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Abstract. Urban Green Spaces (UGS) play a crucial role
in enhancing the quality of life in cities by providing nu-
merous environmental, social, and health benefits. Among
these green spaces, allotment gardens stand out as a unique
type that contributes to ecological services, preservation of
biodiversity, and the overall well-being of urban dwellers.
Unfortunately, the significance of allotment gardens as a
specific type of UGS is still disregarded and they are not
recognized as a separate category in land use / land cover
maps or city maps of green spaces. This is mainly due
to the mixed use of allotment areas, their small size and
absence of tailored identification or mapping workflows.
In this research, we address the latter one by proposing
an approach that utilizes various semantic characteristics
of allotment gardens to create distinctive spatial represen-
tations. The semantic characteristics we consider include
the presence, density, and height of garden huts, proximity
to water bodies and railroads, as well as the presence of
pathways within the allotment gardens. Allotments are de-
lineated using a three-step procedure. This involves utiliz-
ing a Random Forest machine learning classifier to create
maps of the distribution of green spaces, extracting gar-
den huts employing a threshold, and demarcating the area
using a density based clustering technique. Furthermore,
we repeat the same workflow in a new study area to assess
the applicability of the proposed workflow. With the es-
tablished workflow, we are able to accurately identify 78%
of allotments in Augsburg and 88% in Wuerzburg respec-
tively. Our results demonstrate that the proposed workflow
can be a useful approach to validate and extend existing
land use and land cover data sets while remaining time
and cost effective.

Keywords. urban green spaces, allotments, semantic
classification, mapping green spaces
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1 Motivation

With a growing urban population worldwide, it is essen-
tial that cities are planned and administered in an in-
telligent and environmentally responsible manner. Urban
green spaces (UGS) play a fundamental role in enhancing
the overall quality of urban environments and the well-
being of their inhabitants. The presence of green spaces
within cities has been associated with numerous human
well-being benefits. For instance, it has been shown that
cognitive recuperation, i.e., when the brain has a chance to
rest and heal from cognitive fatigue, positively reflects on
improving attention, focus, and overall mental function-
ing. According to the Attention Restoration Theory of Ka-
plan and Kaplan (1989), this restoration can be achieved
by spending time in inherently fascinating environments.
And typically, it is natural environments that provide these
restorative opportunities (Kaplan, 1995).

Among the diverse range of UGSs in Europe, allotment
gardens have emerged as a response to the rise of unem-
ployment in post-industrialisation (Bell et al., 2016), turn-
ing them into primary food production areas in big cities.
After 1980, the perception of these places starts to shift
from places for solely personal food growth to an alter-
native use case of UGSs. However, it is possible to ob-
serve some differences in specific management practices
in allotment gardens at all levels: national, city and munic-
ipal. Alongside small-scale agricultural production, parts
of allotments can be covered by lawns, orchards and or-
namental plants. Therefore, even if various national allot-
ment acts define them as UGS (Dymek et al., 2021), in
practice all the existing Land Use and Land Cover (LULC)
maps categorize them as leisure activity spaces.

In the existing literature there are many examples of trying
to understand effects of allotment gardens on human well-
being, biodiversity or others. As such, findings of Wood
et al. (2016) reveal that allotment gardeners have a signif-
icantly higher self-esteem, and experience less depression
and fatigue. Furthermore, an increased frequency of visits
to gardening areas is positively related with greater sub-
jective happiness (Mourdo et al., 2019). Beyond the ben-
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efits for well-being and food production, allotments heav-
ily support biodiversity. Borysiak even suggested to con-
sider allotments as biodiversity hot spots (Borysiak et al.
(2017)), after recording 358 species of spontaneous flora
in only 11 allotments in Poznain, Poland.

Accurate maps of gardens (private or communal) are cru-
cial for carrying out a reliable analysis. However, in many
European cities such maps either do not exist or are incom-
plete. Furthermore, different gardening types are usually
managed by different authorities. For instance, allotment
gardens are managed mostly by an "Association of Allot-
ment Gardeners". Herb gardens mostly by the city, while
rooftop gardens or balcony gardens are managed either by
a "community of owners" or by the companies that own or
rent the buildings. Due to the varied management authori-
ties and a lack of consensus among them, there is currently
no single differentiated map of urban gardens, neither are
they explicitly delineated in typical land use maps. By con-
trast, the garden areas are commonly found as a part of
the "sport and leisure activity" class in authoritative land
use data. It is essential to note that this class also includes
sport fields and other leisure places such as green corri-
dors. Therefore, extracting only garden relevant informa-
tion from the given class is nearly impossible. Moreover,
there are not many studies that focus on workflows to iden-
tify gardening areas in cities, even though necessity of fo-
cusing to develop methods for mapping such small-scale
UGSs is emphasized (Shahtahmassebi et al., 2021).

An attempt to map gardening areas is made e.g. by Math-
ieu et al. (2007). In their work, the authors implement an
object oriented classification approach using Ikonos im-
agery to map private gardens in New Zealand. The im-
agery with a spatial resolution of four meters contains
four spectral bands, advantageous to identifying greenery.
The authors describe their method as a time saving ap-
proach to generate a data set relevant to urban gardens .
Degerickx et al. (2020) also emphasizes the need of fo-
cusing on various types of UGSs and not only on e.g.
large city parks. The authors utilize airborne APEX hyper-
spectral data, Worldview-2, and airborne LiDAR data in
an object-oriented approach to map types of green spaces.
Their findings show that the LiDAR data is a most promis-
ing data set while suggesting to use multi-temporal image
analysis for a better understanding of green areas.

While at a very high resolution, multi or hyper-spectral
remote sensing (RS) data combined with novel object-
oriented, semantic segmentation methods might provide
the most accurate results, the availability of computational
power and freely available data sets remains a limiting fac-
tor. In this paper, we argue that each type of UGS pos-
sesses unique semantic characteristics that define its dis-
tinct ’face’ or identity. It might be challenging to distin-
guish between various UGS types using only vegetation
information derived from RS imagery, but it this approach
is promising if we also utilize their semantic characteris-
tics. A mapping approach using semantics was shown to
work, for instance, in case of urban forest mapping (Is-
mayilova and Timpf, 2023). In this work we are not only
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interested in accurately mapping allotment gardens, but
also in understanding to what extent semantic characteris-
tics of allotments foster the identification process. In order
to prove the robustness of the proposed method, we test it
in two southern German cities with (slightly) differing to-
pographic and landscape compositions.

In Section 2 we describe in detail our case study and the
proposed workflow, while we present the results in Section
3. Section 4 provides discussions, conclusions and sugges-
tions for future work.

2 Case Study

In this paper our main objective is to identify allotment
gardens in our study areas by using their distinct char-
acteristics as well as spatial features derived from these
characteristics. Afterwards, test the proposed framework
in a new study area in order to prove the transferability
of the proposed workflow. Therefore, in the following, we
describe common gardening types, selected study areas,
present utilized data sources as well as the methodological
framework we implemented.

2.1 Study Area

Augsburg, a city in southern Germany is the first study
area where we build our methodological pipeline. Span-
ning an area of approximately 146 km2, Augsburg hosts a
notable number of different urban gardening areas includ-
ing, allotment gardens, community gardens, herb gardens
and rooftop gardens. An example of an allotment garden
can be seen in Fig. 1.

Figure 1. A typical allotment garden in Augsburg during sum-
mer.

Each of them exhibits distinct visual characteristics. These
characteristics are apparent to the naked eye. Allotments,
for instance, are typically composed of near-rectangular
plots that are individually managed within a larger allot-
ment agglomeration, allowing city dwellers to cultivate
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their own selection of plants, vegetables, or flowers. Com-
munity gardens, on the other hand, present a more collec-
tive approach. They often appear as areas with a patch-
work of vegetable beds, shared compost containers, and
sometimes a few communal garden huts where equipment
may be stored. These gardens not only provide space for
growing produce, but also serve as centers for community
interaction. Herb gardens, in contrast, are usually found
within public areas like parks and are designed primarily
for growing a variety of herbs. These gardens are not only
functional, providing fresh herbs for culinary use, they are
also educational, showcasing different herb species and
their uses. Balcony or rooftop gardens commonly consist
of single pots or vegetable beds on balconies or roof ter-
races. Despite these visual cues, translating such diverse
semantic information into a basis for spatial analysis is
challenging and might require a very detailed understand-
ing of plant composition, location information and others.
The second study area we choose as a test site is the city
of Wuerzburg. Located in the same German state as Augs-
burg, Wuerzburg covers an area of nearly 88 km2. From
a landscape composition point of view, both cities share
many similarities, such as the presence of large rivers, a
similar vegetation cover and similar types of gardening ar-
eas. Yet, the hilly relief and the presence of permanent viti-
culture crops makes the appearance of both cities differen-
tiable. Furthermore, Wuerzburg accommodates a number
of pre-war established allotment areas that contain garden-
ing huts that are larger and higher than commonly accepted
ones. Additionally, some of the allotment plots are located
on hilly slopes. Therefore, the existing differences could
complicate the transferability of the proposed workflow.

2.2 Visual and Spatial Garden Semantics

We previously noted that different types of gardening ar-
eas display some similarities as well as some variations in
their appearance and purpose. In this paper we focus solely
on allotment gardens and establish their applicable seman-
tic features.

When viewed from above, certain dominant features be-
come prominent in both study areas: the presence of small,
similarly sized huts in every private parcel within the
whole agglomeration; the presence of a larger manage-
ment building at the entry point to the main area; unpaved
paths running out of the main entrance point and making
every single plot accessible. The spatial location of the al-
lotment gardens is also catching the eye: many of them are
located alongside railroads or close to rivers. However, vi-
sually, these plots are comparably smaller or have a more
elongated form in contrast to the allotment agglomerations
that appear further away from rivers and railroads. The lat-
ter ones are larger and more rectangular or square in shape.
Some of the described semantic features can be explained
with the historical development of these areas as well as
by the existing national allotment laws. As such, in the
past, allotment plots were given to railway workers to grow
produce. Therefore, they are frequently located close to

the railroads. Currently, allotment plots can be rented by
anyone and therefore, thus additional allotment agglom-
erations appear in the cities. For cities, allotments are a
good way to make use of otherwise "unused" space. Fur-
thermore, under the "small garden" law, allotment gardens
should not exceed 400 square meters in size, with garden
huts limited to a maximum area of 24 square meters. While
there are no strict regulations on the height of garden huts,
those built without official building permit (as is typical
for garden huts) should not surpass 3.5 meters in height.
After carefully observing allotments in both cities, we es-
tablish the following semantic features that will be the
building stones of the identification workflow for both
cities:

e Hut presence: Every garden plot contains at least a
hut or a hut with an extension.

e Hut height: Garden huts are not higher than 3.5 me-
ters and thus can be distinguished from other built-
up areas such as houses or buildings, and industrial
buildings.

e Paths: The allotment agglomeration is crossed by a
network of intersecting paths.

e Proximity: The majority of allotments are in a close
proximity to railroads and water bodies, and are not
crossed by major roads.

2.3 Data and Software Availability

Some of the allotment agglomerations consist of as few
as 8 plots. Therefore, the resolution of the utilised im-
agery could be a limiting factor. In this paper, we uti-
lize high resolution aerial imagery available to download
from the State Office for Digitization, Broadband and Sur-
veying web-page available here. The orthophoto of Augs-
burg was acquired on the 18th of June 2023, while of
Wauerzburg on the 28th of May 2023. The orthophotos are
three band RGB-imagery with 40cm spatial resolution. We
pre-process this data by setting the right coordinate refer-
ence system as well as adjusting the correct extent.

In order to extract the height information of the huts, we
calculate the height of objects above earth surface us-
ing the freely available digital elevation model (DEM) as
well as a digital surface model (DSM). Commonly, above
ground height of objects can be represented with the nor-
malised digital surface model (nDSM). nDSM is a deriva-
tive elevation product, which we obtain by subtracting a
DEM from a DSM.

nDSM = DSM — DEM (1)

Both DEM and DSM data is acquired from the State Of-
fice for Digitization, Broadband and Surveying. DEM is
a freely available raster data set with 1 meter resolution.
Whereas, DSM is currently not free of charge but can be
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bought at a resolution of 40 cm. In order to match the spa-
tial resolution of the data sets, we first resample the DEM
to 40cm and then calculate nDSM using the raster calcula-
tor expression in ArcGIS Pro version 3.1.1. Furthermore,
in order to be able to establish height thresholds, we col-
lect 200 hut points in both cities and calculate the height
distribution.

Currently, some allotment data sets can be found in the
freely available Open Street Map (OSM). However, these
data sets neither accurate nor complete. As such, there are
only 23 allotment plots in the city of Wuerzburg accord-
ing to the official sources, while 88 appear in the OSM
data set. Nevertheless, we use other layers of the OSM
data sets to refine our results. In order to eliminate areas
that we identified but are not allotment-specific features,
we utilise land use, roads, railroads and water bodies poly-
gons of OSM data sets available for both study areas. We
create a buffer of 2 meters around linear objects to ensure a
proper spatial selection afterwards. For further refinements
we use the freely available building footprints shapefile
from the State Office for Digitization, Broadband and Sur-
veying.

We argue that allotment gardens show a considerable
amount of green, and this information is lost when the
existing LULC maps are taken into the analysis. Conse-
quently, to confirm our argument, we perform an image
classification and extract green space information. For this
purpose, we collect 600 pure training points per city for
binary image classification. Moreover, to validate the final
allotment polygons created using the proposed workflow,
we create an allotment validation data set. For this pur-
pose, we use the allotment class within the OSM land use
layer and remove or add allotment polygons that are in-
cluded in the city allotment lists. Table 1 shows in detail
the utilised data sets.

Table 1. Data sets utilised for the identification of allotment gar-
dens.

Data set Access  Type Resolution
DOP Free Raster 40 cm
DEM Free Raster I m

DSM Paid Raster 40 cm
Building footprint  Free Polygon -

OSM Free Polygon -

Training data Free Points -
Validation data Free Polygon -

Selected data sets are pre-processed and analysed in Ar-
cGIS Pro version 3.1.1. Furthermore, we utilise RStudio
version 4.3.1 to perform a Random Forest image classi-
fication. For reproducibility purposes we provide sample
data sets, Model Builder file as well as a R code under the
following DOI: 10.6084/m9.figshare.25683828.

2.4 Model Development

To achieve our objective, we employ a three-step al-
lotment identification approach that combines classical
geoinformatics techniques as well as state-of-the-art ma-
chine learning methods. In a first step, we perform a Ran-
dom Forest (RF) binary classification to identify the extent
of "greenery" in both study areas. We then perform height
thresholding in order to identify garden huts, as these are
key allotment indicators. At this stage, we utilise comple-
mentary data sets to refine the outcome of the thresholding.
Finally, we perform area delineation techniques in order to
form allotment objects. The detailed workflow of the anal-
ysis is shown in Fig. 2.
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Figure 2. Flowchart of the proposed three-step allotment identi-
fication framework.

2.4.1 Green Space Mapping

We map the distribution of green spaces across two study
areas with the help of a Random Forest (RF) classifier.
Random Forest (RF), proposed by Breiman (Breiman,
2001), is an ensemble learning technique suitable for both
classification and regression tasks. RF is chosen for its
excellent performance with noisy data and its robustness
to parameter initialization. During the classification pro-
cess, RF employs bootstrap sampling to construct trees
within the forest, with the final classification result derived
from the majority votes of these trees. Parameter tuning
is an integral part of optimizing results with RF, partic-
ularly through adjusting the "mtry" parameter, which dic-
tates the number of variables considered for node splitting,
and "ntree," which sets the number of trees to grow in the
forest.

We construct the RF model using approximately 600
carefully selected training points, which are distributed
as green (1) or non-green (0) areas. We ensure a bal-
anced collection of training points for each class, with
300 points representing green and another 300 represent-
ing non-green samples. To train the model and assess its
accuracy, we implement 10-fold cross-validation. During
the process the training data set is split into 10 equal sub-
samples. Each sub-sample undergoes a sequence of ten it-
erations where it is used nine times for training and once
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for testing. After the satisfactory classification results, we
use the trained model to map green spaces within both
study areas.

2.4.2 Feature extraction

The main features we intend to extract are garden huts.
In order to understand the height distribution of huts, we
manually collect around 200 hut centroids. We then ex-
tract height data from the nDSM data set for each col-
lected point and compute descriptive statistics, including
minimum and maximum values, mean, median, standard
deviation, and the 5th and 95th percentiles. Percentiles are
commonly used in statistics, because they give a sense of
the spread of the data, and they are particularly helpful in
identifying the range within which the majority of the data
points lie, as well as spotting outliers. Consequently, we
take the value of the 5th percentile as the lower threshold
and the value of the 95th percentile as the highest thresh-
old to extract the huts. Using the raster calculator, we se-
lect nDSM pixels that fall within the defined threshold
The potential drawback of the threshold approach is that it
may include numerous objects or pixels within the study
area having similar heights. To refine the results and filter
out irrelevant objects, we utilize existing and freely avail-
able data sets. First, we transform the extracted height pix-
els into polygons. Subsequently, we mask out those por-
tions of the "height" objects that overlap with green ar-
eas. Additionally, we incorporate land use data from the
OSM dataset and exclude all objects overlapping with this
dataset, ensuring beforehand that the land use dataset does
not include the "allotment" class. We also eliminate ob-
jects intersecting with railroads, rivers, and roads, while
specifically removing the path, footway, and pedestrian
classes from the roads dataset. This strategy enables us to
preserve objects potentially intersecting with paths com-
monly found within allotment gardens. Finally, we check
whether any of the height objects coincide with building
footprints and remove them if necessary.

The clipping and elimination phase significantly reduces
the number of remaining objects. However, these manipu-
lations also lead to the creation of some very small parts
of larger objects that are unlikely to be garden huts. There-
fore, as the final step, we select and remove all objects
with an area smaller than 5 square meters. This size crite-
rion is chosen after identifying the minimum size of huts
that overlapped with the hut centroid dataset, which was
previously used for height threshold extraction.

2.4.3 Area delineation

For area delineation, we concentrate on three main
techniques: buffering, clustering, and creating minimum
bounding geometries. We define the area of allotment gar-
dens based solely on the presence of garden huts. Although
front and backyard gardens or other leisure activity ar-
eas might also feature small huts similar to those in al-
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lotments, a key difference is that garden huts in allotment
areas typically appear at a higher density and are clus-
tered in one specific area. To understand the proximity
of the huts to each other, we use the hut examples col-
lected for height threshold estimation. We find that there
is usually at least one neighboring hut within a distance of
approximately 10 meters. Consequently, we create a 10-
meter buffer around every extracted centroid. Following
this, we eliminate buffer polygons with an area smaller
than 315 square meters, which corresponds to the area of
a single 10-meter buffer that does not intersect with any
other buffer

To determine which of the remaining centroids are spa-
tially clustered, we implement the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algo-
rithm (Ester et al., 1996). In UGS related studies, DBSAN
is mainly used in combination with point cloud data sets.
For instance, Li et al. (2022) use DBSCAN to distinguish
non-ground points in LiDAR data set, which is later used
to identify plant point clouds. Xu et al. (2022) on the other
hand implement DBSCAN with point cloud data for tree
skeleton extraction in a forest. This approach is partic-
ularly successful in detecting noise in the data set. Two
parameters for clustering are pre-defined: search distance
and minimum number of points in each cluster. Both in
Augsburg and Wuerzburg we set the search distance to 10
meters, same as used in buffering step. Minimum number
of points in each cluster is defined based on the available
information of how many single plots are in each allotment
agglomeration. The lowest number of plots in Wuerzburg
is 11, whereas in Augsburg it is 8. Therefore, we adjust
this parameter to 8 in Augsburg and 10 in Wuerzburg, ac-
cordingly.

To construct the outlines of the allotment gardens, we
create minimum bounding geometries encompassing each
garden hut cluster. Given that garden boundaries are typ-
ically irregular, we choose to create minimum enclosing
convex hulls. The huts are often situated towards the in-
ner sides of the garden area rather than the outer side.
Although the convex hulls are formed by connecting the
outermost points with straight line segments, we generate
additional buffers around them to more accurately cover
the garden areas.

After we identify garden areas we further check for topo-
logical relationships. Using spatial location based selec-
tion, we identify whether the garden areas are crossed by
paths, footway and pedestrian paths from the OSM data
set.

3 Results

In both study areas we employ an RF classification to
accurately determine the quantity of vegetation present
in each allotment agglomeration. Therefore we choose
to perform 10-fold cross-validation to train and test the
classifier. In Augsburg, the classification reaches 96
% accuracy. Furthermore, both true positives and true
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negatives are identified equally well: 48.2 % and 47.8 %
out of 50 % respectively. In total, RF identifies nearly 60
km?2 of green space in the study area.

In Wuerzburg, the RF model yields an overall classifica-
tion accuracy of 97 %. Further analysis shows that the
identification of the true positive classes reaches 49.8 %,
whereas true negatives is 47 %. The results indicate that
the "green" class is marginally better identified than the
"non-green" class. With the implemented classification
approach we identify a total of 52 km?2 of vegetation in
Wuerzburg.

[ 0sM Allotment ’N&

[ 1dentified Allotment

Figure 3. Figure showcasing a successfully identified (above) as
well as an unsuccessfully identified (below) allotment agglomer-
ations in the city of Wuerzburg.

In order to establish a height threshold, manually collected
hut centroids are used. In Augsburg, the minimum and
maximum height values correspond to 1.3 and 3.4 meters
respectively. Moreover, the mean value corresponds to
2.39, the median value to 2.35 and the standard deviation
to 0.33 meters. In order to include the majority of data
points as well as to eliminate outliers, we calculate the
5th and 95th percentiles. Consequently, the minimum
threshold equals to 1.9 and the maximum threshold equals
to 3 meters.

The minimum and maximum height values extracted
from 200 garden huts in Wuerzburg are 1.01 meters and
3.36 meters, respectively. Furthermore, the mean value
is equal to 2.37, the median to 2.39, and the standard
deviation to 0.41 meters. The 5th and the 95th percentiles
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Figure 4. Figure showcasing successfully identified (above) as
well as unsuccessfully identified (below) allotment agglomera-
tions in the city of Augsburg

in Wuerzburg equal to 1.72 and 3 meters accordingly.
Therefore we set the lowest height threshold to 1.72 and
the highest height threshold to 3 meters.

When using the selected height threshold in Augsburg,
we acquire around 682’000 objects. Consequently, we
utilise additional data sets to limit the number of objects
resembling actual hut numbers. With the help of spatial
selection using green space, building, land use, roads, rail-
roads, and river layers, we narrow down object numbers
to nearly 5000 objects.

In Wuerzburg, the utilised threshold values result in
around 650’000 objects. Here again, with the help of
green space, building, land use, roads, railroads, and river
layers we narrow down the object numbers to almost 1500
objects. Using the remaining extracted objects in both
cities, we perform a DBSCAN clustering.

To delineate gardening areas, we enclose the clusters
with convex hulls and then expand these hulls by ap-
plying a five-meter buffer. Utilizing this methodology,
we successfully identify 180 allotments in Augsburg
and 30 allotment clusters within the city of Wuerzburg.
A comparison of the existing and identified allotment
agglomerations in Wuerzburg is presented in Fig, 3, while
those in Augsburg are shown in Fig. 4.

We validate our results using the enhanced OSM allotment
dataset. Official records indicate that there are 52 allot-
ment agglomerations in Augsburg and 23 in Wuerzburg.
However, the OSM allotment dataset lists a total of 120
allotments for Augsburg and 34 for Wuerzburg. We
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manually refine these datasets and use them to assess
the accuracy of our identification process. Through
the applied workflow, we successfully identify 78% of
allotments in Augsburg. In Wuerzburg, our identification
accuracy reaches 88%.

Furthermore, we calculate the amount of greenery con-
tained within the allotment agglomerations, based on the
RF classification dataset. In Augsburg, allotment gardens
encompass 0.36 km2 of vegetation, which accounts for
0.6% of the city’s total green coverage. In Wuerzburg,
we determine that allotment agglomerations contain 0.19
km2 of greenery, representing 0.3% of the city’s overall
vegetation coverage.

Initially we presupposed that allotment agglomerations
are crossed by a network of paths. Therefore, we perform
a location based selection between identified areas and
paths. Our findings confirm that the identified allotments
are indeed crisscrossed by paths. However, we also note
that the accuracy of the OSM path data is quite low,
capturing only a limited number of paths within these
privately-owned allotment agglomerations.

4 Discussion and Conclusions

In this study, we focus on an often overlooked category of
UGSs, specifically allotment gardens. These areas are cru-
cial in busy urban settings for both recreational purposes
and food production. Contemporary mapping of UGSs
predominantly employs Remote Sensing (RS) data, utiliz-
ing machine learning or deep learning techniques. These
advanced methods, especially through semantic segmen-
tation, achieve remarkable accuracy in identification, yet
making it almost impossible to understand why and how
each feature was selected. Therefore, our objective was to
develop a framework that emphasizes a clear and straight-
forward decision-making process, ensuring transparency
in the identification and selection of areas.

As we explore allotment agglomerations, we establish that
garden huts are mostly clustered in one area, making them
the primary identifier for allotments. Therefore, we collect
sample training data sets and explore height statistics to
define extraction thresholds. In order to include the ma-
jority of data variance and exclude the outliers, we select
the 5th and the 95th percentiles as the minimum and maxi-
mum threshold values. Our results indicate that the highest
threshold in both cities is nearly identical, approximately
3 meters, while the lowest threshold slightly varies, with
values of 1.9 and 1.7 in Augsburg and Wuerzburg, respec-
tively. This variation may result from the training data used
to determine the height. But it is evident that the typical hut
height ranges between 1.7 to 3 meters, with the maximum
height being in line with existing regulations.

Urban environments are complex structures. While we do
achieve impressive extraction of garden huts, with the set
threshold, additional, non-hut structures are also extracted.
Consequently, we use further data sets to refine our re-
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sults. As such, we use roads, railroads, rivers, and build-
ings to eliminate unwanted objects. The main drawback of
the chosen approach is that the amount of eliminated ob-
jects is directly linked to the accuracy of the selection data
set. While OSM data sets include all the necessary infor-
mation (rivers, roads, buildings etc.), the spatial overlap
with actual locations sometime could be extremely poor.
Furthermore, roads and rivers are provided as linear fea-
tures, making it difficult to check for spatial relationships
with the "hut" objects. Therefore, an extra step to convert
them to polygons is necessary.

To identify hut clusters, we utilize a density-based cluster-
ing approach, specifically DBSCAN, chosen for its abil-
ity to handle noisy data. While this clustering effectively
separates hut clusters within the study area, defining DB-
SCAN parameters is a manual and challenging process.
Familiarity with the study area and manually collected
training data help determine the appropriate search radius,
while the minimum number of points in clusters relies on
official allotment information. Furthermore, our results de-
pict some over and under-identification rate in both cities.
While looking at a greater detail, we notice that the al-
lotment agglomeration exhibiting common allotment fea-
tures are identified better than those with varying allotment
composition. Varying composition includes allotment ag-
glomerations that are very small in size, that are linear in
form, with garden huts distributed linearly, or with only
few allotment huts in the center of the larger area. Further-
more, some of the over-identified areas include camping
areas near the lakes, where fixed camper houses are lo-
cated. In a completely new test site, finding suitable model
parameters will be challenging and the results may not be
as favorable as in this study.

Additionally, we establish that using minimum enclosing
convex hulls yields better results, closely resembling real-
ity, than minimum enclosing bounding box or rectangle.
However, the effectiveness of the computation of the con-
vex hulls relies on the precision of the hut clusters, which,
in turn, depends on the accuracy of the extracted garden
huts. Therefore, we observe some convex hulls being too
large or small due to the distribution of hut points.

The use of Random Forest (RF) for mapping green spaces
has proven powerful in various studies. Thus, in this
study, we employ a RF classification approach in combi-
nation with high-resolution aerial imagery. Our RF model
achieves over 90 % classification accuracy in both study
areas. We conduct a detailed visual examination of the
classification results in allotment gardens and observe that
the RF model struggles to distinguish between natural
greenery, such as grass, trees, and crops, and artificial
green areas, such as sports fields. Yet, vegetation through-
out allotment gardens is adequately classified. Therefore,
despite this limitation, we utilize our RF data sets for the
final "greenness" calculations.

Another distinctive characteristic of allotment gardens is
their intersection with crossing path network. While we
examine this topological relationship, we once again en-
counter accuracy limitations of the OSM data set. Since
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allotment agglomerations are not openly accessible areas,
the digitization rate of paths in this areas is very low. How-
ever, we observe that path digitization rates within allot-
ments is higher in Wuerzburg than in Augsburg.

The implemented workflow manages to better identify
larger allotment agglomerations than smaller or linear
ones. We observe that this results from the intermediate
steps, where we remove height objects overlapping non-
allotment land use. As such, we utilize the polygons with
green spaces to erase parts of the height objects because
huts cannot overlap green areas. However, the aerial im-
agery used to identify vegetated areas has been taken in
summer. Therefore, the study area is well covered with
vegetation and large tree canopies sometimes cover garden
huts. This, in turn, results in the elimination of height ob-
jects during the process. If we were in a position to choose,
we would prefer aerial imagery from the beginning of the
year.

Furthermore, the demarcation of allotment boundaries
show mismatches with original boundaries. This is be-
cause of the distribution of garden huts used to create con-
vex hulls. Since we might eliminate more hut objects dur-
ing the process than aimed at, convex hulls can appear
larger or smaller than expected.

A significant part of our work involved establishing thresh-
old values for the extraction of huts, an aspect central to
our study. Our objective was not just to determine these
thresholds but also to explore the feasibility of transfer-
ring the established values to a new study area. This trans-
ferability is essential for broadening the applicability of
our findings beyond the initial study context. However,
our experiments revealed a notable challenge: when ap-
plying the same workflow to different study areas, we ob-
served slight variations in the resulting threshold values.
This variance highlights the complexity of spatial analy-
sis and the influence of unique geographic, environmen-
tal, and historic factors in each study area. It suggests that
while our methodology is robust, the specific outcomes it
yields are somewhat sensitive to the characteristics of the
study area. Given this observation, a potential future work
would be a ’blind test’ — applying the threshold values de-
rived from our current study to a completely new study
area. Such a test would provide valuable insights into the
transferability of our findings and the adaptability of our
methodology. It would also help in understanding the ex-
tent to which our threshold values are influenced by the
specific conditions of our initial study areas.

In conclusion, this paper explores the accuracy of identi-
fying allotment gardens based on their distinct semantic
characteristics. Two main findings of the analysis include:
1) Almost every large allotment agglomeration with a
higher number of single gardening plots is identified better
than the smaller, irregular allotments; 2) The outcome of
the analysis might not be sufficient to create precise allot-
ment maps in the study areas but might be a reliable source
of information to validate existing data sets. We success-
fully identify 0.36 km2 of vegetation within allotments in
Augsburg and 0.19 km2 in Wuerzburg. These findings sup-
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port our hypothesis, that a considerable amount of green-
ery is lost if allotments do not appear as a type of UGS in
land use and land cover maps. In future work we will con-
centrate on transferring the learnt knowledge to different
study areas, possibly outside of Germany or even Europe.
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