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Abstract.
Updating road networks in rapidly changing urban land-
scapes is an important but difficult task, often challenged
by the complexity and errors of manual mapping pro-
cesses. Traditional methods that primarily use RGB satel-
lite imagery struggle with obstacles in the environment
and varying road structures, leading to limitations in global
data processing. This paper presents an innovative ap-
proach that utilizes deep learning and multispectral satel-
lite imagery to improve road network extraction and map-
ping. By exploring U-Net models with DenseNet back-
bones and integrating different spectral bands we apply se-
mantic segmentation and extensive post-processing tech-
niques to create georeferenced road networks. We trained
two identical models to evaluate the impact of using im-
ages created from specially selected multispectral bands
rather than conventional RGB images. Our experiments
demonstrate the positive impact of using multispectral
bands, by improving the results of the metrics Intersection
over Union (IoU) by 6.5%, F1 by 5.4%, and the newly pro-
posed relative graph edit distance (relGED) and topology
metrics by 2.2% and 2.6% respectively.

Keywords. Road Network Extraction, Semantic Segmen-
tation, Multispectral Imagery, Remote Sensing

1 Introduction

In the rapidly evolving field of urban and environmen-
tal dynamics, the task of updating and creating accurate
road network maps is both critical and challenging. The
traditional process of creating and updating such maps is
a complex and error-prone task that often fails to keep
up with rapidly changing urban landscapes. This labor-
intensive manual work is not only time-consuming, but is
also prone to inaccuracies (Kent, 2010), especially in the
face of the development of new infrastructure, the mainte-
nance of existing structures, and changes caused by natu-
ral disasters (O’Callaghan et al., 2020). Our research ad-

dresses these challenges by using high-resolution multi-
spectral satellite imagery in combination with the latest
advances in deep learning, particularly semantic segmen-
tation, to automate and refine road network extraction.

Previously, attempts have been made to extract road net-
works from satellite images, mainly using RGB bands
(Zhu et al., 2021; Lu et al., 2021b, a; Batra et al., 2019;
Mei et al., 2021; Ghandorh et al., 2022). These methods
included traditional computer vision-based algorithms,
which often required extensive user input and reached
their limits when processing global datasets (Bajcsy and
Tavakoli, 1976; Ünsalan and Sirmacek, 2011; Movaghati
et al., 2010; Jin and Davis, 2005; Zhang et al., 2018). Oc-
clusions caused by objects such as trees and buildings,
and different road structures and widths posed an addi-
tional challenge (Mingjun and Daniel, 2004; Cheng et al.,
2014; Mnih and Hinton, 2010). To solve these problems,
machine learning techniques such as Support Vector Ma-
chines (SVM) and Restricted Boltzmann Machines were
introduced, which enable the analysis of larger data sets
but still have significant limitations.

The advent of deep learning has introduced a significant
change in this area. Models using convolutional neural net-
works (CNNs) have been widely adapted (Máttyus et al.,
2017; Bastani et al., 2018), with architectures such as
U-Net (Ronneberger et al., 2015) and DenseNet (Huang
et al., 2017) showing promising results on semantic seg-
mentation tasks (Eerapu et al., 2019; Mohanty et al., 2020;
Xu et al., 2018; Xin et al., 2019; Ghandorh et al., 2022;
Mei et al., 2021). These deep learning methods have better
managed the complexity of road network structures and
varying environmental conditions.

In this work, we evaluate different deep learning architec-
tures, such as U-Net models with DenseNet backbones for
the task of creating road network maps from satellite im-
agery created by WorldView-3 and provided by SpaceNet.
We also investigate the use of different multispectral bands
beyond the RGB spectrum to utilize their unique spectral
properties for more detailed and accurate road network
mapping. To evaluate the extracted networks the graph
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edit distance (GED) is adapted into a relative metric, bet-
ter suited to differently sized graphs (Abu-Aisheh et al.,
2015). In addition, we introduce a novel evaluation metric
that analyses the topological correctness of a network, to
allow for a more comprehensive evaluation.

In summary, our research not only pushes the boundaries
of traditional RGB-based mapping techniques, but also
introduces novel assessment metrics. Using multispectral
satellite imagery and state-of-the-art deep learning, we
open new avenues for efficient, automated mapping of
road networks, which is essential for modern urban plan-
ning and environmental monitoring.

2 Related work

In this section, we present several road extraction tech-
niques, employing various algorithms from the fields of
computer vision, machine learning, and deep learning. In
addition, we focus on techniques that use multispectral im-
agery in similar remote sensing applications and elaborate
on different approaches in which multispectral bands have
been integrated into the processing workflow.

2.1 Computer-Vision-based Extraction Methods

Road network extraction has been a widely researched
topic. One of the earliest methods was presented in the
work of Bajcsy and Tavakoli (1976) who established spe-
cific physical and geometrical requirements that a road
must meet for classification. This method used a sequence
of low-level operators to detect and extract roads, which
were applied to images from the ERTS-1 satellite and
compared with a hand-crafted dataset. Another approach
by Ünsalan and Sirmacek (2011) included image process-
ing and thresholding to identify the centerline of the road
using manually selected pixel values of the road surface
as a reference. This method involved additional steps to
eliminate false positive road segments and was tested with
images from various remote sensing sources, including
satellites and aerial platforms. Furthermore, a method pro-
posed by Movaghati et al. (2010), which combines an Ex-
tended Kalman filter with a Particle Filter, was used to
track the centerline of the roads starting from a manually
defined point. Most computer vision-based methods con-
tain a manual component in their workflow that inherently
limits their scalability and applicability for extracting large
or automated road networks.

2.2 Machine-Learning-based Extraction Methods

In recent years, there has been a clear trend towards the ap-
plication of machine learning-driven methods for road ex-
traction, moving away from traditional computer-vision-
based approaches. These more advanced algorithms en-
able the processing of large datasets minimizing the need
for manual adjustment of parameters.

An approach proposed by Mingjun and Daniel (2004) uses
a Support Vector Machine (SVM) for a binary classifica-
tion followed by a Weighted Region-Growing algorithm
to refine the labeling of road pixels, leveraging both spec-
tral and spatial road information. This method applied to
an image from the Ikonos satellite, proved to be more ef-
fective than the Gaussian maximum likelihood classifier.
Similarly, Cheng et al. (2014) employed an SVM followed
by a graph cut-based probability propagation algorithm to
filter out pixel clusters that do not represent road surfaces.
When tested on aerial images of Toronto, this method per-
formed better than other techniques that relied on K-means
clustering and morphological operations. However, chal-
lenges such as occlusion and disconnected road segments
were recognized as persistent problems in both studies.

2.3 Semantic-Segmentation-based Extraction
Methods

Semantic segmentation is a computer vision task that as-
signs semantic labels to every pixel of an image and is par-
ticularly suited for extracting patterns from remote sens-
ing images (Thoma, 2016). This process, often involving
deep learning models like fully CNNs, requires extensive
datasets with labeled images. Many approaches use se-
mantic segmentation, as the generalization capabilities of
trained models offer more efficient, reliable, and accurate
road extraction results. Recent research aims to improve
these model architectures and has led to the development
of numerous new models.

Máttyus et al. (2017) proposed a method for extracting
road networks in the form of graphs from aerial imagery
using a CNN. This included semantic segmentation to
identify road pixels, which were then simplified to center-
lines and formed a graph-based representation of the road
network. Building on this work, Bastani et al. (2018) im-
proved their method by implementing a second CNN for
iterative extraction of graph components, outperforming
both semantic segmentation alone and the method of Mát-
tyus et al. (2017).

Lu et al. (2021a)’s proposal for the Global-Local Adver-
sarial Learning (GOAL) framework, based on ResNet-50
with an additional adversarial learning branch, showed im-
proved generalization of model predictions. When applied
to SpaceNet and DeepGlobe road datasets, this framework
achieved excellent performance. In this context, Lu et al.
(2021b) also introduced the GAMSNet architecture, which
has a spatial awareness module to capture spatial context
dependencies and a channel awareness module to consider
the relationship between image channels. This model out-
performed various LinkNet50 models on SpaceNet and
DeepGlobe road datasets. As roads usually cover only a
small part of the study area, the combination of attention
mechanisms with edge detection methods was proposed
by Ghandorh et al. (2022). This method improved the seg-
mentation results and emphasized the importance of con-
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sidering the characteristics of the dataset during model
tuning.

The Connectivity Attention Network (CoANet) proposed
by Mei et al. (2021), which is based on a pre-trained
ResNet-101 model with additional modules (an Atrous
Spatial Pyramid Pooling module and a connectivity atten-
tion module) to improve road detection, especially its con-
nectivity, is a step forward. By using strip kernels instead
of traditional square kernels, linear road features could be
better captured, leading to better results on the SpaceNet
and DeepGlobe datasets.

While these methods have achieved remarkable results
through complex model architectures and elaborated pro-
cessing techniques, and primarily use RGB images, they
overlook the potential of utilizing more informative im-
age bands available in their datasets. Rather than fur-
ther complicating models with additional modules or pre-
processing steps, exploring and effectively utilizing addi-
tional image bands, as suggested in other remote sensing
applications (see subsection 2.4), could provide a simpler
but effective way to improve performance.

2.4 Inclusion of Multispectral Imagery

Whilst the use of high-resolution multispectral data in re-
mote sensing is well established (Eugenio et al., 2015; Es-
pinoza et al., 2017; Warren and Metternicht, 2005), its in-
tegration into deep learning applications has been less ex-
plored. As deep learning capabilities grow, new methods
are emerging to leverage the unique spectral properties of
the diverse multispectral data.

Li et al. (2019) demonstrated the extraction of building
footprints from WorldView-2 satellite multispectral im-
agery, using the eight available bands and integrating GIS
map data as an additional channel. They chose a U-Net
architecture for semantic segmentation, which required
modifications to handle images with more than three chan-
nels. This approach showed improved results over others
but required changes to the model.

Similarly, Alhassan et al. (2020) modified existing model
architectures to include images with additional channels,
allowing the incorporation of multispectral bands. Their
goal was to produce land-use/land-cover maps, and they
modified VGG, ResNet, and GoogLeNet architectures,
adding an adversarial learning extension and a context
module. These modifications not only improved map ex-
traction accuracy but also significantly streamlined the
process.

Taking a different approach, Yuan et al. (2021) com-
bined RGB, Near Infrared (NIR), and Short-Wave Infrared
(SWIR) channels as input to their MC-WBDN model,
aimed at segmenting water bodies from Sentinel-2 im-
agery. Considering NIR and SWIR bands’ proven use-
fulness in identifying water bodies in remote sensing,
their inclusion enhanced the model’s segmentation ability.
The MC-WBDN model outperformed other models and

approaches, demonstrating the advantages of integrating
multispectral bands in deep learning applications.

In line with these advancements, we plan to adopt a similar
strategy of utilizing multiple channels from multispectral
imagery to enhance semantic segmentation results for the
extraction of road networks, while reducing the need for
labor-intensive and complicated model adjustments.

3 Methodology

In this section, we outline the data utilized, explain our
methodology for creating ground truth images from vector
data, and detail the pre-processing steps. We also describe
the selection of multispectral bands and the training pro-
cess for a semantic segmentation model for road surface
detection. Furthermore, we elaborate on post-processing
techniques to improve segmented images and to extract a
graph-based representation of the road network. We also
present additional methods for refining graphs and de-
scribe how these graphs are converted into georeferenced
GeoJSON formats.

3.1 Data and Software Availability

The SpaceNet dataset1 contains georeferenced high-
resolution multispectral satellite imagery created by
WorldView-3 (Etten et al., 2018). These images, with dif-
ferent resolutions and spectral band combinations, show
four cities: Las Vegas, Paris, Shanghai, and Khartoum,
each with different types of road networks.

The dataset, with a total of 2780 images, is unevenly dis-
tributed across these cities: Las Vegas, with 989 images,
predominantly shows a grid-shaped road network. Paris,
which contributes 310 images, is an example of a ra-
dial (star-shaped) network that reflects the historical de-
velopment of the city. Shanghai, which provides 1198 im-
ages, combines grid and organic patterns, reflecting the
mix of new and old urban areas. Khartoum, with 283
images, shows a grid and organic pattern as well, in-
fluenced by its unique geographical location (Rodrigue,
2020). Each image has a size of 1300 × 1300 pixels which
roughly corresponds to a footprint of 400 × 400 meters.
The corresponding ground truth information is provided
as GeoJSON files that contain road centerlines as line
string objects in the WGS84 coordinate system. To capture
the maximum detail possible, we used the pan-sharpened
RGB and multispectral imagery with a resolution of 0.31
meters per pixel. The different spectral properties of the
available multispectral bands are listed in Table 1 provided
by DigitalGlobe (2017). This diverse collection of im-
agery, covering a range of road network types in different
cities, provides a rich and varied dataset ideal for in-depth
analysis and the application of deep learning techniques.

1https://spacenet.ai/spacenet-roads-dataset/
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The code developed for this paper, including a detailed
workflow, is publicly available at 2. It can be executed via
a set of numbered scripts and is written entirely in Python.

Band Wavelength in nm

Coastal 397 – 454
Blue 445 – 517
Green 507 – 586
Yellow 580 – 629
Red 626 – 696
Red Edge 698 – 749
Near-IR1 765 – 899
Near-IR2 857 – 1039

Table 1. Spectral properties of WorldView-3 image bands.

3.2 Data Pre-Processing

To prepare the data for a semantic segmentation model,
several pre-processing steps are required. First, we create
ground truth images by converting GeoJSON vector road
centerlines into dataframes and then applying a two-meter
buffer to simulate road widths. While this assumption of
uniform width does not always reflect variability in the real
world, it is consistent with the results of our data inspec-
tion. The dataframes are then converted to binary arrays
and then to single-channel images for model training. The
original 16-bit remote sensing images were down-scaled
to 8-bits to facilitate processing and reduce memory re-
quirements.

To avoid memory issues when loading the images, the
1300 × 1300 pixel images are segmented into smaller 512
× 512-pixel sub-images, each creating nine overlapping
segments. These can later be merged to reconstruct com-
plete images. The pre-processing uses and extends func-
tions from the APLS Python library (Etten and Le, 2020).

3.3 Selection of Multispectral Bands

The eight-band multispectral images of the SpaceNet
dataset, which go beyond RGB, provide a unique oppor-
tunity to utilize the spectral properties of road surfaces for
improved segmentation. As described in subsection 2.4,
several approaches have been proposed to include multi-
spectral bands, which mainly require adapting the seman-
tic segmentation model (Li et al., 2019). To avoid this com-
plication and maintain the standard three-channel image
structure, we chose a trio of multispectral bands that em-
phasize the spectral characteristics of road surfaces. These
bands were merged to create a false-color image for model
input.

Our band selection process involved evaluating the
provided imagery and pertinent literature. Guided by

2https://geoinfo.geo.tuwien.ac.at/resources/

Shahi et al. (2015), we incorporated an infrared band
(WorldView-3’s Near-IR2 from 857 nm to 1039 nm) due
to its efficacy in depicting road surfaces (DigitalGlobe,
2017).

To determine the other two image bands, we conducted
comparisons to maximize differences between bands, thus
enhancing the information content in the composite three-
band image. This analysis yielded various combinations,
predominantly in the longer wavelengths (Green to Near-
IR2), as urban surfaces typically reflect these wavelengths
more (Jensen, 2009). Thus, we chose the Red edge band
(698 nm to 749 nm) alongside the Near-IR2 band to im-
prove road surface detection. The green image band (507
nm to 586 nm) was selected to complement other bands,
improve vegetation detection, and help distinguish vegeta-
tion from roads, often located adjacently.

Due to computational constraints, we could only assess
a semantic segmentation model trained on RGB images
against one trained on a single non-RGB image band com-
bination. Training additional models with diverse band
combinations exceeded our resources. Figure 1 displays an
example, showing an RGB image alongside the resulting
multispectral image from our band selection, highlighting
the improved differentiation between the roads and the sur-
rounding area.

3.4 Semantic Segmentation Model

To investigate the effectiveness of semantic segmentation
for the automatic extraction of road networks, different
model architectures were tested. However, as U-Net’s po-
tential is well studied in the literature (see subsection 2.3),
and as its decoder-encoder structure is known to be es-
sential for complex structures such as roads (Ronneberger
et al., 2015), we focused on leveraging existing model
backbones that are compatible with the U-Net structure.
We tested backbones such as ResNet, VGG, and DenseNet
and settled on a simple U-Net model with a DenseNet201
backbone pre-trained with ImageNet (Krizhevsky et al.,
2017) weights. We deliberately opted for a simpler net-
work than in recent research (e.g., in (Mei et al., 2021; Lu
et al., 2021b; Zhu et al., 2021; Ghandorh et al., 2022)) to
analyze in detail how multispectral bands affect the seg-
mentation process.

A major challenge in our task is the significant imbalance
between road and non-road pixels. To tackle this prob-
lem, we selected specific hyperparameters for our model
through extensive experiments. Since the road pixels ac-
count for only 6.33% of the total pixels, we combined the
loss functions Focal Tversky Loss (FTL) (Abraham and
Khan, 2019) and the Intersection over Union (IoU) (Rah-
man and Wang, 2016, p. 234-244) to cope with the imbal-
ance between the classes. The FTL (in equation 1) is based
on the Tversky Loss (TL) (Salehi et al., 2017) and applies
inversely proportional weights to the classes, which helps
improve overall results. The IoU (in equation 2) is calcu-
lated using the values for true positives (TP), false posi-
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(a) RGB image (b) Multispectral image

Figure 1. Comparison of an RGB and false-color multispectral image with the Green, Red Edge, and Near-IR2 bands (Paris_img290).
As it can be seen in 1b, the road surfaces are better reflected in the multispectral image.

tives (FP), and false negatives (FN) and helps to reduce
the negative effects of class imbalance. During training,
both loss functions were added together to form a hybrid
loss function.

FTL =
∑

(1−TL)
1
γ (1)

IoU =
TP

FP+TP+FN
(2)

Additionally, we used a batch size of four and the Adam
optimizer with an initial learning rate of 0.0001, coupled
with a learning rate scheduler. Whenever the loss functions
did not improve for a certain number of epochs, the learn-
ing rate was reduced by a factor of 0.4, allowing the model
to learn finer features before finishing its training proce-
dure. To increase efficiency, early stopping and weight-
saving recall were implemented. The training was per-
formed on an NVIDIA GeForce GTX 1080Ti 11GB GPU.
Two final models were trained with identical hyperparam-
eters on different multispectral and RGB datasets and run
through a training (80%), testing (10%), and validation
(10%) split, as seen in Table 2. Normalizations and random
augmentations such as brightness and contrast adjustments
and random flipping were performed. The rotation of the
data sets was avoided due to computational constraints.

3.5 Post-Processing Procedures

The binary output of the model categorizes pixels as either
road or background. To improve the segmentation results,
extract the road network, and georeference it, a series of
post-processing steps are applied: First, the smaller seg-
mented images are stitched back together. Overlapping ar-
eas, in which segmentation information is available from

Model name Image bands Epochs

UNetDense_RGB_512 Red, Green, Blue 177
UNetDense_MS_512 Green, Red Edge, Near-IR2 161

Table 2. Information regarding the model name, used multispec-
tral image bands, and training duration.

up to four images, are merged with the use of an ’OR’ op-
erator. This operator prioritizes the labeling of road pixels,
as pixels in overlapping areas only need to be predicted as
a road once to be classified as such. Then, morphological
operations such as Gaussian filtering and thresholding are
used to smooth the boundaries and eliminate small, non-
road-related features. This process, shown in Fig. 2, refines
the images for accurate extraction and georeferencing of
the road network.

After post-processing, images are converted into graphs
through skeletonization, reducing roads to single-pixel-
wide centerlines. Then a multigraph is formed with nodes
denoting endpoints and intersections, and edges represent-
ing the connecting road segments. To enhance the connec-
tivity and topological correctness of the generated graph,
multiple steps are carried out. Using a buffer operation
with a radius of 15 pixels, nearby nodes are merged. De-
pending on the geographical latitude, the selected radius
is large enough to merge spatially related nodes, but small
enough to prevent the merging of nodes belonging to sep-
arate roads. In cases where buffered regions of nodes over-
lap, they are replaced by a centroid-positioned node, pre-
serving previous edge connections to maintain their origi-
nal topological state. This maintains topological accuracy
and visual coherence. The process, illustrated in Fig. 3,
shows how node reduction and connection enhancements
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(a) Mask displaying the stitched segmentation results (b) Mask displaying the post-processed segmentation results

Figure 2. Example of the applied post-processing steps on a binary segmentation result. Blue rectangles highlight areas where connec-
tions were established and the red rectangle shows the positive effect of boundary smoothing for graph extraction (Vegas_img1001).

improve the graph structure. In this figure, the blue bound-
ing box shows a case where post-processing established a
connection between two previously disconnected nodes.

As a result of the graph creation, each edge contains all
the pixel values that the skeletonized road has traversed.
This is not a problem for the graph representation, but
the derived GeoJSONs contain an unnecessary amount of
data. Furthermore, subsequent graph evaluation processes
would benefit from simplified edges and lower compu-
tational requirements. To simplify the edges, the Ramer-
Douglas-Peucker algorithm (Douglas and Peucker, 1973)
is used, which preserves the shape of the edges while re-
ducing their complexity. This not only optimizes the rep-
resentation but also contributes to a more efficient down-
stream graph analysis.

Finally, the graphs are converted to GeoJSON format
by retrieving the coordinate reference frame, pixel size,
width, and height of the graphs from the corresponding
georeferenced training images. The WGS84 coordinates
for each node and edge are calculated and assigned by
a planar transformation. The transformed graphs are then
saved, with the nodes displayed as points and the edges as
lines.

4 Results

In this section, we present our results and describe
the evaluation methods used to assess the quality of
our results. We discuss the performance of the UNet-
Dense_RGB_512 and UNetDense_MS_512 models and
examine their results for the entire dataset and in each city.
The analysis includes both the quality of the binary seg-
mentation masks and the derived graph networks.

4.1 Evaluation Techniques

While the predicted segmentation mask and the extracted
graph represent similar content, their structural differences
require separate evaluation methods. To evaluate the per-
formance of the semantic segmentation results, two met-
rics were used: The IoU, which is integrated into the loss
function during the training process; and the F1 metric,
which is calculated as the harmonic mean of precision and
recall. The F1 metric is widely used in semantic segmen-
tation applications (Máttyus et al., 2017; Xu et al., 2018;
Xin et al., 2019) and enables the evaluation of imbalanced
datasets.

Evaluating graph networks is a more resource-intensive
and complex task than the pixel-wise comparison of im-
ages. Graphs consist of nodes and edges that create a
relational network that displays the topology and con-
nectivity between nodes. Graph comparison is an ac-
tively researched topic with various existing algorithms
(Sedgewick, 1998). However, not all of these algorithms
are capable of inexact graph matching, a common problem
when comparing graphs with different numbers of nodes
(Bengoetxea, 2002).

To solve the problem, the graph edit distance (GED) was
selected. The GED calculates the number of operations
required to transform a proposed graph into its corre-
sponding ground truth graph (Abu-Aisheh et al., 2015).
A lower GED value indicates a higher similarity between
the graphs. However, this measure does not always reflect
the actual complexity, as some graphs may naturally have
fewer nodes and edges, resulting in a lower GED score.

To mitigate this problem, we have introduced the rela-
tive GED (relGED), which is calculated using the proposal
graph (GP), the ground truth graph (GGT), and an empty
comparison graph (G0), as shown in equation 3. For each
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(a) Different issues in the original graph that need to be solved. (b) Solved issues after the post-processing.

Figure 3. Example of the applied post-processing steps on the extracted graph network with the impact of node reduction highlighted
in red and blue rectangles (Shanghai_img472).

of the GED calculations, the first approximated result of
the GED, provided by the Python library NetworkX (Hag-
berg et al., 2008), is used. This metric offers a relative
value that provides context to the graph matching inex-
actness. Despite its usefulness in fair comparison of inex-
act graphs, relGED has limitations: It weighs all edges of
the graphs equally, which does not match the varying im-
portance of roads in a real-world network. A low relGED
value still indicates a good fit of the graph, but it does not
differentiate the importance of the different road connec-
tions.

relGED =
GED (GP, GGT)

GED (GP, G0)+GED (GGT, G0)
(3)

The relGED metric measures the similarity of the graphs,
but not the topological accuracy of the proposed graph. To
capture this, a Topology metric is introduced. This metric
compares the connectivity between proposal and ground
truth graphs by matching their nodes and calculating the
path length similarity. As we could not assume that corre-
sponding nodes from the proposed and ground truth graphs
were indexed similarly, we first applied a node-matching
algorithm by calculating the Euclidean distance between
spatially related nodes and filtering them through a thresh-
olding distance. After the nodes have been matched, all
possible shortest paths from each matched node are cal-
culated within its graph using the Dijkstra algorithm (Di-
jkstra, 2022). The metric then calculates the mean nor-
malized absolute difference in path length and the number
of nodes along these paths between the proposed and the
ground truth graphs.

4.2 Semantic Segmentation Evaluation

Using the F1 and IoU metrics, we evaluated the perfor-
mance of each semantic segmentation model, which dif-
fers only in the training images. To facilitate detailed
analysis and a better understanding of the results, Table 3
presents these metrics for each model together with other
city-specific metrics. In addition, examples of the pre-
dicted segmentation masks are compared to their corre-
sponding ground truth images in Fig. 4a and Fig. 4b re-
spectively.

4.3 Extracted Road Network Evaluation

As mentioned in subsection 4.1, evaluating the extracted
road network requires more advanced methods. Table 3
shows the results for each model and city. This information
helps to better understand how the graph extraction meth-
ods were influenced by city-specific properties. Further-
more, visual comparisons of the extracted graphs and the
georeferenced graphs overlaid on their respective ground
truth images are presented in Fig. 4c and Fig. 4d.

5 Discussions

In this work, we addressed the automatic extraction of road
networks from multispectral satellite imagery and evalu-
ated the improvements attributed to the selection of non-
RGB image channels compared to conventional RGB im-
ages. We fine-tuned a U-Net-based semantic segmentation
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Model F1 in % IoU in % GED in steps relGED in % Topology in %

UNetDense_RGB_512 82.81 73.93 66.80 46.02 86.13
Las Vegas 89.93 82.33 67.64 43.23 89.71
Paris 44.11 31.76 61.74 59.65 72.78
Shanghai 86.66 78.13 64.62 44.37 86.44
Khartoum 80.94 69.65 76.63 48.77 82.06

UNetDense_MS_512 88.21 80.47 61.37 43.85 88.77
Las Vegas 90.73 83.95 65.26 42.68 90.74
Paris 85.58 77.10 33.30 43.03 90.56
Shanghai 88.45 80.75 62.16 44.01 87.91
Khartoum 81.22 70.74 71.65 48.04 83.55

Table 3. Evaluation metric results for the semantic segmentation models and extracted graph networks. Results for the whole dataset
are displayed next to the model’s names with city-specific results presented in the lines below.

model and performed post-processing steps to improve the
extraction of road networks.

By analyzing the standard GED metric as shown in Ta-
ble 3, we found that this metric is not entirely reliable, es-
pecially in Paris where both models resulted in a low GED
value, suggesting a very good graph extraction, while all
other metrics reflected the opposite. Meanwhile, the im-
ages from the other cities are more or less correctly eval-
uated by the GED, receiving a high value and thus a poor
graph matching, as verified by the other graph evaluating
metrics. This issue is in line with observations of Hu et al.
(2020) and Zhao et al. (2023) who adapted the GED them-
selves to enable its use for their specific research ques-
tion. We assume that this discrepancy in the GED, partic-
ularly for Paris, appears due to the low number of nodes
and edges contained in the relatively rural road network
depicted in the images of Paris. This further highlights the
benefit of including the relGED during graph comparisons,
as it allows a more thorough and complete analysis.

The number of images from each city provided for train-
ing is another important factor to consider when analyzing
the results. The inevitable imbalance in the data resulting
from the size of the cities meant that the two cities of Las
Vegas and Shanghai dominated 79% of the training data.
In such a case, even when trying to compensate for minor-
ity cities by augmentation techniques or adjusting the loss
function as analyzed by Johnson and Khoshgoftaar (2019),
it is inevitable that the model automatically learns to adjust
its prediction behavior in favor of images from the larger
cities. This can be seen in the semantic segmentation met-
rics of the two cities, which are superior to the images from
Paris and Khartoum. The unique characteristics of the road
network layout (see subsection 3.1), road width, and oc-
cluding objects further influence the results of the metrics.
While the Las Vegas images have a uniform, grid-like road
layout and few obscuring objects, the Shanghai images
have more high-rise buildings and thus more obscured ar-
eas, which makes segmentation more difficult and is re-
flected in the metrics. Whilst the roads of Khartoum follow

a grid-like road layout, these roads are not always paved
and/or covered with sand or debris, which leads to an in-
homogeneity of all road surface pixels. The road network
of Paris follows a rather random distribution, and as there
is a lot of vegetation close to the roads, it obscures a large
part of the road surface, leading to more non-uniform seg-
mentation results. These effects can be observed, albeit to
different degrees, in both evaluated models.

It is important to note that a high score on the segmenta-
tion metrics does not always translate into equally good
results on the graph metrics, which focus on connectivity
and topological accuracy and are not visible in segmented
masks. Experiments conducted by Mei et al. (2021) con-
firm this assumption. The promising graph evaluation met-
rics of the UNetDense_MS_512 model for Paris imagery
could be due to the richer information of the multispec-
tral imagery, which allows better differentiation between
roads and other elements. However, the reasons for the
poor performance of the UNetDense_RGB_512 model in
Paris could go beyond spectral limitations and point to the
possible effects of other anomalies that require further in-
vestigation.

In the overall evaluation of the model across all cities,
the use of multispectral image channels has been shown
to notably improve all metric scores. The difference is
more pronounced in the segmentation result, where the
pixel-based evaluation benefits more from the use of mul-
tispectral data. The content displayed in the images is the
same regardless of whether multispectral or RGB imagery
is used, and thus occluding objects have a similar effect
in both image types. This in turn influences the graph
evaluation metric, leading to a less pronounced improve-
ment in the graph evaluation metrics. The improvement
of 5.4% in the F1, 6.5% in the IoU, 2.2% in the relGED,
and 2.6% in the topology metric underline the great po-
tential of the proposed method of including multispec-
tral bands, compared to relying solely on RGB bands. All
cities processed by the UNetDense_MS_512 model con-
sistently exhibit superior metric results in comparison to
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(a) Ground truth images (b) Predicted segmentation mask (c) Extracted graph network (d) Georeferenced road network

Figure 4. Road extraction results using our proposed pipeline with the UNetDense_MS_512 model as the backbone. From top to
bottom the images are from Las Vegas, Paris, Shanghai, and Khartoum.

UNetDense_RGB_512. Notably, the outcomes for the city
of Paris stand out prominently.

6 Conclusion

In this work, we have demonstrated the viability of our
approach in using multispectral image bands for the au-
tomatic extraction of road network graphs using semantic
segmentation of road surfaces from high-resolution satel-
lite images. This approach yields satisfactory results and
can be utilized to generate up-to-date georeferenced road

networks, suitable for many applications. To utilize the full
capabilities of semantic segmentation, we explored dif-
ferent model architectures, backbones, and training tech-
niques. Loss functions were chosen specifically to mit-
igate problems related to the prevalent class imbalance.
Through the analysis, we have shown that our approach
of integrating multispectral image bands into the training
process leads to very promising results without requiring
any changes to the architecture of the model. This enables
the use of diverse spectral information in many other areas
of application, with the selection of image bands depend-
ing on the task at hand. For road segmentation, we recom-
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mend the spectral bands Green, Red Edge, and Near-IR2,
although future work might benefit from a more in-depth
analysis and comparison of different image band combi-
nations. Apart from conducting experiments with more di-
verse combinations, the potential for enhancing results by
applying transfer learning to models trained on different
image bands deserves thorough exploration. Furthermore,
future work could include the implementation of more ad-
vanced semantic segmentation models that are uniquely
modified to improve the connectivity of the extracted road
networks. To enhance the generalization capabilities of the
trained model, the dataset could be enlarged by includ-
ing additional data, such as the DeepGlobe road dataset
(Demir et al., 2018) or by applying additional image aug-
mentations. Further work could include the consideration
of different types of road networks during the processing
of image data and road graphs, using available semantic
information.
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