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Abstract. The article investigates the spatio-temporal
propagation of disruption effects in supply networks using
shipment data from an international retailer during the year
of 2021, marked by various disruptions in the global ship-
ping industry. Events such as the COVID-19 pandemic and
the blockage of the Suez Canal caused significant disrup-
tions, including congestion and temporary shutdowns of
ports. The network effect of such disruptions is measured
as network connectivity using node strength in a weighted
graph. Analysis of the data reveals a decrease in mean trav-
eling speed and an unexpected decrease in speed variation
following the Suez Canal blockage. The impact of the ty-
phoon in China, while notable, was less significant than
that of port closures due to COVID-19, likely due to its
shorter duration. Evaluation of the spatio-temporal spread
indicates, that port shutdowns due to COVID affected
some routes from Asia to Europe and Australia, while
others remained unaffected, potentially due to company-
specific factors or differing supply patterns in various des-
tinations. Future research aims to extend the analysis to
include hinterland transportation to distribution centers
and stores, where clearer spatio-temporal patterns may
emerge, potentially confirmed through tests for spatio-
temporal autocorrelation.
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1 Introduction

Disruptions in global supply networks (SN) are manifold.
They can have natural, geopolitical, and other human, or
health-related origins (Umar and Wilson, 2024; Gunessee
et al., 2018; Srai et al., 2023; Jiang et al., 2023).

However, the production of goods in global economy de-
pends primarily on these SN, consisting of a huge num-
ber of buyer-supplier relations (Choi et al., 2001; Wied-
mer and Griffis, 2021). As part of these networks, ma-

terial is shipped all over the world. The performance of
SN is prone to disruptions, since the breakdown of cen-
tral supply links can lead to production failures that spread
in the network. This effect may be spatially visible over
the globe (Ivanov and Dolgui, 2020). The lack of semi-
conductors in the automotive industry is only one exam-
ple of a disruption at a single company, that lead to prob-
lems in production plants of other regions (Burkacky et al.,
2021). The spatio-temporal propagation of the effects from
COVID-19 measures and climate-related disruptions are
investigated in the global maritime transport network us-
ing AIS data (Dirzka and Acciaro, 2022; Verschuur et al.,
2023). However, SN are investigated mostly with the help
of simplified models - where only minor parts of an SN
are considered. From a macro perspective the Global Sup-
ply Chain Pressure Index reflects several events that affect
global SNs especially since COVID-19 occurred (Benigno
et al., 2022). It is measured by global shipments of raw ma-
terial, container shipments, and the extent to which delays
in supply affect producers. However, this kind of data is
too coarse to derive spatial propagation of events.

The purpose of this research is to evaluate the spatio-
temporal propagation of the effects of disruptive events.
Can we use shipment data to describe the spatial propa-
gation of a disruption’s effect? Since shipment data pro-
vided by logistics service providers usually include origin-
destination ports and time stamps, but not the exact ves-
sel trip that was taken, the data is extended by other ge-
ographical data that is publicly available. We use these
open data to estimate the approximate route and travel dis-
tance. The specific disruptions that are taken into account,
are measures taken to mitigate health consequences of the
COVID-19 crisis and the Suez Canal blockage (Khan and
Rahman, 2021; Kuźmicz, 2022).

The paper is organized as follows. Section 2 gives an
overview of the relevant literature in disruption propaga-
tion. In section 3 the method used for the analysis in this
article is described and in section 4 the results are pre-
sented. Since this is a work-in-progress paper, the discus-
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sion and conclusion, drawn in section 5, give an outlook
of how this work will be continued.

2 Literature

In supply chain management, the propagation of disrup-
tions is known as the ripple effect (Dolgui et al., 2018).
Quite some methods are applied to investigate the rip-
ple effect in supply networks (Ivanov and Dolgui, 2021).
Blackhurst et al. (2018) use Petri nets and assessed vul-
nerability of supply chains. Ojha et al. (2018) applied
Bayesian network modeling to evaluate the propagation
of risk in supply chains. Consideration of geographical
aspects in supply chain disruption propagation has been
part of more recent papers. Yue et al. (2023) states that
most companies of the TFT-LCD supply network are lo-
cated in China, increasing the risk of global breakdown
of the production if a disruption occurs in China. Brus-
set et al. (2023) considers spatio-temporal dynamics of
COVID-19 infections and its impact on the ripple effect in
supply chains. They implement an epidemiological model
and link the number of infections to local productivity in a
country. However, most disruptions emerge locally and the
effects propagate only through dynamics in the supply net-
work. The event of a pandemic is thus not representative
for most types of disruptions.

Focusing on transportation, which constitute essential
links between supply, production, and retail, a different
branch of literature exists. In transportation research, the
focus is not on the supply chain, but the latter is seriously
affected if transportation is disrupted. The effect of natural
disasters and climate-related disruptions on global econ-
omy via maritime ports is estimated using vessel tracking
data (Verschuur et al., 2020, 2023). Moreover, COVID-19
and its effects on global trade is analyzed, finding that the
lockdown measures led to effects in oversea transporta-
tion and affected maritime trade (Verschuur et al., 2021).
Putting the cart before the horse, Smith et al. (2023) ex-
plain that different consumer behavior due to COVID-19
led to congestion at ports, affecting material availability
in the hinterland. Other scholars investigate the propaga-
tion of COVID’s effects along the global shipping network
(Dirzka and Acciaro, 2022).

Summarizing, the analysis of a disruptions spatial spread
along the entire value chain is an unsolved challenge.
Global shipping is an essential part of global supply net-
works, but the question of how disruptions affect the pro-
duction in specific regions and what further consequences
emerge in other regions is a challenging field of research.

3 Data and Methods

To evaluate the effect of disruptive events, empirical data
is used. The data is described in this section. Then the mea-
sures used to evaluate the data are defined.

3.1 Empirical Data and Preprocessing

This research is based on shipment data of a retailer that
operates internationally. The focus is set on goods that
are shipped from Asia to Australia, Europe, and the USA.
These shipments cover about 85% of the data and about
65.000 data points. The data stems from the year 2021 and
is provided by the logistics service provider of the retailer.

The data is pre-processed in R, summarizing the orders
that were carried on the same vessel. This is done by
shipment-key, resulting in individual trips with unique port
of loading and port of destination. The timestamps that
were recorded at each port by the respective shipping com-
pany include data issues. Therefore, the travel time, cal-
culated from actual time of departure and actual time of
arrival is not found to be unique in the data. Since most
shipments consist of many orders, taking the median of
the travel time leads to plausible values.

For the data analysis the origin-destination pairs from the
six Asian ports with most shipments are selected (see Ta-
ble 1). Next, the destination ports are reduced to the fol-
lowing list:

• Australia: Adelaide, Brisbane, Fremantle, Mel-
bourne, Sydney

• Europe: Dublin, Felixstowe, Hamburg, Hull, Koper,
Rotterdam

• USA: Long Beach, Los Angeles

The remaining data covers more than 21.000 trips. The
number of trips per port of origin is given in Table 1.

Table 1. Number of trips per port of origin

Port of origin Number of trips

Chittagong 1286
Ningbo 8436
Qingdao 1397
Shanghai 4168
Xiamen 1812
Yantian 3978

To get the international shipping routes that are usually
taken, are extracted from the global map of human impacts
to marine ecosystems from the National Center for Eco-
logical Analysis and Synthesis (NCEAS) (Halpern et al.,
2008; Halpern et al., 2015). The data is provided in raster
format of 1km2 and represents roughly 11% of the 30.851
merchant ships >1000 gross tonnage at sea in 2005 as de-
scribed in Halpern et al. (2008). The value of human im-
pact by shipping per raster cell represents the number of
vessel trajectories that passed through the cell. A snippet
of the data is given in Figure 1.
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Figure 1. Human impact to marine ecosystems by merchant vessel shipping.

3.2 Measures for Effects of Disruptions

To measure the effect of a disruption we use travel times,
mean travelling speed, the number of vessels that departed
from a port, and the coefficient of variation (CV) to cover
the uncertainty in travel times and speed. Moreover, we
apply the graph theoretic measure of node strength to mea-
sure the effect of a disruption in terms of network connec-
tivity (Barrat et al., 2004). For the travelling speed, we use
the usually taken route from an origin-destination pair to
derive the length of the route in km. The coefficient of
variation as a measure of relative variability is defined as
the ratio of the standard deviation and the mean of the data
(Cedillo-Campos et al., 2019) - see Eq. 1.

CV =
Standard deviation

Average travel time
(1)

We calculate for each measure the mean per week to get
proper data for the changes over time. For node strength,
the number of shipments that depart each route are taken
as arc weights wij . Then the strength si is calculated per
week as in Eq. 2.

si =
N∑
j=1

xijwij (2)

To account for the size of the respective port, the strength
values are normalized per port. All analyses are done in R,
except of the calculation of the distances, which is com-
puted in ESRI ArcGIS.

4 Results

The travel times and its variance generally fluctuate much.
Speaking of the US west coast, the congestion at the ports
of Los Angeles and Long Beach (Deeb and Leonardo,
2023) contributed to this fact. The travel time to destina-
tions in Europe increased during the year 2021, reaching
the maximum in the summer between week 20 and 35.
The respective values per week are given in Fig. 2. This
can be explained by port shutdowns due to COVID infec-
tions of employees. Moreover, the effect of the events in
2021 might overlap and therefore it is hard to evaluate the
effect of a disruption.

At end of March 2021 (week 12) the Ever Given got stuck
in the Suez Canal for six days leading to congestion of
cargo vessels. Fig. 3 shows the mean and CV of vessel
speed on routes via the Suez Canal and not via the Canal.
Since the vessels have different ports of departure in Asia,
the duration when they reached the Canal after departure is
different. Hence the decrease in mean speed, due to wait-
ing time, should affect vessels departing from week 10 on.
Indeed, there is a noticeable drop of mean vessel speed.
Moreover, the decrease in CV in week 11 could mean that
the blockage somehow unified the travel times on routes
through the Suez Canal.

To evaluate the spatial propagation of the Suez Canal
blockage the travel times to different ports of destination
are analyzed. Fig. 2 shows that the blockage affected port
of Hamburg and Felixstowe, where the mean travel time
and CV increased for vessels that departed in week 10
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Figure 2. Mean travel time and coefficient of variation of shipments from Ningbo and Shanghai to Europe.

from Ningbo or Shanghai. However, there is no effect on
vessels to Dublin, Rotterdam, and Koper. An explanation
can be that the number of vessels to Koper and Rotterdam
is quite small compared to Hamburg and Felixstowe. The
number of vessels to Dublin is comparable to Hamburg
and Felixstowe, but still no effect can be seen.

The effect of measures to mitigate the COVID-19 crisis is
not as easy to analyze, since there were several events over
the year 2021 that affected ports in China. Moreover, the
Typhoon Chanthu reached the ports of Ningbo and Shang-
hai in September 2021, resulting in further shutdowns of
single terminals at those ports. However, we can see some
indications in the data. It was reported that port of Ningbo
closed a terminal due to an employee’s positive COVID-
test in the end of July (end of week 30). The effect can
be seen in the strength of the respective nodes (port of
Ningbo, port of Shanghai) that decreased in the subsequent
week (Fig. 4). This decrease of vessel departures resulted
also in a decrease of strength at destination ports in Aus-
tralia and Europe.

5 Discussion and Conclusion

In this article the spatio-temporal propagation of disrup-
tion’s effects in supply networks is investigated. Shipment
data from an international retailer is used to get a first idea,
whether such data can be used to analyze spatio-temporal
spread of disruptions. The scope is the year 2021, where
the global shipping industry experienced a lot of disrup-
tion. Starting out with the COVID pandemic, the Suez
Canal was blocked for nearly a week leading to conges-
tion. In China, a Typhoon hit some ports, leading to tem-
poral shutdowns of separate terminals. These and other
events made the travel times rather volatile. There is ev-

idence in the data that the events led to a decrease in mean
travelling speed resulting from longer waiting times along
the route due to congestion. Surprisingly, the Suez Canal
blockage led also to a decrease of variation in mean trav-
elling speed in the weeks after the blockage. Applying
node strength as a measure of connectivity in the network,
showed a decrease of node strength after week 30, where a
port was shutdown due to a COVID infection. This means
that a lower number of vessels departed in that week.

The evaluation of the spatio-temporal spread of the effects
showed, that the Suez Canal blockage could potentially af-
fect all routes from Asia to Europe. However, while trans-
portation to Hamburg and Felixstowe was affected, trans-
portation to Dublin, Koper, and Rotterdam was not af-
fected. This might be a company-specific result and other
firms in Europe could have a different pattern. As a next
step, the data should be extended to hinterland transporta-
tion to the distribution centers of the retailer up to the large
number of stores. In such data, the spatio-temporal pattern
could be clearly visible and a test for spatio-temporal auto-
correlation could prove this pattern (Lamieri and Sangalli,
2019; Cheng et al., 2012).
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Figure 3. Mean vessel speed and coefficient of variation on routes passing the Suez Canal versus not passing it.

Figure 4. Node strength of week 30 and 31 that show the effect of port shutdowns in China.
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