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Abstract. Scale, context, and heterogeneity have been
central issues in geography. From a quantitative stand-
point, accurately identifying the scale and context at which
geographical processes operate and capturing their spatial
heterogeneity have been challenging tasks. Despite vari-
ous prominent developments in spatial modeling literature,
there is a lack of models for separating individual- and
group-level spatial processes that may also exhibit spatial
heterogeneity. Understanding this difference can better in-
form us about how individuals are separated from or influ-
enced by higher-level contexts. In this regard, we propose
Multilevel Geographical Process Models (MGPMs) to si-
multaneously incorporate both individual- and multi-level
spatial process heterogeneity. We demonstrate the perfor-
mance of the model using Monte Carlo simulations and
Compare it against Multiscale Geographically Weighted
Regression and Multilevel models.

Keywords. multilevel models, multiscale geographically
weighted regression, spatial process heterogeneity

1 Introduction

Over the past decades, understanding the role of geograph-
ical context, the scale at which geographical processes op-
erate, and their heterogeneity has been of major interest to
quantitative geographers. Statistical frameworks, includ-
ing multilevel models (MLMs) and multiscale geograph-
ically weighted regression (MGWR) have seen common
use in modeling contextual multiscale effects. MLMs are
appropriate for hierarchical data, and heterogeneity among
aggregated levels (which are defined a priori) can be mod-
eled by including random effects (Kreft and de Leeuw,
1998). MGWR follows a local regression framework that
allows parameters exhibit different levels of heterogeneity

at the individual level (Fotheringham et al., 2017). Com-
pared to MLMs, MGWR alleviates the possibility of mod-
ifiable areal unit problem (MAUP) by avoiding defining
spatial regimes where processes are homogeneous within.

A recent study compared the two frameworks using both
synthetic and empirical datasets (Fotheringham and Li,
2023). The results suggested that while MGWR and
MLMs produced similar estimated spatial patterns of geo-
graphical contextual effects, MGWR indicated local vary-
ing processes with higher spatial resolution that cannot be
fully explained by coarse upper hierarchical levels. How-
ever, does the detailed local effect arise from noise and
model assumptions, or are they indeed interesting pro-
cesses that should be identified but are missed by tradi-
tional MLMs? The question cannot be fully answered due
to the lack of models that are able to accurately separate
local- and group-level geographical processes. There are
some efforts worth noting along this direction. Harris et al.
(2013) reconstructed the GWR weight matrix leveraging
contextual covariates to incorporate upper-level divisions
into the model calibration. Dong and Harris (2015) gener-
alised the paradigm of hierarchical spatial autoregressive
models (HSAR) so that spatial dependencies at both the in-
dividual and group levels can be taken into account. Chen
and Truong (2012) and Hu et al. (2022) combined MLM
with GWR, proposing a hierarchical and geographically
weighted regression (HGWR), which allows the spatially
varying processes at the group level to be identified. Data-
driven methods for regionalising the group-level divisions
in MLM, based on local intercepts derived from GWR,
have also been developed (Feuillet et al., 2024). Despite
these developments, there is a gap in the literature to de-
velop a unified modeling framework to achieve the follow-
ing three objectives simultaneously:
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e To model the individual-level spatially varying pro-
cesses and explicitly provide the spatial scales at
which they operate.

e To explicitly allow group-level covariates and model
their group-level effects.

e To separate spatially varying processes at different hi-
erarchies thereby enabling better process identifica-
tion.

To address this gap, we propose multilevel geographical
process models (MGPMs) as a novel paradigm for mod-
eling hierarchical geographical data. This framework in-
herits the specification and the flexible structure from the
traditional MLM but also further develops the superior-
ity of MGWR in modeling geographical process hetero-
geneity. In this short paper, as a starting point, our discus-
sion mainly focuses on the MGPM with fixed-slope and
random-intercept regarding its specification and estima-
tion, though it can be extended to consider random-slope.
Through Monte Carlo simulations on a synthetic dataset,
we demonstrate its advantages over traditional models in
terms of parameter estimate accuracy, bandwidth estima-
tion, and overall model accuracy and sensitivity.

2 Methods
2.1 Multilevel Geographical Process Model

A traditional MLM with fixed-slope and random-intercept
can be represented in matrix notation as:

y=XB+Z{+e€ @)

where 3 and & are vectors of fixed effects and random ef-
fects. X and Z represent design matrices for the fixed ef-
fects and random effects respectively. € is the error term.
Such specification assumes that the 5 for each covariate is
constant over space. In MGWR, by allowing the param-
eters to vary spatially at different scales, this assumption
can be relaxed (but only in the single-level case):

Yi = Zﬁbwj (wi,vi) @ij + €4 2)

Jj=0

where x;; is the jth explanatory variable, By, (ug,v;) is
the jth coefficient, and the bwj indicates the bandwidth of
the jth covariate. Leveraging the above techniques, we ex-
tend MLM to MGPM for modeling individual-level spatial
process heterogeneity, which can be formulated as:

Y = Xxk=0)Bk=0) + Xx>0)Bk>0) + Z§ + € (3)

where the subscript (k) denotes that this vector or matrix
contains elements of the k levels, with & = 0 representing
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the level 1 (individual-level). However, here, the B(x—o)
is no longer a vector, but a j X ¢ matrix containing the
individual-specific parameter j3;;(gy. When bw0 = bwl =
---=Dbwj = N (N represents the total observations), the
individual-level spatial processes can be considered to be
spatially constant, the MGPM thus reduces to the MLM
approximately (still with slight variations in the B(x—o
due to the weighting scheme in the MGWR). On the other
hand, when k£ = 0, the MGPM reduces to the MGWR (ran-
dom effects are not applicable in this case).

A back-fitting algorithm as follows can be adopted for the
model calibration (Figure 1). In this study, the GWR band-
widths were optimised by Corrected Akaike Information
Criterion (AICc), and the score of change in the residual
sum of squares (SOC-RSS) < 1075 was set as the termi-
nation criterion of the calibration routines, according to
Fotheringham et al. (2017).

Initialize all the &) Vk € {0, 1, ...,n},
BjwVj €{0,1,...,m}, and B x-0) Using

MLM

Calculate the residual
n

£=y—Xﬂ—Z $o)
k=0

Regress & + § ) against X o) and Z
using MLM, and update &) with the new
estimate

Calculate the residual
m
e=y-Z§- Z JLioxio
j=

I

Regress & + Bj)x;(0) against x;y using
GWR, and update f;(o);(o) With the new
estimate

bW,‘,
AlCc,

estimate

Of Bow ;o

j++

Figure 1. Back-fitting algorithm for an MGPM
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2.2 Simulation Design

In order to compare the performance of MGPM with tradi-
tional models, a simulation experiment was designed. The
simulated synthetic dataset was constructed based on the
following data generating process (DGP):

y=Po+ rx1+ Paza +E+¢ 4

The simulated space was created over a regular 25 x 25
lattice. We then designed three different parameter sur-
faces for each of the individual-level covariates with zero,
medium, and high spatial heterogeneity following Fother-
ingham et al. (2017) and a group-level random effect sur-
face with medium spatial heterogeneity:

fo=3 &)

1
ﬂ1=3+E(U—v) (6)

By = 1+3% [36— (6—3)2] [36— (6—;)2} @)

1
5:—2+E(u+v) ®)

where u and v is the horizontal and vertical coordinate re-
spectively. The individual-level covariates 1 and x2 were
draw randomly from a normal distribution NV (0, 1) and the
error term ¢ was generated from N (0,0.5). We then re-
peated this process 100 times to examine the robustness of
the results. The true parameter surfaces are visualized in

Figure 2.

Figure 2. True parameter surfaces.

B
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2.3 Data and Software Availability

All the data in this study was randomly generated by the
R packages base and stats. R packages 1me4 and
GWmodel were used to perform MLM and MGWR re-
spectively. The R code used to perform MGPM will be de-
veloped as a package and released with the final outputs.

3 Results
3.1 Surface Recovery

Figure A1 shows the recovery performance from a single
realisation of different models for the four parameter sur-
faces. Since the fixed-slope MLM follows the hypothesis
that the individual-level processes are spatially constant,
the spatial heterogeneity of both 5, and 85 was omitted,
except for the zero heterogeneity intercept 9. MGWR
can estimate the spatially varying 3; and (3 accurately.
However, it identified group-level random effects as an
individual-level spatial varying process erroneously due
to its incapacity in incorporating effects at upper hierar-
chies into the model calibration, thereby failing to recover
Bo vs € well. MGPM performed the best among all mod-
els in terms of surface recovery. It not only estimated the
individual-level spatial varying processes 3; and /32 accu-
rately, but also identified the group-level random effects
and thus recovered the spatially constant ;. It is remark-
able that MGPM outperformed the traditional MLM in
recovering ¢ as the individual-level processes were esti-
mated more accurately.

3.2 Bandwidth Comparison

Figure 3 shows the bandwidths derived from the MGWR
and MGPM on the 100 simulated datasets (Bandwidth is
not applicable for MLM). Both MGWR and MGPM can
relatively correctly identify the spatial scales at which the
B1 and By vary. However, the bandwidth estimate of [
from MGWR was extremely biased due to identifying the
varying effects at the upper hierarchy as at the individ-
ual level, whereas MGPM estimated the scale at which the
process operates accurately and robustly (with the median
close to the maximum value of 625, implying a global pro-
cess).

3.3 Parameter Estimates

Figure 4 illustrates the estimation accuracies of different
models for the four parameter surfaces (£* is not avail-
able for MGWR) on the 100 simulated datasets via root
mean squared error (RMSE). The MLM had the worst es-
timation accuracies for the individual-level parameter sur-
faces 1 and (B among all the models. Even surface with
zero heterogeneity was not robustly estimated. MGWR
was able to estimate both 3; and (3, relatively accurately,
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Figure 3. Optimal bandwidth from MGWR and MGPM.

but it performed the worst among the models in estimat-
ing By due to the misidentification of the operation scale.
The MGPM estimated every parameter surfaces the best,
no matter at the individual level or at an upper hierarchy.
Notably, MGPM even outperformed MGWR in the esti-
mation of the individual-level spatially varying processes
b1 and (o as it considered multilevel spatial processes
simultaneously. Meanwhile, its estimation of the group-
level random effects was also found to be much more ac-
curate and robust in comparison to the MLM.
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Figure 4. RMSE for each parameter surface from MLM,
MGWR, and MGPM.

3.4 Goodness of Fit

Figure 5 shows the residual sum of squares (RSS) for dif-
ferent models on the 100 simulated datasets to compare
their model fitting performance. MLM was the worst per-
forming model due to its specification on fixed individual-
level processes. The difference between MGPM and
MGWR is not obvious whilst the MGPM is slightly su-
perior. Given the results in Figure 4, this indicates that the

MGPM can achieve better identification without harming
the goodness of fit.
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Figure 5. RSS for MLM, MGWR, and MGPM.

4 Discussion

Here we introduced the model specification and estima-
tion of the MGPM with fixed-slope and random-intercept,
and then demonstrated its modeling performance. The re-
sults of the Monte Carlo simulations suggested that the
MGPM was the preferred model compared to both the tra-
ditional MLM and the MGWR in multiple aspects includ-
ing parameter estimation and model fitting. Compared to
the HGWR, the most recent advance, MGPMs have a more
flexible framework: they are not restricted to a multilevel
model specification with fixed-relation (random-slope and
random-intercept), but also allow for individual-level ge-
ographical processes to be observed at the hierarchy at
which they operate, rather than being aggregated to upper
hierarchies (Hu et al., 2022).

Moreover, there are also promising applications for such
an MGPM. For example, school performance is not only
influenced by the characteristics of its catchment area ge-
ographically, but also by the administrative boundaries in
which it is located (Fotheringham et al., 2001); Green
space was indicated to have a spatial nonstationary impact
on individual wellbeing, on which the effect of upper-level
covariates such as the area level deprivation also worth to
be further explored (Houlden et al., 2019); County-level
voting preferences varied with a range of demographic
characteristics, and they may also vary with the intrinsic
context of the state they are in (Fotheringham et al., 2021).

However, there are some limitations of MGPMs at present:
1) the statistical inference framework that integrates multi-
level and spatially varying models needs further investiga-
tion; and 2) the current implementation of MGPM does not
support simultaneous random-slope and random-intercept
specification, which will be developed in the next step of
our work.

AGILE: GlIScience Series, 5, 55, 2024 | https://doi.org/10.5194/agile-giss-5-55-2024 4 0f6



Competing interests. The authors declare that no competing in-
terests are present.

References

Chen, D.-R. and Truong, K.: Using multilevel modeling and ge-
ographically weighted regression to identify spatial variations
in the relationship between place-level disadvantages and obe-
sity in Taiwan, Applied Geography, 32, 737-745, 2012.

Dong, G. and Harris, R.: Spatial autoregressive models for geo-
graphically hierarchical data structures, Geographical Analy-
sis, 47, 173-191, 2015.

Feuillet, T., Cossart, E., Charreire, H., Banos, A., Pilkington, H.,
Chasles, V., Hercberg, S., Touvier, M., and Oppert, J. M.: Hy-
bridizing Geographically Weighted Regression and Multilevel
Models: A New Approach to Capture Contextual Effects in
Geographical Analyses, Geographical Analysis, 2024.

Fotheringham, A. S. and Li, Z.: Measuring the Unmeasurable:
Models of Geographical Context, Annals of the American As-
sociation of Geographers, 113, 2269-2286, 2023.

Fotheringham, A. S., Charlton, M. E., and Brunsdon, C.: Spa-
tial variations in school performance: a local analysis using
geographically weighted regression, Geographical and envi-
ronmental Modelling, 5, 43-66, 2001.

Fotheringham, A. S., Yang, W., and Kang, W.: Multiscale
geographically weighted regression (MGWR), Annals of
the American Association of Geographers, 107, 1247-1265,
2017.

Fotheringham, A. S., Li, Z., and Wolf, L. J.: Scale, context, and
heterogeneity: A spatial analytical perspective on the 2016 US
presidential election, Annals of the American Association of
Geographers, 111, 1602-1621, 2021.

Harris, R., Dong, G., and Zhang, W.: Using Contextualized Ge-
ographically Weighted Regression to Model the Spatial Het-
erogeneity of Land Prices in Beijing, China, Transactions in
GIS, 17,901-919, 2013.

Houlden, V., de Albuquerque, J. P., Weich, S., and Jarvis, S.: A
spatial analysis of proximate greenspace and mental wellbeing
in London, Applied Geography, 109, 102 036, 2019.

Hu, Y., Lu, B., Ge, Y., and Dong, G.: Uncovering spatial hetero-
geneity in real estate prices via combined hierarchical linear
model and geographically weighted regression, Environment
and Planning B: Urban Analytics and City Science, 49, 1715-
1740, 2022.

Kreft, I. and de Leeuw, J.: Introducing Multilevel Modeling, In-
troducing Statistical Methods, SAGE Publications, Ltd, Lon-
don, https://doi.org/10.4135/9781849209366, 1998.

AGILE: GlIScience Series, 5, 55, 2024 | https://doi.org/10.5194/agile-giss-5-55-2024 50f6


https://doi.org/10.4135/9781849209366

Appendix A
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Figure A1l. Recovered parameter estimate surfaces from a single realisation of MLM, MGWR, and MGPM.
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