4)
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For a given reference location, the standard dis-
tance represents the degree of spatial dispersion
of its identified proximal locations. This rate of dis-
persion could also be calculated as the mean dis-
tance between the reference location and the iden-
tified proximal locations. Analysis of our dataset
shows that the standard distance and average dis-
tance are highly correlated with one another. As
such, we only report the standard distance.

2.6 Comparison to Public Transport Access

Accessibility is often cited as playing an important
role in the generalisation of proximity beyond ge-
ometric distance (Ma et al., 2019; Orrego-Oñate
and Marquet, 2025). We use two approaches to as-
sess the extent to which this is true for the AirBnB
dataset. First, we perform a visual analysis of the
distribution of perceived proximal locations to a set
of London Underground stations, and the transit
lines they serve. We also compare the "connected-
ness" of stations with the standard distance of their
proximal locations.

In order to better understand the relationship be-
tween public transport access and perceived prox-
imity, we compare the standard distance of all our
reference locations with the maximum reported
Public Transport Accessibility Level (PTAL) (Trans-
port for London, 2015) within 100m of the refer-
ence location. Public Transport Accessibility Lev-
els are calculated using the walking distance to the
nearest public transport access point (e.g. a station
or bus stop), the highest frequency of service avail-
able at that access point, and a weighting system
which accounts for the attractiveness of a route
over other routes. A score between 0 and 6 is given
for each 100m square in London, with scores of 1
and 6 further separated into levels 1a, 1b, 6a and
6b.

The PTAL score is a discretisation of the calculated
Accessibility Index (AI), which is a continuous vari-
able indicating the level accessibility. For the pur-
poses of this paper, we report the raw AI scores,
rather than the PTAL category. We use AI scores
from 2015, as more recent data is not currently
available. Figure 2 shows the AI scores for London,
spatially discretised onto an H3 hexagonal grid and
overlayed with the London Underground network.

2.7 Data and Software Availability Section

The code and data associated with this paper can
be found in the Open Science Foundation reposi-
tory: https://osf.io/r3ep7/. This includes the python
scripts and LLM prompts used to process the
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Figure 2. The accessibility Index (AI) for London in
2015, discretised into an H3 hexagon grid. The map has
been overlayed with the London Underground network.

AirBnB listings, the processed testing, training and
analysis sets, and two Jupyter notebooks demon-
strating the model validation process and the ana-
lytical pipeline. A Read-Me file detailing the envi-
ronment requirements necessary to reproduce the
results is also available.

3 Results

Results are separated in to two sections - model
development and analysis. First, we assess the ac-
curacy of four different LLMs on our test set of 100
listings. The best performing model is then used to
parse the full dataset of 20000 listings. We report
the spatial characteristics of all locations which are
mentioned in at least 50 AirBnB listings, termed
"reference locations".

3.1 Accuracy of LLMs on Proximal Location
Identification

Table 1 provides the precision (P ), recall (R) and
f1 (f1) score for four models: Llama-3b-Instruct,
Llama-70b-Instruct-4bit, Llama-3b-Instruct-ft and
Lama-8b-Instruct-ft. The latter two models have
been fine-tuned on 2500 examples produced us-
ing the 70B parameter model. We also report the
average time taken to process each listing, t. In
each case, the models have been assessed using
the same sample of 100 AirBnB listings.

In table 2 we report the rate at which different
types of errors occur for each model. The table pro-
vides the hallucination rate (Hr), irrelevancy rate
(Ir), misconstruction rate (Mr) and parent identifi-

AGILE: GIScience Series, 6, 11, 2025 | https://doi.org/10.5194/agile-giss-6-11-2025 7 of 14



Model P R F1 t (sec/listing)

Llama-3b 0.697 0.485 0.572 9.63

Llama-70b 0.909 0.833 0.869 66.56

Llama-3b-ft 0.791 0.740 0.765 6.11

Llama-8b-ft 0.827 0.775 0.800 5.22

Table 1. The accuracy of four LLMs on the task of prox-
imal location identification in 100 AirBnB property de-
scriptions. The first two models have been run with a
"zero-shot" method, while the second two have been fine-
tuned on 2500 samples tagged by the 70B parameter
model. For each, we report the precision, recall and F1
scores (P , R and F1), as well as the average time taken
to process each listing (t).

cation rate (Pr) for each model, calculated as the
ratio of erroneous identifications of each type to
the total number of positive identifications.

Model Hr Ir Pr Mr

Llama-3b 0.120 0.085 0.113 0.028

Llama-70b 0.016 0.049 0.016 0.005

Llama-3b-ft 0.084 0.084 0.047 0.010

Llama-8b-ft 0.094 0.063 0.021 0.005

Table 2. The sources of errors in the proximal location
tagging task for each model. Error rates are categorised
into hallucinations (Hr), irrelevant information identifi-
cation (Ir), parent location identification (Pr) and mis-
constructions (Mr), with each reported as a proportion
of all positive identifications.

The best performing model is Llama-70B-Instruct.
This is expected, since larger models tend to signif-
icantly outperform smaller models in linguistic ex-
ercises (Bianchini et al., 2024). However, since the
70B parameter model is significantly more compu-
tationally expensive, it can not be reasonably used
to process very large datasets. The fine-tuned mod-
els perform comparably to the larger model for sig-
nificantly reduced computational expense.

After both models have been fine-tuned, the 8b
parameter model outperforms the 3b parameter
model. Despite this, hallucinations still account
for 9.4% of proximal location identification in the
fine-tuned 8B parameter model. As discussed in
the methods section, hallucination errors can be
cleaned relatively easily using a fuzzy-matching ap-
proach. Applying this approach reduces the hallu-
cination rate to Hr = 0.011 and increases the pre-
cision to P = 0.893. The remaining false positives
arise from ambiguous and/or non-specific locations
mentioned, or from misidentification of parent lo-
cations. While these are more difficult to clean,

they will only have limited influence on our results
- as will be discussed in the next section.

3.1.1 POI Area of Influence

The proximal location identification process identi-
fied a total of 7405 unique locations in the 20000
listings. In some cases, however, a single POI might
be referred to by multiple terms. Euston Station,
for example, might also be referred to as "Eu-
ston" or "Euston Train Station", similarly, "Regent’s
Park" might be referred to as "Regents Park". The
most common occurrences of these are identified,
and the results for each representation are aggre-
gated together.

For all locations with more than 50 identified prox-
imal properties (the reference locations, total N =

109), we calculate the standard distance of the
proximal properties as described in the methods
section. Figure 3 shows the standard distance plot-
ted against the total number of identified proximal
properties for (a) points and regions of interest,
and (b) transit stations. London Underground sta-
tions are further separated according to whether
they additionally classify as a POIs or ROIs (e.g.,
Covent Garden, Regent’s Park, Clapham Common
are also POIs, whereas Sloane Square, Old Street
and Bank are not). Figure 3 (c) compares the stan-
dard distances for attractions in each of the five
categories.

Regions of interest (such as Camden, Canary
Wharf or Stratford) tend to have a higher area
of influence compared to point-like attractions, as
measured by the standard distance for proximal
Air-BnB properties. Rail stations have larger areas
of influence than other types of attraction, suggest-
ing a correlation between proximity and function.

The "platial" component to proximity can be fur-
ther examined by considering the distribution of
proximal properties identified for underground sta-
tions, with respect to the number of lines they
serve. Figure 4 shows the distribution of proxi-
mal locations for six London Underground stations
(Bond Street, Bank, Angel, Baker Street, Wimbel-
don and Brixton), along with two stations which are
also connected to the national rail network (King’s
Cross and Waterloo). The lines served by each sta-
tion are also shown, and the national rail network
within London is shown in the last two maps.

We can clearly see that properties considered prox-
imal to a station tend to be placed along the lines
served by the station. We also see that location of
the station relative to the centre of London appears
to influence their distribution. Baker street sits to
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Figure 3. (a) The standard distance of all properties de-
scribed as "near to" reference locations for POIs and
ROIs, (b) for transit stations and (c) a box plot of stan-
dard distance for the four categories.

the west of central London, and we clearly see its
area of influence extends to the west, with little in-
fluence to the east. Bank, a well connected station
to the east of central London, is considered proxi-
mal to more locations to the south and east. Bond
Street, which is closer to the centre of London, has
influence both to the east and west. The area of in-
fluence of the National Rail Stations significantly
overshadows that of Underground stations, but re-
tains a tendency to follow transit lines.

Regions which also share a name with a transit sta-
tion, such as Wimbledon and Brixton, have signifi-
cant reach, even if the station only serves a single
line. This is highlighted when we compare Wimble-

Bond Street Bank

Angel Baker Street

Wimbledon Brixton

King's Cross Station Waterloo Station

Figure 4. The distribution of properties which describe
London Underground stations as proximal. Shaded
hexagons indicate the presence of Proximal properties,
with darker shading indicating a high density. London
Underground lines which serve the specified stations
have been highlighted. The final two plots show stations
with connections to the national rail network, with the
rail network also plotted for reference.

don and Brixton to Angel - a small locality which is
also only served by a single line - with Angel hav-
ing a significantly narrower area of influence com-
pared to the larger regions. This result suggests
that the influence of cultural prominence, admin-
istrative hierarchy and spatial extent are more im-
portant than public transportation access for these
locations.

Figure 5 shows (a) how the standard distance of
proximal locations for London underground sta-
tions varies with the station’s total number of prox-
imal locations, and (b) with the average weekly en-
try/exit counts for each station for 2023, as given
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by Transport for London Open Data (Transport for
London, 2023). For both, the size of the marker in-
dicates the number of lines served by that station.
We see that stations with fewer lines tend to have
a narrower area of influence, compared to inter-
change stations. Likewise, stations which are used
more frequently are more often described as being
proximal to properties which are further away.
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Figure 5. The relationship between (a) the number of
properties described as proximal to each London Un-
derground station, and the standard distance of those
proximal properties, and (b) the 2023 weekly entry/exit
count for each station. Marker size indicates the number
of lines served by the station.

There are two stations which retain a high stan-
dard distance, despite only serving single lines and
having relatively low passenger counts. These out-
liers - Wimbledon and Richmond - both also refer to
large areas in London which has likely influenced
this result. In most instances, it is likely the listing
was referring to the region, rather than the sta-

tion, although we have not investigated this fully.
Nevertheless, this again suggests that both spa-
tial extent, administrative hierarchy and cultural
prominence influence perceived proximity in a way
which may supersede accessibility.

3.2 Comparison to the Accessibility Index

Figure 6 compares the maximum Accessibility In-
dex within 100m of each reference location with
the standard distance of the proximal AirBnB prop-
erties associated with the location. The plot has
been separated into (a) transit stations and (b)
POIs and ROIs, with categorisation into different
classes as above. For both plots, we see a weak
positive correlation between the level of public
transport accessibility for a location, and the dis-
tribution of properties considered proximal to it.
In plot (a) we see that underground stations which
are also ROIs (as discussed above) tend to fall be-
low the regression line, again suggesting an inter-
action between administrative hierarchy and per-
ceived proximity.

4 Discussion

Despite its seemingly intuitive nature, proxim-
ity is a difficult relationship to rigorously define.
Other spatial relationships such as adjacency, con-
tainment or intersection can be easily defined in
terms of purely geometric properties. Proximity, on
the other hand, is necessarily dependent on non-
spatial factors (Brennan and Martin, 2012). In this
paper, we have investigated the perceived proxim-
ity of 109 reference locations in London by leverag-
ing the linguistic comprehension capacity of LLMs
to analyse descriptions of 20000 AirBnB proper-
ties. This data driven approach to proximity allows
us to uncover both spatial and platial aspects un-
derpinning the perception of proximity.

Our results have demonstrated that the factors
influencing proximty go far beyond simple dis-
tance. We have shown that relative accessibility
of a location plays an important role, with loca-
tions which are more accessible tending to have
a wider distribution of perceived nearby locations.
For transit stations - having a higher weekly us-
age and serving a larger part of the transit net-
work tends to increase this area of influence, sug-
gesting a relationship between utility, notarity and
perceived proximity. Administrative hierarchy, cul-
tural prominence and spatial extent of a location
also influences its perceived proximity, with large
regions of interest, such as "Richmond" or "Wim-
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Figure 6. The standard distance of properties described
as proximal to each reference location, plotted against
the maximum PTAL score within 1km of the reference
location. Transit stations are shown in figure (a), while
figure (b) shows all points and regions of interest. In both
plots, the central red line is a linear regression through
all points, with the 95% prediction interval indicated by
the shaded area. The R2 scores are (a) 0.35 and (b) 0.23.

bledon" having higher than expected areas of in-
fluence, given their accessibility scores.

However, it is important to note that this in-
vestigation has identified correlative, rather than
causative, associations between platial factors and
perceived proximity. As with any study of this type,
there are likely hidden factors which drive this cor-
relation. For example, the use of standard distance
as an indicator of spatial distribution does not ac-
count for factors such as the relative density of
nearby buildings. Similarly, the Accessibility Index,
used to assess relationships between proximity and
connectivity, is likely highly correlated with other
factors such as touristic prominence or topology,
making it difficult to identify a causal relationship.

The results discussed in this paper only con-
sider proximity in one context - that of AirBnB

properties. AirBnB properties typically cater to-
wards short-term rentals, with a particular focus
on leisure and tourism (Koster et al., 2021). Users
of AirBnB properties tend to be well educated and
younger than non-users, and are more likely to be
married, have children and have higher incomes
(Mody et al., 2017). These biases are likely to in-
fluence our results, and somewhat limit the gener-
alisability of our findings. However, the approach
used can be easily applied to other types of data to
identify the characteristics of proximity in different
contexts. For example, real estate listings such as
Zoopla or Right Move, news and event reporting,
or travel and tourism blogs all might uncover addi-
tional nuance to the notion of proximity. By consid-
ering how nearness is perceived within these dif-
ferent contexts, we can build a clearer picture of
the subjective factors influencing proximity.

We have considered London as the sole research
area for this paper. London is a large city with a
dense public transportation system. Further work
may compare how perceived proximity differs for
cities with less comprehensive transport systems.
While the specific patterns observed here may not
transfer directly to other cities, or within other
contexts, we expect that the broader relationships
between proximity, accessibility and function will
hold across similar analyses of different datasets.

Using our processed dataset, proximity can be in-
vestigated in two directions - the distribution of
properties considered proximal to a given refer-
ence location, and the distribution of locations con-
sidered proximal to a given property. In this paper,
we have only considered the former. Viewing the
data from the reverse direction would allow us to
calculate an average "proximal distance" map for
London. However, this is a more complicated task,
since a precise geolocation for each identified loca-
tion would be required in each listing. This would
be very sensitive to false positives, which can of-
ten be introduced through erroneous geocoding
(Gritta et al., 2020). As such, this is outside the
scope of this paper, but presents an interesting av-
enue for future research.

This paper has demonstrated a novel technique for
using generative artificial intelligence to extract
geospatial relationships from user-generated data.
By developing an understanding of how proxim-
ity is discussed in real-life examples, we can begin
to improve geographic information systems which
rely on well-defined proximity relationships.
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Appendix

Figure A1 shows the prompt used to identify prox-
imal locations in AirBnB listings. The prompt was
engineered to work well with the Llama3 family of
LLMs.

Prompt used for proximity extraction

You are an expert in linguistic analysis. Analyze
the description of an Airbnb property in London, to
identify any locations explicitly described as "near"
the property.
# Guidelines
## Identify Locations:
Locations should be explicitly named (e.g., "Hyde
Park" or "Oxford Street").
Exclude vague mentions like "restaurant" or "sta-
tion" unless paired with a specific name (e.g.,
"Luigi’s Restaurant" or "Euston Station").
Include linear locations (e.g., roads, metro lines,
rivers) if specifically named.
## Proximity Context:
Provide the exact phrasing or linguistic context in-
dicating proximity.
Exclude references to the property’s location itself
(e.g., "in Brixton" does not count as nearby).
## Searchable Information:
Provide an approximate address or identifiable de-
tails for locating it on OpenStreetMap.
Include approximate latitude and longitude when
possible.
## Output Format:
The output must be a JSON array in the following
format:
[ "name": "<name of nearby location>", "address":
"<approximate address>", "latitude": "<estimated
latitude>", "longitude": "<estimated longitude>",
"context": "<proximity context>" , ... ]
If no locations are identified, return an empty array:
[].
## Restrictions:
Do not infer or add any information beyond what is
explicitly stated in the listing.
Do not include commentary or explanation in your
response.

Figure A1. Full prompt provided to the LLM for identi-
fying perceived proximity relationships.
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