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Abstract. Current research has investigated freehand ges-
tures for Pan and Zoom operations on maps on large
screens. Freehand gestures for Retrieve operations, how-
ever, have remained largely unexplored. To address this
gap, this work introduced two mechanisms for Retrieve on
large displays in a research-through-design study: Pointer-
to-Feature (i.e. moving a pointer to a geographic feature
and then performing a hand gesture to achieve Retrieve)
and Feature-to-Pointer (i.e. moving a geographic feature
to a stationary pointer at the screen’s centre through pan-
ning/zooming of the map, before performing a hand ges-
ture to achieve Retrieve). The evaluation of a prototype
(FreeMapRetrieve) regarding usability and data explo-
ration utility showed that both mechanisms work well.
The two techniques are comparable for large polygons
but Pointer-to-Feature is slightly more efficient for smaller
polygons. Reflections on the design process yield lessons
learned that are relevant to designers of gesture-based in-
teraction for maps on large displays.

Keywords. map interaction, mid-air gestures, large dis-
plays, gesture recognition, retrieve, details-on-demand

1 Introduction

Maps are useful for various tasks such as exploratory data
analysis (Edsall et al., 2009), data journalism (Griffin,
2020), citizen participation (Rinner and Bird, 2009) and
wayfinding (Schwering et al., 2023). When used on large
displays, they can help communicate science results to the
public, e.g. in an exhibition or a science centre, where
large surfaces are important for greater visibility (Bar-
toschek et al., 2014). While maps have become ubiquitous,
consolidated design guidelines specific to map interaction
are still needed (Roth, 2013b; Kray et al., 2017; Deg-
belo, 2022). These guidelines, derived empirically wher-
ever possible, will form a key ingredient of a science of
map interaction (Roth, 2013b) and a science of interaction

(Pike et al., 2009) more broadly. The long-term goal of the
current work is to formulate such guidelines for gestural
interaction with maps. The contribution of this article is
to be placed in that context, with a focus on the Retrieve
operation using gestures on large displays.

Why ‘Retrieve’. Freehand gestures for Pan and Zoom op-
erations within large high-resolution display environments
have been evaluated sufficiently in the past. Yet, research
on gestures to enable Retrieve operations for maps on large
screens is currently lacking. In line with Roth (2013a),
Retrieve operations (a.k.a. details-on-demand) are interac-
tions that request specific details about a map feature of
interest. In this work, Retrieve means querying a spatial
feature for its associated non-spatial attributes. For spatial
datasets with lots of non-spatial attributes, it is often not
possible to convey all information about a spatial feature
through cartographic visualization alone. In such cases, a
Retrieve mechanism is necessary to reveal attributes which
are not visualized. Therefore, Retrieve operations are es-
sential in conveying all information available to the person
interacting with the spatial dataset and allow them to fully
comprehend it. It is one of the basic tasks in exploratory
spatial data analysis. The research question addressed in
this work is: How to best design gestures for Retrieve op-
erations in large-screen map environments?

Contributions. There is a good deal of gesture elicita-
tion studies on large screens, which provide insights into
users’ mental models of surface gestures for specific tasks
(e.g. Austin et al., 2020; Wittorf and Jakobsen, 2016; Du
et al., 2019). By contrast, gesture performance evaluation
studies, which provide insight into the cost and benefits
of using a specific gesture for a given task (e.g. Sluÿters
et al., 2023; Hatscher et al., 2017) seem less frequent, de-
spite their necessity for a more thorough understanding
of the adequacy of gestures for specific tasks. This work
contributes a gesture performance evaluation study, which
helps to learn about viable gesture combinations for Re-
trieve for map interaction on large displays.
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Figure 1. Freehand gestures implemented and evaluated during the work: a) a user grabbing the map during a Pan operation; b) a user
performing a zooming-out operation; c) a user moving their hand to a feature of interest before performing a push gesture during a
Retrieve operation (Pointer-to-Feature); d) a user performing panning & zooming during a Retrieve operation (Feature-to-Pointer).

Retrieving a spatial feature’s attributes is a composite
task, consisting of two distinct actions: selection (i.e. mark
something as interesting, see Yi et al. (2007)) and elabo-
ration (i.e. show more details about the selected feature,
see Yi et al. (2007)). Two mechanisms for Retrieve oper-
ations were implemented and evaluated in this work, fol-
lowing the four stages of the research-through-design ap-
proach from Zimmerman and Forlizzi (2014), see Figure
2. Both use the same set of core gestures to achieve the Re-
trieve operation: grabbing (Zoom and Pan) and push (Elab-
orate), but the two mechanisms rely on two distinct inter-
action metaphors: selection as moving a dynamic pointer
to the desired feature (hence the name Pointer-to-Feature,
see Figure 1c) vs. selection as moving the desired feature
to a static pointer at the centre of the interaction screen
(hence the name Feature-to-Pointer, see Figure 1d). From
the point of view of metaphor theory, both strategies rely
on the IN-OUT image schema for CONTAINEMENT dis-
cussed e.g. in (Hurtienne et al., 2015; Mandler, 1992). In
the case of Pointer-to-Feature, the trajector is the pointer,
while the trajector is the spatial entity itself for Feature-
to-Pointer. From the point of view of gesture execution,
Pointer-to-Feature (P2F) relies on the action pointing to
select spatial features while Feature-to-Pointer uses the
action grab for feature selection. Hence, from the prac-
tical point of view, Feature-to-Pointer (F2P) implies one
gesture less to learn in the overall process of realizing a
retrieve operation. The contributions of this work are (i)
two methods to realize Retrieve during map interaction on
large displays, (ii) lessons learned from their evaluation in

a lab-based study (N=25), and (iii) an open-source pro-
totype (FreeMapRetrieve) that realizes gesture-based Pan,
Zoom and Retrieve operations on large displays.

2 Background

A Retrieve operation builds upon simpler operations such
as Select, Zoom and Pan. Overall, there are various pro-
posals of gestures to realize these different operations in
the literature, but little consensus beyond single studies
about what the most appropriate gestures are, nor guid-
ance about how to reuse the proposed gestures beyond the
experimental context.

2.1 Gestures for Select

There is much work investigating gesture-based selection
in Human-Computer Interaction (e.g. Walter et al. (2014);
Yoo et al. (2015)) but the selection of objects on a map is
peculiar for at least three reasons:

• Geographic space is a multi-scale information space:
Hence, selection almost always necessitates Pan and
Zoom operations in the process of accessing the tar-
get of interest (e.g. a lake) on a map.

• Irregularly-shaped targets: The shape of the targets
(e.g. countries) differ widely.

2 of 13AGILE: GIScience Series, 5, 7, 2024 | https://doi.org/10.5194/agile-giss-5-7-2024



Figure 2. Aspects of map interaction and gestural interaction considered at each of the four stages of the research-through-design
framework used in the work. Through the study, we learn about viable design alternatives for Retrieve and the effectiveness of the
theories considered during the design process.

• Dynamic targets: The position, the size, and some-
times even the symbol (Roth et al., 2011) used to rep-
resent the target feature change.

Guiard and Beaudouin-Lafon (2004) proposed that Fitt’s
law applies to the task of pointing in multi-scale spaces.
It is unclear, however, whether this would also hold for ir-
regularly shaped objects. Moreover, pointing is only one
subtask of gesture execution, as discussed by Erazo and
Pino (2015), who proposed gesture units to predict perfor-
mance time while doing tasks with hand gestures.

The work by Lin et al. (2019) is perhaps the most re-
lated to the current work. They compared four freehand
gesture combinations that can be relevant for Retrieve:
index/click, index/thrust, palm/click and palm/thrust. The
index vs. palm gestures can be used for selection, while
the click vs. thrust gestures can be used for elaboration.
They reported that the performances of the gesture com-
binations were dependent on the size of the target. For
the large target, the fastest times were for the index/thrust
and palm/thrust gestures; for the smallest target, the fastest
times were for index/click. Across target sizes, the par-
ticipants expressed a preference for the index/click and
index/thrust gestures. Hence, not one gesture combina-
tion stands out as being the most performant in all con-
ditions. Since Retrieve requires a combination of multiple
gestures, minimizing the number of motor operations to
switch between these is desirable to minimize the partic-
ipants’ fatigue overall. In this work, palm/thrust was cho-
sen as switching between palm and grab (i.e. the gestures
used for Zoom/Pan, see Section 2.2) requires fewer gesture
strokes than switching from index to grab.

2.2 Gestures for Pan and Zoom

From the interaction viewpoint, panning necessitates two
subtasks: selection (of any point of the map) + moving
(that point to the east/west/north/south). That is, panning
involves a selection activity, albeit a selection with a dif-
ferent purpose than the basic intent of ‘marking something
as interesting’ (Yi et al., 2007) in information visualiza-
tion. Pan and Zoom have been investigated in non-spatial
contexts in several elicitation studies (Wittorf and Jakob-
sen, 2016; Yoo et al., 2015; Gentile et al., 2019) as well.
For the specific task of the interaction with maps, previ-
ous work has come up with suggestions almost as varied
as the number of studies (see Table 1). In essence, there
is currently no consensus as to what gestures are best for
panning and zooming on the map in general, let alone for

the specific task of Retrieve. In the absence of guidelines
to select one of these gestures for a task, we were guided
by Jacob and Sibert (1992), who suggested that users typ-
ically do not think of zooming and panning as two sepa-
rate operations, but rather think of them as integral oper-
ations in the broader context of locating specific entities
on the map. A consequence of this fact for design is that
the interaction operations involved in the execution of pan-
ning and zooming gestures should make it easy for users
to switch between the two and possibly execute them si-
multaneously. Moreover, the notion of integrality should
also be extended to other operations occurring in the Re-
trieve process, in order to minimise the strokes required to
switch to other gestures. To comply with this requirement,
we use a grabbing gesture for Pan and Zoom. During a Pan
operation, the user grabs the map with one hand and real-
izes panning through movements in the direction of pan-
ning desired. During a Zoom operation, the user grabs the
map with two hands and uses movements of their hands in
opposite directions to see more/less spatial details. A Pan
gesture is also executed if the users move their two grab-
bing hands in the same direction.

2.3 Gesture selection for Retrieve

With the plethora of options available, we were guided
by the principle of gesture stroke optimization, i.e. pick
the constituent gestures of Retrieve in such a way that the
number of strokes required to switch to other gestures is
minimized overall. This leads to the following gestures for
the two interaction strategies.

P2F: grab-to-zoom, grab-to-pan, point-to-select (coarse
mode), push-to-elaborate, lift-hand-to-change-mode
(coarse-to-fine), lower-hand-to-change-mode (fine-to-
coarse).

F2P: grab-to-zoom, grab-to-pan, pan-and-zoom-to-select
(coarse mode), push-to-elaborate, lift-hand-to-change-
mode (coarse-to-fine), lower-hand-to-change-mode (fine-
to-coarse).

The formal breakdown of the gestures is shown in Table 2.

3 Prototype design and implementation

The gestures introduced in the previous section were im-
plemented in the FreeMapRetrieve prototype using the
Python programming language. Initial tests before imple-
menting the prototype have shown that pyKinectAzure
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Table 1. Examples of gestures proposed in previous work, which are relevant to the four atomic operations needed to realize Retrieve
(large displays only). This suggests at least 7x7x6x8 = 2352 options to realize the Retrieve gesture, but there is currently little guidance
about viable combinations. The atomic gestures selected during the work for the performance evaluation are underlined. The selection
process is described in Section 2.

Pan Zoom Select Elaborate

1. drawing a line (Siddhpuria et al., 2017)

2. dragging (Nancel et al., 2011)

3. movement from a resting hand to a
pointing hand (Fikkert et al., 2009)

4. one-hand grabbing gesture (Boulos
et al., 2011)

5. move hand while pointing index
(Sluÿters et al., 2023)

6. the joystick gesture (Stellmach et al.,
2012)

7. one hand wipe (Bartoschek et al.,
2014)

1. full-circle clock/anti-clockwise
(Siddhpuria et al., 2017)

2. turning the hand clock/anti-
clockwise (Nancel et al., 2011),

3. movement from cupped hands to
pointing hands (Fikkert et al.,
2009)

4. two-hand grabbing gesture (Bou-
los et al., 2011) (also in virtual re-
ality, see Newbury et al. (2021))

5. pinch in/out (Sluÿters et al., 2023)

6. the hand-zoom gesture (Stell-
mach et al., 2012)

7. two hand spread (Bartoschek
et al., 2014)

1. point (Walter et al., 2014;
Yoo et al., 2015)

2. swipe (Walter et al., 2014)

3. push (Yoo et al., 2015; Hes-
panhol et al., 2012)

4. dwell (Hespanhol et al.,
2012)

5. drawing a lasso (Hespanhol
et al., 2012)

6. grab (Hespanhol et al.,
2012)

1. dwell (Walter et al., 2014;
Yoo et al., 2015)

2. swipe (Walter et al., 2014)

3. push (Walter et al., 2014)

4. point (Walter et al., 2014)

5. grip (Walter et al., 2014)

6. wave (Walter et al., 2014)

7. AirTap (Vogel and Balakr-
ishnan, 2005)

8. thumb trigger (Vogel and
Balakrishnan, 2005)

Table 2. Formal breakdown of the gestures implemented using Roth (2013a), Yi et al. (2007) and Wigdor and Wixon (2011)’s tax-
onomies. PG = Phase of gesture: R = Registration, C = Continuation, T = Termination. The prototype supports the selection of both
large and small polygons through two modes: a coarse mode and a fine mode.

Map operation Interaction intent PG Gesture metaphor Body Action

Overall use of system
R Stand in front of screen and point at it Move body into area of operation and lift at least one hand
C =⇒ iterative use of Pan, Zoom and Retrieve operations in no particular order
T Step away from screen or stop pointing at it Move out of area of operation or lower both hands

Pan Explore
R Grab map with one hand Make a fist with one pointing hand
C Drag map in desired direction Move hand
T Release map Open hand again

Zoom in Elaborate
R Grab map with both hands Make a fist with both hands pointing at screen
C Pull map apart Increase distance between hands
T Release map with both hands Open both hands again

Zoom out Abstract
R Grab map with both hands Make a fist with both hands pointing at screen
C Compress the map Decrease distance between hands
T Release map with both hands Open both hands again

Retrieve
(Pointer-to-

feature)

Select
coarse mode

R — none —
C Point at desired feature Move one arm in the direction of desired feature
T — none —

Select
fine mode,
optional

R Turn on a switch Lift up non-pointing hand over shoulder
C Point hand up/down/left/right Move hand relatively up/down/left/right
T Turn off a switch Lower non-pointing hand below shoulder again

Elaborate
R Push (as if feature was mid-air in front of user) Swiftly move pointing hand towards desired feature
C — none —
T — none —

Retrieve
(Feature-to-

pointer)

Select
coarse mode

R — none —
C =⇒Iterative combination of Pan and Zoom operations in no particular order
T — none —

Select
fine mode,
optional

R Turn on a switch Lift up non-panning hand over shoulder
C =⇒arbitrary number of Pan operations
T Turn off a switch Lower non-pointing hand below shoulder again

Elaborate
R Push (as a virtual button mid-air) Swiftly move one hand in the general direction of its pointer
C — none —
T — none —
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(Fernandez, 2022) can be used reliably. Hence, we used
it instead of the native Azure Kinect Sensor and Body
Tracking SDKs. Figure 3 shows the architecture of the
FreeMapRetrieve and its main components. An Azure
Kinect camera is used to observe the space in front of the
large display because previous work (e.g. Sosa-León and
Schwering (2022); Tölgyessy et al. (2021)) has reported
good skeleton tracking performance.

We adapted the open-source model from Takahashi (2020)
to infer the hand states. Initial tests have shown that while
this model can detect open and closed hand states and dis-
tinguish them from each other reliably, the pointing hand
state (only index finger extended) is often confused with
a closed hand state. As none of the gestures implemented
rely on a pointing hand state, we retrained the model for
open and closed hand states only. The resulting model was
able to differentiate between open and closed hand states
with an accuracy of over 98% on a validation dataset (i.e.
unseen samples). Figure 3 (bottom) shows the two hand
poses distinguished by the prototype. To achieve a good
trade-off between robustness and latency, the majority of
detected hand states in the latest five camera frames was
used to determine whether a Pan/Zoom operation should
be registered, continued or terminated. The Azure Kinect
camera records 30 frames per second (fps), which implies
that max N = 1000∗0.1

30 ≈ 4 frames are needed to keep the
0.1-second response time (Miller, 1968; Nielsen, 1993;
Card et al., 1991) for a feeling of instantaneous system
reaction. (5 is slightly above but still maintains the feeling
of instantaneousness/direct manipulation).

Once a gesture for a specific map operation is recognized
(InteractionController), this gesture is translated into em-
ulated touch screen interactions through the TouchCon-
troller (Figure 3). We mapped the freehand gestures onto
touch screen gestures understood by major map applica-
tion frameworks (e.g. OpenStreetMap, Leaflet, OpenLay-
ers, Google Maps). Therefore, the prototype can be used
to interact with most maps on websites or stand-alone
desktop applications. Details on the touchscreen gestures
mapped to during the emulation process are available in
the supplementary material.

Finally, map applications on the Web (which run in the
browser) do not know anything about the gesture elements
detected within the Python program. To solve this prob-
lem, we created a Chrome web browser extension that
communicates with the Python program through a Web-
Socket connection to indicate the screen location the user
is currently pointing at. The browser extension currently
supports OpenStreetMap, Google Maps and locally hosted
web pages. More pages can be supported simply by adding
them to the extension’s manifest.json file. Further imple-
mentation details are available in the supplementary mate-
rial (see Section 8). The prototype is agnostic to the main
hand used by the user during the interaction, i.e. it is ap-
propriate for right-handed and left-handed users alike.

4 Evaluation

The two techniques to perform Retrieve operations were
evaluated in a between-group experiment, to prevent bias
due to learning effects. The participants were assigned
pseudo-randomly to a condition (P2F or F2P) by strictly
alternating the method for every new participant. The users
could choose to do the experiment in English or German.

4.1 Procedure

All participants signed an informed consent form before
starting the experiment. Then, they filled out a question-
naire asking about personal background information, their
frequency of usage of hand gestures to interact with com-
puter systems, their self-assessment of their skills to read
and interpret thematic maps as well as their familiarity
with the topic of renewable energy in different countries.
Afterwards, they performed three tasks:

Task 1 – Training: All participants underwent a training
protocol in which they were systematically taught all ges-
tures needed to control a map on the screen in front of
them. The training protocol was identical for all partici-
pants, only differing in the explanations about how to per-
form Retrieve operations in the relevant condition. The
protocol is available as supplementary material.

Task 2 – Gesture Performance Evaluation: The partici-
pants used their assigned Retrieve gesture to find out the
population of six German states (three large polygons and
three small polygons). They marked the end of the retrieve
task by saying the exact population number out loud. This
task was audio and video-recorded. The map’s zoom level
was set to 5 at the beginning of each retrieve task (i.e. the
map was zoomed out) to avoid the introduction of a sys-
tematic advantage for the P2F condition.

Task 3 – Exploration: To evaluate the gestures’ suitabil-
ity in practical data exploration scenarios, participants per-
formed a video-recorded open-ended think-aloud exercise
after a short break. Participants were shown a choropleth
world map visualizing indicator 7.2.1 of the UN’s sustain-
able development goals. This is the share of renewable
energy used in covering a country’s total energy demand.
When performing a Retrieve operation on a specific coun-
try, participants are presented with a line chart of how the
share of renewable energy has developed for this country
throughout the last years (see supplementary material).

At the end of the tasks, they filled out questionnaires from
the System Usability Scale (SUS) (Brooke, 1995) and a
subset of the NASA’s Task Load Index (TLX) question-
naire (Hart, 2006) to rate their experience.

4.2 Variables

The following variables were considered during the study:

Independent variables: retrieve mechanism (P2F vs. F2P)
and size of polygon (large vs. small).
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Figure 3. Simplified architecture of the FreeMapRetrieve prototype for gesture-controlled interactions in web-based map applications.

Dependent variables: efficiency (time a participant took to
retrieve the feature’s attribute and start to say it out loud),
effectiveness (number of slips and lapses, usability, data
exploration utility (number of insights got, depth of the
insights, temporal evolution of insight depth), perceived
workload (physical demand, mental demand, frustration)
and exploration time (time until a participant claims to re-
ceive no further insight).

Control variables (i.e. held constant): screen environment,
training on how to use the gestures, data and visualization
shown to the participants, initial zoom level (=5) for all
retrieve tasks.

Subject variables (i.e. user characteristics): age, gender,
experience with gestures, experience with reading and in-
terpreting thematic maps, experience with worldwide dis-
tribution of renewable energy.

4.3 Hypotheses

The following hypotheses were formulated before the ex-
periment, based on theories from the literature and the first
author’s own experience with the gestures during the im-
plementation of the prototype (the reasoning behind each
hypothesis is also briefly explained).

Effectiveness. We looked into both slips and lapses. In
line with Stanton (2009), lapses are a failure of a human’s
memory when the user forgets how a particular gesture is
performed. Slips are a failure in a user’s execution of a
gesture when they perform the gesture wrongly, resulting
in either not being recognized by the system at all or rec-
ognized by the system but performed imprecisely resulting
in a Retrieve operation from the wrong polygon.

• H1a: For larger polygons, there will not be a sig-
nificant difference in slips between P2F and F2P, as
movements of the pointer during the Elaborate ges-
ture will happen within the polygon itself due to its
large size.

• H1b: For smaller polygons, the number of slips will
be higher for P2F, as the pointer in P2F can easily
move into the exterior of the polygon due to its small
size.

The interaction tasks take place shortly after the users are
taught the gestures for the first time, and hence put some
demands on the short-term memory (also called immedi-
ate memory) of the users. Here, we build on findings from
previous work (Miller, 1956; Baddeley, 1994) that infor-
mation is stored in short-term memory using chunks (i.e.
coherent, meaningful units in mind). Lapse errors will be-
come more frequent after the maximum chunk capacity
has been reached. Since we are not aware of HCI or GI-
Science work that informs about the limits in the context
of gestural interaction, we turned to findings from Psy-
chology as a starting point. Miller (1956) originally pro-
posed 7∓2 and follow-up studies (Cowan, 2001) proposed
4∓1 (and even 2, see Gobet and Clarkson (2004)). We
used 4∓1 at this point because Cowan (2001) documents
a broad range of observations consistent with the limit
of four entities. The 4∓1 guideline applies to indepen-
dent chunks, hence, we can expect lapses to occur more
frequently beyond 4-5 distinct, independent gestures. The
number of distinct gestures involved in the current experi-
ment is six, which is within the limit range. Since indepen-
dence does not hold in this case (i.e. there are similarities
in the way of executing the gestures), the number of lapses
may be minimal overall in both conditions. Nonetheless,
in case lapses do occur:
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• H1c: Lapses will be more frequent during pointing
or panning in fine mode than in coarse mode (the fine
pointing mode demands more gestures to be executed
and this increases the probability of forgetting some
of those that were just learned).

Efficiency. We used the human processor model (Card
et al., 1986) to estimate the cognitive, perceptual, and mo-
tor operations involved in the retrieve task. This revealed
that only half the motor operations are necessary for P2F
compared to F2P. Thus:

• H2a: Efficiency will be higher for P2F than F2P for
large polygons.

• H2b: For small polygons, however, participants using
F2P will be more efficient in retrieving the correct
polygon’s attributes, as both the pointer and the map
remain stationary once the polygon to retrieve from
is positioned correctly.

Usability. The SUS score will be higher for P2F because
users are very likely familiar with this interaction concept.
In Desktop environments, Retrieve operations have a sim-
ilar modus operandi: place the mouse cursor on top of a
feature to select it, then click on the feature to get addi-
tional information (H3).

Perceived Workload. The users’ perceived mental and
physical demands and frustration level while completing
the task were all measured on a seven-point Likert scale.

• H4a: Mental demand will be lower among partici-
pants using P2F, as users are likely already familiar
with it from Desktop environments, while the con-
cept of F2P is uncommon in Desktop environments.

• H4b: Physical demand will be higher among partici-
pants using F2P, as about twice the motor operations
are involved in selecting a polygon before performing
the Elaborate gesture on it.

• H4c: Frustration will be higher among participants
using P2F, stemming from involuntary pointer move-
ments while performing the Elaborate gesture and
therefore retrieving from the wrong polygon.

Data Exploration Utility. Data exploration can be con-
ceptualized as an activity where users learn about the data.
This enables borrowing insight from cognitive load the-
ory (CLT) to formulate the hypotheses. CLT foresees three
types of loads during learning (Debue and Van De Leem-
put, 2014): intrinsic (complexity of the material to learn;
it also depends on the user’s expertise), extraneous (com-
plexity of the instruction format), and germane (how much
the user actually invests in learning; it is related to their
motivation to some extent). Assuming that intrinsic and
germane loads are similar for the two conditions, the dif-
ference must come from the extraneous load.

• H5a: The overall time spent during the exploration
will be smaller for F2P than for P2F, as a corollary of
H4a and H4b. If F2P yields higher mental and phys-
ical demands, this will shrink the cognitive resources
available for the data exploration itself and may lead
to participants spending less time on the activity.

• H5b: The depth of insight will be comparable in both
conditions, as this relates to other aspects, most no-
tably, the participants’ background knowledge.

Like in Saraiya et al. (2005), insights are assigned a do-
main value to measure the deepness of an insight a par-
ticipant has received. The domain value of an insight is a
score between one and five, which depends on the com-
plexity of the insight. The sum of all domain values is then
a measure of the deepness of insight into the dataset a par-
ticipant has achieved. Further details are provided in the
supplementary material.

4.4 Participants

Twenty-six participants, recruited through personal con-
tacts and word of mouth, participated in the experiment.
One participant’s observations were excluded from the
analysis because they disclosed at the end of the study that
they were unable to properly form a fist with their hand
due to anatomical deformations in their thumb, resulting
in imprecise Pan and Zoom operations. Another partici-
pant initially had problems keeping their body within the
field of view of the Azure Kinect camera. Thus, two mea-
surements from task two when retrieving from large poly-
gons were excluded as this can be seen as an error in mea-
surement. The mean age of the participants included in the
analysis (13 Female, 12 Male) was 26.9 (sd: 9.9) and the
median was 24. Snacks and refreshments were provided to
participants during the study between the tasks. Only one
participant reported using hand gestures less than monthly
to interact with computer systems. All others reported to
never use them. The study was pilot-tested and approved
by the institutional ethics board.

5 Results

We used an estimation approach (Dragicevic, 2016), with
mean point estimates and confidence intervals (CIs) to
compare the two conditions. All CIs were calculated us-
ing the bootES package (Kirby and Gerlanc, 2013) with
R= 5000 bootstrapped resamples. Confidence intervals,
which do not overlap indicate statistical significance.

5.1 Effectiveness

On average, there were 0.934 (95%-CI: [0.62, 1.40]) slips
per polygon for P2F (Figure 4a) and 0.778 (95%-CI:
[0.5, 1.25]) slips per polygon for F2P. For large polygons,
the average slips per polygon was 0.744 (95%-CI: [0.39,
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1.26]) for P2F and 0.528 (95%-CI: [0.28, 0.81]) for F2P
(Figure 4b). Hence, both conditions were comparable as
anticipated (H1a). For small polygons, there were on aver-
age 1.135 slips [0.68, 2.05] per polygon (P2F) and 1.028
slips [0.56, 1.89] per polygon (F2P) respectively (Figure
4c). Hence, there is not enough evidence to support H1b.
Figure 4d shows the distribution of slips in the two condi-
tions.

(a) Slips for all polygons

(b) Slips large polygons (c) Slips for small polygons

(d) Histogram for effectiveness (slips
per polygon), normalized to 100%

Figure 4. Mean effectiveness measured in slips per polygon.

Overall, there were almost no lapses during the experi-
ment as anticipated. There was only one instance per con-
dition where this happened: one participant using P2F for-
got how to properly execute the Retrieve gesture. A partic-
ipant using F2P for retrieving a feature’s attributes forgot
that zooming into the map was an option to facilitate the
Selection part of the Retrieve gesture.

5.2 Efficiency

When considering all polygon sizes, the time-on-task
for a Retrieve operation was on average 18.62 (95%-
CI: [16.87, 21.29]) seconds for P2F and 25.86 (95%-
CI: [22.47, 31.74]) seconds for F2P (Figure 5a). Look-
ing at large polygons only, the average was 15.53 (95%-
CI: [13.6, 17.91]) seconds for P2F and 17.23 (95%-CI:
[15.43, 19.41]) seconds for F2P ((Figure 5b). This indi-
cates that H2a is not supported. If only small polygons
are considered, participants took on average 21.89 (95%-
CI: [19.27, 27.17]) seconds in the P2F condition, and 34.5
(95%-CI: [28.77, 44.46]) seconds in F2P (Figure 5c). For
small polygons, the average bootstrapped difference of
means is 12.609 seconds with a 95%-CI of [5.64, 22.93]
seconds. Hence, there is evidence that P2F was more effi-
cient than F2P, in the opposite direction of what was antic-
ipated (H2b).

(a) Time for all polygons

(b) Time for large polygons (c) Time for small polygons

Figure 5. Mean efficiency (seconds) to retrieve from a polygon.

5.3 Usability

The mean SUS score for participants using the P2F mech-
anism was 77.5 (95%-CI: [70.58, 83.16]). For partici-
pants using the F2P mechanism, the mean score was 78.54
(95%-CI: [70.34, 82.5]). A SUS score in the range of 71-
85 indicates that the users perceived the overall interaction
experience as “good” according to Bangor et al. (2008).

5.4 Perceived workload

Figure 6 shows the results for perceived workload. The
mean score for the physical load was 47.69 (95%-CI:
[35.38, 58.46]) for P2F and 43.33 (95%-CI: [ 31.67,
54.17]) for F2P. For mental load, the mean score was
49.23 (95%-CI: [37.69, 59.23]) for P2F and 41.67 (95%-
CI: [31.67, 50.0]) for F2P. Lastly, the mean frustration was
39.23 (95%-CI: [28.46, 50.0]) for P2F and 37.5 (95%-CI:
[26.67, 50.83]) for F2P. There is still no definite answer to
the question ‘what is an acceptable workload value?’ in the
literature. Hertzum (2021) reported means of 49 (mental
demand), 30 (physical demand) and 40 (frustration) across
127 studies for general activities (i.e. activities not tied to
a specific domain). Taking these as benchmark values sug-
gests that the workload of working with the FreeMapRe-
trieve prototype is ‘within the norm’. The deviation of the
physical load from that benchmark value is consistent with
the nature of the interaction.

Figure 6. Mean physical and mental load and frustration.

5.5 Data exploration utility

We could extract 250 insight statements (i.e. 19 statements
per user on average, P2F) and 270 insight statements (i.e.
23 statements per user on average, F2P) from the video
analysis. A good deal (70%) was classified as trivial, about

8 of 13AGILE: GIScience Series, 5, 7, 2024 | https://doi.org/10.5194/agile-giss-5-7-2024



20% were intermediate and about 10% were of high do-
main value (Figure 7a). The two conditions were compa-
rable as H5b anticipated. The mean exploration time was
slightly higher in the F2P condition (11 mins vs 10 mins),
but because the confidence intervals overlap Figure 7b),
the two conditions can be considered comparable. Thus,
there is no support for H5a, but this is consistent with the
idea that H5a is a consequence of H4a and H4b. The do-
main value scores were slightly higher in F2P (Figures 7c
and 7e) and this can be traced back to the contributions of
four participants from the F2P condition (Figure 7d).

(a) Frequencies

(b) Mean total exploration time (c) Mean total insight score

(d) Patterns of exploration
evolution per individual

(e) Patterns of exploration evolu-
tion per condition

Figure 7. Data exploration utility.

5.6 Impact of participants’ background

We performed an effects analysis of the participant’s gen-
der, previous experience with thematic maps, and fa-
miliarity with the renewable energy topic on the effi-
ciency/effectiveness results. There was no evidence of an
effect, which indicates that the two mechanisms are ag-
nostic to the participants’ background, i.e. they are equally
good for participants irrespective of the factors analyzed.

6 Discussion

Overall, the evaluation of the prototype has shown good
results w.r.t. usability and workload. In addition, the num-
ber of slips was relatively low with roughly 80% of the

participants completing the tasks with 1 slip or less. Only a
neglectable number of lapses was observed in both condi-
tions as mentioned above. Finally, while there is no bench-
mark to compare the data exploration utility observations,
there is evidence that both mechanisms support data ex-
ploration, with about 20 insight-based statements in each
condition. All these observations validate the two designs
(P2F and F2P) and suggest that the combination of ges-
tures are viable for interfaces attempting to enable gesture-
based interaction for Retrieve w.r.t. maps on large dis-
plays. As Table 1 suggests, means to systematically un-
veil these viable design paths are still needed in map-
based gesture interaction research. We contend that ges-
ture performance evaluation studies, along with bench-
marking against thresholds (e.g. SUS values, perceived
workload values), as done in this work can be used to that
end. For the entire gesture performance evaluation frame-
work, its stages and the relevant dimensions to consider
at each stage, see Figure 2. Next, we reflect on the de-
sign process, articulate guidelines and point to opportuni-
ties for future work. For the design guidelines, we provide
heuristic-based and counterfactual-based formulations. A
counterfactual proposition is of the form: ‘If design was
D then interaction would be I’ (Oulasvirta and Hornbæk,
2021). It makes immediately clear to the reader what to
expect when the heuristics are not followed.

6.1 Reflections about system and interaction design

One lesson learned is that a simple task such as Retrieve
necessitates rethinking ‘successfulness’ or reported user
preferences from elicitation studies for single gestures ex-
amined as atomic units. We have discussed in Section 2
that Retrieve = Select + Elaborate, while Pan/Zoom = Se-
lect + Move. It would not have made sense to use the same
gesture for selection in both cases. We used palm and grab
as two different gestures for the two different selection op-
erations, even though dwelling (Hespanhol et al., 2012)
or index (Lin et al., 2019) were rated highest in previous
work. The guiding principle here, called the rule of ges-
ture strokes optimization (Section 2.3), seems absent from
even the most recent guidelines for gesture vocabulary de-
sign (Xia et al., 2022). It may be listed under complexity
(‘The state or quality of a gesture being intricate or compli-
cated’, see Xia et al. (2022)), but this would be a different
notion of complexity (i.e. global complexity for all ges-
tures considered instead of ‘local’ complexity for a single
gesture). Gesture stroke optimization could be introduced
as a new dimension belonging to the physical factors to
consider during gesture design (next to complexity, effi-
ciency, ergonomics and occlusion, see Xia et al. (2022)).
Besides, similar projects could find the two heuristics be-
low for user activity detection on maps, which has been
identified as an important requirement for intelligent maps
(Degbelo and Kray, 2018; Degbelo et al., 2023):

• G1: Classify the hand state based on the N lat-
est video frames to increase classification accuracy,

9 of 13AGILE: GIScience Series, 5, 7, 2024 | https://doi.org/10.5194/agile-giss-5-7-2024



where N should be selected to maintain the feeling of
instantaneous response times (upper limit of 0.1 sec-
onds according to Nielsen (1993)). For instance, use
2<= N <= 5 when recording at 30 fps.
If N=1, the accuracy would drop to the accuracy
of the hand state classifier (in the case of the cur-
rent prototype, this accuracy was 98%, which implies
about 1 false classification every 2 seconds); if N >=
8, then the feeling of direct manipulation would dis-
appear (N = 8 corresponds to ≈ 0.2 seconds).

• O1: consider gesture stroke optimization across all
gestures involved in the target task, in the process
of designing Retrieve gestures. This is a way of ac-
knowledging that sub-gestures are integral operations
in the context of the broader common goal.
If gesture stroke optimization is not taken into ac-
count, then the efficiency of the whole gesture set
would be compromised. (The extent to which that ef-
ficiency is compromised remains to be characterized
empirically, hence it is mentioned here as an oppor-
tunity for further work).

Third, both Pointer-to-Feature and Feature-to-Pointer have
achieved good performance during the study. Hence, the
gestures chosen are good candidates for Retrieve.

• G2: Use Pointer-to-Feature as Retrieve strategy when
there are many small geographic entities to explore.
If F2P is used as a strategy with small polygons, then
users would become 50% slower (Figure 5c).

• O2: Use P2F or F2F as Retrieve strategy when there
are many large polygons to explore.
If P2F or F2P would not be used as strategies, then
the performance of the alternative strategies needs to
be assessed empirically.

6.2 Reflections about the theoretical apparatus

As for effectiveness, both conditions were comparable as
anticipated w.r.t. slips for large polygons (H1a) and lapses
(H1c). Since lapses were predicted based on theories of
short-term memory, these may be said to have stood the
test for now:

• G3: Use theories of short-term memory (in particu-
lar the 4∓1 rule) for prediction of lapses during the
design of gesture-based interaction for maps.

The guiding principle for the predictions of efficiency val-
ues was the relative number of motor operations (Card
et al., 1986), as estimated from the human processor
model. Both H2a and H2b were not supported (with H2b
going in the opposite direction than anticipated), hence:

• O3: More work on models to estimate the time for
gesture interaction with maps on large displays is

needed to advance the science of map interaction.
The Human-Processor-Model (Card et al., 1986; Jas-
trzembski and Charness, 2007) and the Gesture Unit
Model (Erazo and Pino, 2015, 2018) did not lead to
realistic estimates in this study.

The usability values did not differ as anticipated (H3). A
difference would have been an indication of a similar ef-
fect to legacy biases observed during elicitation studies
(Morris et al., 2014), where previous experience with a
type of technology affects user outcomes (i.e. the type
of gestures produced). There does not seem to be such
‘legacy effect’ from the observations in the current study.
Finally, the results for the perceived workload (H4a, H4b
and H4c) and data exploration utility (H5a and H5b) are
consistent with the observations related to H2b and H1c
and reinforce what has been said above regarding G3 and
O3. A clear statement about CLT cannot be made at this
point based on the observations.

6.3 Limitations

One limitation of the study is that the scope of the re-
sults applies only to able-bodies participants. The need to
exclude one participant’s data from the statistical analy-
sis highlights how even small anatomical deformations in
the hand can impact a person’s ability to perform the ges-
tures properly and the need for different gestures to help
that user group perform Retrieve operations successfully.
Besides, the study was conducted as a between-group ex-
periment. Despite the care taken to systematically assign
the participants randomly to the conditions, the impact of
the differences in profiles between the participants of the
two groups cannot be entirely ruled out. This being said,
we used the values from the background questionnaires
(i.e. similarity with maps, familiarity with the renewable
energy topic), and treated them as categorical variables
to perform a head-to-head comparison between ‘similar’
users from the two conditions. The results indicated a sim-
ilar tendency to the ones reported in Section 5.

7 Conclusion and future work

We have presented Pointer-and-Feature and Feature-to-
Pointer, two basic mechanisms to realize gesture-based
Retrieve operations for maps on large displays, and the
lessons learned from their design, implementation and
evaluation. We found that both mechanisms work well for
Retrieve operations on large polygons and hence can be
used as a starting point for more complex tasks (e.g. simul-
taneous selection of multiple spatial entities for compari-
son purposes). We also learned that the Pointer-to-Feature
mechanism should be preferred if the geographic dataset
involves the exploration of a large number of small poly-
gons. The two mechanisms are robust against participants’
background, i.e. they perform equally well irrespective of
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participants’ previous experience with thematic maps and
the topic of exploration at hand.

The spatial entities explored in this work were all repre-
sented as polygons. Hence, one immediate direction for
future work is the inclusion of more types of symbols rep-
resenting geographic entities: points (as generalized poly-
gons) and lines (rivers, roads), to assess the performance
of the two techniques in these scenarios. Another direc-
tion for future work includes the extension of the open-
source prototype with a configuration panel where design-
ers can select different options for sub-gestures relevant to
a map interaction goal, and chain them as they like dur-
ing prototyping and testing. This would facilitate the test-
ing of alternative possibilities (e.g. hover to select, popup
menus after Retrieve operations) and the discovery of ad-
ditional viable design paths for gesture-based interaction
with maps on large displays. At last, the design of effec-
tive gesture vocabularies for collaborative interaction on
maps with large displays would be a follow-up task to this
work, which poses interesting challenges for future work.

8 Data and software availability

The code of FreeMapRetrieve and the scripts for
the analysis of the user study data are available at
https://github.com/jonas-hurst/MapGestureController and
https://github.com/jonas-hurst/FreeMapRetrieve-Statistic
respectively. A demo, the stimuli used during the exper-
iment, the training protocol and a detailed description
of the components of FreeMapRetrieve are available at
https://doi.org/10.6084/m9.figshare.24077664.
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