
EyeCatchingMaps, a Dataset to Assess Saliency Models on Maps
Laura Wenclik �1 and Guillaume Touya �1

1LASTIG, Univ Gustave Eiffel, IGN-ENSG, F-77420 Champs-sur-Marne, France

Correspondence: Laura Wenclik (laura.wenclik@ign.fr)

Abstract. Saliency models try to predict the gaze be-
haviour of people in the first seconds of their observation
of an image. To assess how much these models can per-
form to predict saliency in maps, we lack a ground truth
to compare to. This paper proposes EyeCatchingMaps, an
open dataset that can be used to benchmark saliency mod-
els for maps. The dataset has been obtained by recording
the gaze of participants looking at different maps for 3 sec-
onds with an eye-tracker. The use of EyeCatchingMaps is
demonstrated by comparing two different saliency models
from the literature to the real saliency maps derived from
people’s gaze.
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1 Introduction

Maps usually are visual stimuli with a clear hierarchy, with
foreground elements that attract attention first, and back-
ground elements that can be explored when the map is read
with care. However, it is not always easy or clear for a
map designer what the foreground salient elements of the
maps are. Saliency models developed in the past 25 years
in computer vision try to model and predict this visual hi-
erarchy in different kinds of images and now achieve great
success for natural scene images (Borji et al., 2019). A
recent experience with paintings shows that the saliency
models designed for photographs do not predict as well
the saliency for other types of images (Le Meur et al.,
2020). Though the importance of research on saliency in
maps has been identified to guide map design (Fabrikant
et al., 2010), there has been only one attempt to measure or
model the salient parts of a map (Krassanakis et al., 2013).
In this work, saliency was measured with an eye-tracker,
which is an important tool to understand how maps are
used, as we can see for instance in the two recent reviews
on the use of eye-tracking in research on cartography (Ke-
skin and Kettunen, 2023; Fairbairn and Hepburn, 2023).

The first challenge to study how to model visual saliency
in maps is to build a ground truth that models can then try
to predict as much as possible. This ground truth should

be a dataset of map images with their saliency measured
by eye-tracking, similarly to MIT3001 (Judd et al., 2012),
the main benchmark for visual saliency. We address this
challenge with the EyeCatchingMaps dataset, a set of 322
maps with their measured saliency maps. The paper is
structured as follows: Section 2 reviews past saliency mod-
els and benchmarks. Section 3 describes how EyeCatch-
ingMaps was experimentally produced. Section 4 shows
how several saliency models from the literature perform
on predicting saliency on EyeCatchingMaps images.

2 Visual Saliency Models

A saliency model predicts for a pixel (x,y) the probabil-
ity to be fixated by someone looking briefly at the im-
age (Kümmerer et al., 2018). From the seminal Itti-Koch
model (Itti et al., 1998) until now, many saliency models
were proposed, as shown by two recent literature review
papers (Borji et al., 2019; Cong et al., 2019). while the
first models were based on unsupervised image process-
ing techniques, the recent models are all based on super-
vised deep neural networks. From these saliency models,
the usual output is a saliency map, i.e. a grayscale image
showing the salient pixels of the image (Figure 1).

Figure 1. A map extract on the left (©OpenStreetMap contribu-
tors), and the derived saliency map using the Itti-Koch saliency
model, on the right.

Besides saliency maps, research on visual saliency is also
interested in the detection of salient objects from saliency

1http://saliency.mit.edu/home.html
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models (Borji et al., 2019). As shown in the example of
Figure 2, the detection of salient objects mixes the saliency
map with an object detection problem to find the com-
plete objects that stand out in the image, which makes
even more sense in a map composed of separated sym-
bols. Some models also allow the prediction of scan paths
(Le Meur et al., 2020), i.e. the path of the most proba-
ble gaze during the first seconds of looking at the image,
which somehow orders the salient regions of the images.

Figure 2. Salient objects detected on the previous map extract
following the same saliency model, with a threshold on the prob-
ability.

During the past 15 years, research on visual saliency has
been fostered by the datasets compiled by the researchers
in the domain. From the initial MIT300 (Judd et al., 2012)
to the current MIT/Tuebingen Saliency Benchmark (Küm-
merer et al., 2018), there are now dozens of datasets giving
ground truth data for different types of images, but none is
related to maps.

3 EyeCatchingMaps

3.1 Apparatus and participants

To create this dataset, we use an eye tracker to follow a
person’s gaze. The eye tracker used is the Pupil Core from
Pupil Labs. The configurations used are those of the basic
pupil capture software, i.e. the time for a fixation point
is 80 ms to 220 ms. The maps were displayed in a lo-
cal web application on a 23.8" screen with a resolution
of 1920x1080 pixels.

The participants in this survey were mainly members of
our institution. A few students from the university also
took part in the survey. A call for participation was sent out
via internal mailing lists. There were no external partici-
pants. Participants without sight problems were privileged
to facilitate the calibration of the eye tracker. There were
44 participants (31 male, 13 female), but in some cases,
one or more sessions could not be used due to the loss of
the calibration of the eye-tracker during the session. How-
ever, each map has been seen at least 20 times. The age
distribution is presented in Table 1

The experiment was conducted according to the principles
expressed in the Declaration of Helsinki: participants were

-24 25-34 35-44 45-54 55+
nb of participant 17 23 1 1 2

Table 1. distribution of the ages

city 14 16 18
country 14 16 18

river 14 16 18
mountain 12 14 16

seaside 10 12 14 16
monument 16 18

country and city 8 10 12 14
Table 2. Distribution of the zoom levels where maps were ex-
tracted for each type of landscape. The bold numbers correspond
to scales where we use a map centred and a map decentred.

instructed on the experiment goal and gave consent to par-
ticipate in the experiment, by validating a consent form.
Participant’s names were never recorded and eye-tracking
data were analyzed anonymously.

3.2 Stimuli

The dataset consists exclusively of maps. It is made up
of 322 different maps. These different maps cover differ-
ent dimensions of map types. There are several landscapes
(city, country, with a large river, mountain, seaside, with a
salient monument, country+city), three topographic styles
(OpenStreetMap, Google Maps, Plan IGN), and different
scales ranging from zoom level 8 to zoom level 18. Ta-
ble 2 lists the different zoom levels at which maps were
extracted for each type of landscape.

All these different elements are represented in two image
formats: large format 1704x856 pixels, to simulate maps
looked at on computer screens, and small format 290x553
pixels to simulate maps looked at on a smartphone screen.
At some scales and for specific landscapes, we selected
two maps, one where the landscape element (e.g. the river,
the city or the monument) is located in the centre of the
map, and one where this landscape element is located in
a corner of the image (see bold scales in the table). We
make this distinction because visual saliency is known to
be skewed towards the centre of the image, and we wanted
to verify this bias with maps (Figure 3).

In addition, to complete the dataset, we randomly selected
around forty maps from the three base maps and a Google
Maps dataset of 37 existing maps (Keskin et al., 2023).
Finally, thematic maps were extracted from open geogra-
phy textbook maps2. The legend has been removed from
these maps because that is not what we want to test in this
benchmark.

2http://www.cartolycee.net/
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Figure 3. Example of a dataset map with centred and non-centred
elements. The first map shows the non-centred city and the sec-
ond shows the centred city.

3.3 Procedure

The dataset has been split into two parts to make the ex-
periment shorter for the participants. In addition, looking
at more than 150 maps consecutively is cognitively in-
tense for the participant, so it is preferable to divide the
survey into four sessions of around 40 maps to make sure
the participants get some rest between each session and to
check the eye-tracker settings between each session. This
also prevents the user from losing concentration during
the session. The four sessions are composed of a thematic
map session, a portable format map session, a full-screen
session and the last one is either a full-screen or Google
Maps-only session. The four sessions are displayed ran-
domly, but the maps in each session are in a fixed order.
Based on the various benchmark protocols already in use,
the maps are displayed on screen for 3 seconds on a grey
background, with a 0.5-second pause between each map.
The grey screen avoids being stimulated between two im-
ages. Each session lasts approximately 2 minutes and 40
seconds.

During the experiment, the instructions given to the par-
ticipants were the following: "Look at the different maps
as if you were discovering a map for the first time, there is
no need to remember the elements of the map. There is no
question at the end."

The survey begins with a consent form, after which the
principle of salience and the eye tracker are explained to
the participants, along with the reasons for the survey.

The eye tracker is calibrated and recorded using the Pupil
Capture tool from Pupil Labs. Instructions are then given
to the participant. The participant is notified when they
reach the halfway point in the experiment and when the
experiment is about to end.

3.4 Post-Processes

Once the survey has been completed, the first step in post-
processing the raw data is to locate the fixation points (i.e.
when the gaze is fixed between 80-220ms in one place) on
the different maps. There are several stages to this. Firstly,
you need to locate the fixation points on the screen. The
eye tracker used does not allow the fixation points on the
screen to be determined directly. To do this, we need to
place QR codes on the corners of the screen so that in
post-processing we can detect the screen in this scene. Af-
ter this first step, we obtain the screen coordinates of the
fixation points. We also recorded the display time of each
map. This means that for each fixation point, we can deter-
mine which image was displayed at that time. Just as we
know the position and dimensions of each map, we can
now determine the map coordinates of each fixation point.

To determine the area the user is looking at, we need to
know how accurate our data is. To do this, we first need
to determine the distance between the eye-tracker and the
screen and thus the accuracy of the eye-tracker on the
screen. From the data given by the eye-tracker, we get an
accuracy angle for one session, and we can derive the pre-
cision of the eye-tracker in screen pixels for Equation 1
where pixel-size = 0.02, and where mean-distance is the
distance between the eyes of the participant and the screen.
This distance is derived from the raw data provided by the
eye-tracker and from the size of the QR codes surrounding
the screen (2.3 cm in our experiment).

We then use the following formula to obtain the distance
in pixels for the precision of the eye tracker:

pixel-screen =
tan(mean-angle-accuracy) ∗mean-distance

pixel-size
(1)

After obtaining the distance in pixels, we use a Gaussian
filter to calculate the saliency map. To determine the sigma
parameter of the Gaussian filter, we use the precision cal-
culated in Equation 1. Specifically, we divide the distance
by 2.355, which is derived from the relationship between
the standard deviation (sigma) and the maximum width at
half-height of the Gaussian distribution.

3.5 Description of the Final Dataset

For each map, an initial file containing all the fixa-
tion points from all participants is generated, named ’co-
ord_fixation_name_map.png.csv’ in CSV format with the
following elements:

• world_index: the id of the fixation;

• id_fixation: the id of the fixation point;

• time: the time of the fixation point based on the time
of the survey;
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• x: x coordinate of the fixation point on the image;

• y: y coordinate of the fixation point on the image;

• dispersion: distance between all gaze locations dur-
ing a fixation, in degree;

• accuracy: in degree;

• precision:in degree;

• participant: Participant ID;

• distance: distance between eye-tracker and screen in
cm;

• time_to_map: the time of the fixation point starting
at the time the current map was first displayed;

• height : height of the map

• width : width of the map

It is thus possible to produce a scan path for each file,
which retraces the path of each participant’s gaze (Fig-
ure 4).

Figure 4. Example of the scan path of three participants on one of
the maps in the dataset obtained using eye-tracker. Each colour
represents a participant. The scan is composed of points repre-
senting each of the user’s fixation points.

We also produce a heatmap file for each map named
’heatmap_name_map.png’ (Figure 5).

4 Evaluation of the Dataset

As EyeCatchingMaps aims to benchmark existing saliency
models, we tried to compare two models from the liter-
ature to verify that our dataset can serve this purpose.
We chose two unsupervised methods to model saliency,
namely Covsal (Erdem and Erdem, 2013) and Fast and Ef-
ficient Saliency (FES) (Rezazadegan Tavakoli et al., 2011),
and we tested them on 16 of our maps. CovSal uses re-
gion covariance descriptors to better capture the local fea-
tures of images that may explain saliency. FES searches
for portions in the image where there is a significant con-
trast between the pixels of the region and the pixels sur-
rounding this region. These two methods were chosen be-
cause they were both easy to reuse and efficient on the
MIT300 benchmark. To compare these two methods to the

id of map CC for CovSal CC for FES
1 0.875 0.899
2 0.486 0.930
3 0.932 0.937
4 0.336 0.130
5 0.491 0.610
6 0.800 0.796
7 0.700 0.672
8 0.724 0.579
9 0.817 0.659
10 0.932 0.904
11 0.582 0.363
12 0.741 0.345
13 0.709 0.649
14 0.685 0.434
15 0.814 0.852
16 0.960 0.858

Table 3. Comparison between EyeCatchingMaps ground truth
and the saliency maps derived from CovSal (Erdem and Erdem,
2013) and FES (Rezazadegan Tavakoli et al., 2011) saliency
models. We use Pearson correlation coefficient (CC) (Riche
et al., 2013) to compare the two heatmaps.

ground truth from our dataset, we analysed the saliency
maps generated by these methods. We compared them
with the corresponding heatmap in our dataset. Among the
metrics existing to compare saliency models, we selected
the Pearson Correlation Coefficient (CC) (Riche et al.,
2013) that is close to 1 when the saliency map matches the
ground truth heatmap. The results are compiled in Table 3.
The mean CC value for CovSal on the 16 maps is 0.724,
which is higher than the performance of CovSal on the
MIT300 benchmark (0.500). Similarly, FES performs bet-
ter on these 16 maps than with MIT300, with a 0.664 mean
CC value (0.483 on MIT300). Those results tend to show
that maps in EyeCatchingMaps are images where saliency
is easier to predict than in the natural scene images con-
tained in MIT300.

Figure 6 shows how both methods similarly predict the
saliency of this smartphone-format map. In this case, the
most salient part of the map is the plaza with the city hall,
in the centre of the map, and both methods predict this
plaza as a salient hot spot, even though they slightly dis-
agree with the saliency of the surroundings of the plaza.
Figure 7 shows a map where the saliency maps from both
methods differ greatly. In this map of the world extracted
from a geography textbook, the ground truth from eye
tracking shows that the salient regions are mainly the ones
in dark purple, with a significant bias around the Mediter-
ranean Sea. FES correctly predicts this saliency, but Cov-
Sal predicts that the salient part is mainly the centre of
Africa, which is not consistent with ground truth. This ex-
ample confirms that different saliency models may have
different predictions on different types of maps.
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Figure 5. The visual outputs of the EyeCatchingMaps dataset: on the left, one of the 322 initial maps, The same map with the fixation
points of all participants in the middle, and the ground truth saliency map on the right.

Figure 6. Results of CovSal and FES methods on image 15 from EyeCatchingMaps: (a) the map; (b) the heatmap from eye-tracking;
(c) CovSal saliency map; (d) FES saliency map.

4.1 Data and Software Availability

The data and the code used in this
research can be found on Zenodo
(https://zenodo.org/doi/10.5281/zenodo.10619512).

5 Conclusion and Future Research

To conclude, EyeCatchingMaps is a dataset that can
help researchers or cartographers compare, calibrate and
choose the visual saliency models of the literature. It can
also serve as a basis for the development of a saliency
model that better predicts visual saliency in maps.

Besides this straightforward use of the dataset to bench-
mark saliency models, we think that it would be interest-
ing to analyse the dataset in terms of map design. what are
the map features that are more frequently found in salient
regions of a map? What are the most salient objects in
maps? What are the visual variables that characterise the
salient regions? How does map saliency change with map
style? Are saliency models very different for small-scale
and large-scale maps? All these questions and many oth-
ers can be explored just by analysing the eye-tracking data
from EyeCatchingMaps, and this is what we plan to do in
the future.

Finally, the best generic saliency models are now deep
models trained on pictures of natural scenes, and these
models can be fine-tuned to achieve very good results on
specific types of images such as paintings (Le Meur et al.,

2020). EyeCatchingMaps could also be used to fine-tune
such models and make them more successful on maps.
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