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Abstract. Globally, transport accounts for around one- 
fifth of CO2 emissions. However, , leveraging the DF data 
in modeling hyperlocal traffic CO2 and exploring the 
potential environmental justice is still underexplored. 
Here, we first extract traffic flows from the DF data, 
including individual GPS tracks, traffic counts, and car 
ownership rates in Glasgow, UK, then redefine the spatial 
relationship by incorporating traffic flows into the Spatial 
Weight Matrix (SWM), and finally predict the hyperlocal 
traffic CO2 based on customized SWM. We find that, 
compared to traditional distance-based SWM, 
incorporating the real traffic flows into the SWM could 
better predict hyperlocal traffic emissions, with the 
Manski model performing best (R2 = 0.62). Besides, the 
Manski model shows that income and car ownership rates 
are dominant factors related to traffic CO2. Based on this, 
we reveal two aspects of environmental justice: 1). 
Distribution inequality - the high-income areas also have 
higher levels of car ownership rates, indicating higher 
barriers and challenges for low-income communities; 2). 
Contributor inequality - most high traffic CO2 emissions 
are produced by nearby affluent areas with high car 
ownership rates, whereas the low-income areas suffer 
more traffic emissions produced by them, which indicates 
that disadvantaged groups bear the costs of emissions 
disproportionately generated by the advantaged. This 
pilot study explores the application of DF data in 
environmental monitoring, carbon justice, and climate 
mitigation to create an equitable and sustainable living 
environment. 
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1 Introduction 

Global warming, primarily caused by CO2 emissions, 
is a great threat to human health and the environment. The 
average surface temperature in the UK has risen by 1.2°C 
since pre-industrial times ((IPCC), 2021). Therefore, 
many scholars and policymakers have focused on 
addressing the impacts of global warming through the 
flow of human mobility, such as urbanization, economic 
growth, and population migration (Y. Cai et al., 2023). In 
addition, urban design and planning have also been 
regarded as a third pathway beyond technological and 
market methods in reducing CO2 in cities (Cervero et al., 
2017). 

For human mobility, direct measurements (e.g., 
portable GPS sensors) are cost-, time-, and labor-
intensive, especially for long-term studies. As a 
representation of crowdsourced data, Digital Footprint 
(DF), referring to the “digital traces people leave behind 
as they conduct their lives” (Weaver & Gahegan, 2007), 
has emerged as an emerging approach to quantify human 
mobility due to its flexibility, large- scale, low-cost, and 
real-time. These geolocated DF data, such as cell phone 
data, represent people’s presence in a given area and their 
movement between areas that make cities what they are 
(Dong et al., 2024) and serve as a great tool for hyperlocal 
traffic emissions estimation. 

Besides human mobility, urban planning is 
responsible for around 40% of the total energy use and 
17% of emissions in the UK (Climate Change Committee, 
2022). As a result, scholars have recognized optimizing 
urban form is a potentially effective way to mitigate 
carbon emissions (Wang et al., 2018). Urban form 
represents the spatial distribution of urban elements inside 
a city (physical environment) and the interaction of urban 
factors within a specific urban system (perceived 
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environment) (Fan et al., 2018). To illustrate, urban form 
affects how cities expand, as well as how land use, 
architecture, transportation, and infrastructure are 
allocated (Fang et al., 2016). Given that urban form 
influences mode choice, distances traveled, and trip 
frequency, with an impact on the overall energy needs (Silva 
et al., 2017), it has become an essential predictor in traffic 
CO2 estimation. Neglecting urban form in carbon 
emissions modeling may influence the model accuracy and 
lead to an incomplete understanding of the urban form 
impact on further planning strategies (M. Cai et al., 2023). 
However, previous studies regarding the impacts of urban 
form on CO2 emissions have not reached a consensus with 
both positive, negative, U- shaped, and non-significant 
correlation, which could partly be attributed to modulators, 
such as analysis scale and urban form measurement 
(Parshall et al., 2010). 

To bridge the gaps above, we 1) leverage DF data 
(e.g., car ownership, vehicle counts, and individual GPS 
tracks) to customize the SWM and apply them to construct 
seven spatial panel models. The models with distance- 
based SWM are used as control groups; 2) incorporate 
both 2D and 3D urban from metrics based on nine land 
use types and six landscape metrics to clarify the urban 
form effects on traffic CO2; 3) predict the traffic emission 
in 747 data zones in Glasgow based on the spatial panel 
model with the best performance and quantify the 
environmental justice. We anticipate the focus of 
hyperlocal traffic CO2 emissions to be towards inclusive 
and equitable practices for localizing the SDGs 
(Sustainable Development Goals) with sensitivity to clean 
energy (SDG 7), intra-urban inequalities (SDG 10). and 
climate mitigation (SDG 13). 

 
2 Methods 

This study includes five major steps: 

• Step 1: Extract traffic flow from individual GPS 
tracks, incorporate the traffic flow into SWM, and 
compute the 2D and 3D urban form with land use 
and meteorological datasets. 

• Step 2: Estimate the traffic CO2 in each DataZone 
based on traffic count and emission factors. 

• Step 3: Construct the spatial panel models based on 
customized SWM and predict the traffic CO2 in 
each Data Zone. 

• Step 4: Interpret the traffic CO2 distribution through 
hot spot analysis and the flow of socioeconomic 
factors with a strong correlation. 

Table 1. Summary of data sources 

 

2.1 Spatial panel model 

Firstly, we test spatial autocorrelation. If spatial 
autocorrelation exists, we further conduct the Lagrange 
Multiplier (LM) test and Likelihood Ratio (LR) test to 
decide the selection of spatial panel models. Detailed 
procedures for model selection are shown in Figure 2. If 
spatial autocorrelation does not exist, we use the Ordinary 
Linear Regression (OLR), Random Forest (RF), and 
Artificial Neural Network (ANN) models directly. 

 

 
 

(W: Spatial Weight Matrix, μ and ε are error terms, LM: 
Lagrange Multiplier, LR: Likelihood Ratio, OLR: 
Ordinary Linear Regression, SEM: Spatial Error Model, 
SLM: Spatial Lag Model, SAC: Spatial Autoregressive 
Confused, SDEM: Spatial Dubin Error Model, SDM: 
Spatial Dubin Model, SLX: Spatially Lagged X Model) 

Fig. 1 Top-down approach for selecting spatial panel 
models 

3 Results 

3.1 Spatial autocorrelation test 

From Figure 2, we find that there is a spatial 
autocorrelation issue of traffic emission based on our 
customized SWM (Figure 2a: Moran’s I: 0.24, p-value: 
0.04). However, the spatial autocorrelation issue is hidden 
(not statistically significant) by the traditional distance-

Name Data 
level 

Perio
ds 

Temporal 
granularit

y 

Spatial 
coverag

e 
Source 

Traffic 
Count Station 2000 - 

2021 Annually UK Department 
of Transport 

CCTV Station 2021 30 mins Glasgow UBDC 

DVLA LSOA 2021 Seasonal Glasgow Department 
of Transport 

O-D Matrix 
(Huq) Post Code 2021 Annually Glasgow UBDC 

Public 
Transit 

Accessibility 
Indicators 

DataZone 2021 Annually UK UBDC 

Land use Shapefile 2022 -- UK Digimap 

Meteorology Station 2021 Hourly UK UK Met 
Office 

Age groups DataZone 2019 -- Scotland 
National 

Records of 
Scotland 

Population, 
income, 

education 
deprivation  

employment, 
mortality, 
and crime 

rates  

DataZone 2020 Annually Scotland Scottish 
Government 
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https://www.gov.scot/collections/scottish-index-of-multiple-deprivation-2020/


based SWM (Figure 2b: Moran’s I: 0.07, p-value: 0.10, 
the red line in ‘Reference Distribution’ is close to the blue 
line). This demonstrates that incorporating the car 
ownership and O-D flow into the SWM could better 
reflect the spatial autocorrelation of the residuals in traffic 
emission than the traditional distance-based SWM. 
Therefore, it is reasonable to use customized SWM to 
construct the spatial panel models for traffic emission 
estimation. 

 

 
(a). Moran’s I based on customized SWM 

 
(b). Moran’s I based on distance-based SWM 

Fig. 2 Moran’s I based on customized (a) and distance-
based (b) SWM  

 
3.2 Model Performance 

 
We compared performances between seven spatial 

panel models (SEM, SLM, SAC, SDM, SDEM, SLX, and 
Manski) and two non-linear models (i.e., RF and ANN) 
which consider the flow of socioeconomic factors based 
on three feature selection methods (RF, PCA, and GS) in 
Figure 3. We also found that models constructed from 
customized SWM overall outperform the models from 
distance-based SWM, which reconfirms that incorporating 
the O-D flow into the SWM could predict traffic emissions 
better. The Lagrange Multiplier (LM) and Likelihood 
Ratio (LR) test results are all statistically significant. 

Firstly, the model with GS feature selection 
outperforms the RF and PCA for all models. Therefore, we 
further compare the model performances based on GS. 
Secondly, incorporating the spatial autocorrelation of 
socioeconomic factors (WX), namely socioeconomic flow, 
improves the model performance substantially. For 
example, the R2 increases from 0.32 (OLR) to 0.50 (SLX). 
Moreover, adding the WX with the spatial lag of emission 
(WY), SDM (R2 = 0.46), or WX with the spatially 
autocorrelated error term (λ), SDEM (R2 = 0.49), is also 
effective. However, the models only incorporate the WY, 
SLM (R2 = 0.01), or WY, and λ, SAC (R2 = 0.03), perform 
worse. This reconfirms that the flow of socioeconomic 

factors is indispensable. Additionally, we also compared 
the non-linear model RF (R2 = 0.28) and ANN (R2 = 0.21) 
by adding the WX and WY. Their performances are overall 
worse than other spatial panel models, particularly worse 
than the models that consider the λ, such as SEM and SDEM. 
To sum up, the Manski model, considering WX, WY, and 
λ, performs best (R2 = 0.62).  

 

 
(RF: Random Forest, PCA: Principal Component 
Analysis, GS: Greedy Stepwise, ANN: Artificial Neural 
Network, OLR: Ordinary Linear Regression, SEM: 
Spatial Error Model SLM: Spatial Lag Model, SAC: 
Spatial Autoregressive Confused, SDM: Spatial Dubin 
Model, SDEM: Spatial Dubin Error Model, SLX: 
Spatially Lagged X Model) 

Fig. 3 Comparison of model performances based on 
different feature selection methods 

 
3.3 Model results 

 
Due to the better performance of the Manski model, 

we summarized the Manski models for selected 30 
predictors after the multicollinearity test and GS feature 
selection in Table 1. 

For socioeconomic factors, the car ownership rate 
shows the most obvious positive correlation with traffic 
emissions in both focal (80.151**) and nearby areas 
(177.498***), namely spatial autocorrelation term, similar 
to population density (0.033*** and 0.017 for focal and 
nearby, respectively). Higher population density and car 
ownership rates are often associated with increased 
urbanization and economic activity (e.g., Glasgow city 
center) and tend to have more traffic due to commuting, 
commercial activities, and service (Figure 1). Besides, 
crime rates (0.273*** and 0.272*** for focal and nearby, 
respectively) are positively related to traffic emissions, 
respectively. 

It is noticeable that the focal income shows negative 
associations (-99.907) with traffic emission, but a positive 
correlation (345.757**) for the nearby income. This 
demonstrates that low-income communities tend to suffer 
more traffic emissions in the focal areas, whilst the rich 
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are more responsible for producing the traffic emissions in 
the nearby areas. It also accords with previous studies that, 
in the UK, the poorest areas emitted the least NOx and PM, 
but the rich emitted the highest (Barnes et al., 2019). 

However, such a trend is reversed for education 
deprivation rates (-324.178** and 57.407 for focal and 
nearby, respectively), which indicates that the low-
education level population could be more responsible for 
producing traffic emissions, whereas the high-education 
counterparts receive more emissions. 

For urban form factors, even for the same land use, it 
is essential to apply multiple landscape metrics to 
comprehensively characterize the impacts of land use 
patterns on traffic emissions (Tian & Yao, 2022). For 
example, the Largest Patch Index of Waterway (LPI- 
Waterway) shows the strongest negative correlation (- 
67.361***) and the Class Area of Waterway (CA- 
Waterway) shows the strongest positive correlation 
(32.352).This situation also happens for the primary road 
as well (-2.177**, 10.251, and 2.856 for the AI-Other road, 
CA-Primary road, and LPI-Primary road, respectively). 
Additionally, the distance to the nearest hospital shows a 
positive correlation (4.973***) with traffic emission, but 
the nearest distance to GPs shows a negative one (-2.237). 
Both hospitals and GPs provide medical services, but GPs 
are more spatially dense than hospitals in Glasgow, which 
indicates that people drive more to hospital and walk more 
to GPs given the emergency and convenience, 
respectively. Finally, the spatial lag of emissions also 
shows a negative correlation (-0.610***), and the error 
displays positive spatial autocorrelation effects (0.020**). 

Table 1. Coefficients for the Manski model based on GS 
and customized SWM 

 

(***: p-value < 0.01, **: p-value < 0.05, *: p-value < 0.1 
of z-statistics. Lag-: spatial autocorrelation term, GP: 
General Practice, CA: Class Area, LPI: Largest Patch 
Index, ED: Edge Density, PD: Patch Density, AI: 
Aggregation Index) 

3.4 Prediction results 
 

For predicted CO2 distribution (Figure 4), higher CO2 

values mainly concentrate in the city center, northwestern, 
and eastern Glasgow, and lower values are located in the 
northern and western parts. As the hub for commercial and 
business activities, including shopping districts, corporate 
offices, and entertainment venues, the Glasgow city 
center typically has high mobility flows, vehicle usage, 
and traffic congestion, which all contribute to increased 
traffic emissions. Affluent neighborhoods (e.g., 
northwestern parts) with higher O-D flow and a preference 
for private transportation can also contribute to higher 
emissions. The higher positive and negative values of 
local Moran’s I (Figure 3b) concentrate in the city center 
and northern Glasgow, respectively. It suggests the higher 
levels of spatial autocorrelation in these regions. The hot 
spot (Figure 3c) shows high clusters in the city center and 
some parts in northwestern and southwestern regions, 
which accords with previous studies on the spatial 
distribution of daily average flow in Glasgow (Li et al., 
2022). Due to the high traffic emissions with short and local 
journeys (27% and 54% of trips in Glasgow in 2019 were 
less than 1km and 3km in length, respectively), the 
Glasgow Transport Strategy proposed to encourage more 
journeys on foot, by cycles and public transport, and 
shared mobility to create an efficient integrated system and 
decarbonize the traffic emissions (Glasgow City Council, 
2022). 

 

(a). Traffic CO2 (b). Local Moran’s I  (c). Hot spot Map 

Fig. 4 Prediction and hot spot results from LISA based on 
the customized SWM 

4  Discussions 

This study leverages the real O-D flows and car 
ownership rates to customize the SWM to predict 
hyperlocal traffic CO2 emissions in Glasgow. We further 
illustrated the predicted emission distribution through hot 
spot analysis and environmental justice. 

According to the spatial autocorrelation test, we find 
a statistically significant spatial autocorrelation issue 
based on customized SWM (Moran’s I: 0.24, p-value: 
0.04), whereas such phenomenon is hidden by the 
distance-based SWM (Moran’s I: 0.02, p-value: 0.10). 
Therefore, it is necessary to incorporate the real O-D flow 
into the SWM to better reflect the spatial autocorrelation 

Variable Coefficient Variable Coefficient 

Socioeconomic factors 
Focal  Nearby  

Car ownership rate 80.151** Lag-car ownership rate 177.498*** 
Income  -99.907 Lag-Income  345.757** 
Education deprivation rate -34.178** Lag-Education deprivation rate 57.407 
Population density 0.033*** Lag-Population density 0.017 
Age 65 over rate -2.842** Lag-Age 65 over rate 1.606 
Crime rate 0.273*** Lag-Crime rate 0.272*** 

Urban form factors 
Building height variance 1.559 CA-Railway 4.808 
Distance to nearest GPs -2.237 PD-Agricultural land 0.286 
Distance to nearest hospital 4.973*** CA-Primary road 10.251 
Distance to nearest 
primary school -0.637 LPI-Primary road 2.856 

Distance to nearest 
secondary school 0.862 AI-Primary road -0.884*** 

CA-Other road -13.082 CA-Industrial land -1.602 
LPI-Other road -11.012 PD-Industrial land 0.763 
AI-Other road -2.177*** CA-Waterway 32.352 
ED-Natural land 0.121 LPI-Waterway -67.361*** 

Other factors 
Lag-Emission (Lag-Y) -0.610*** λ in error term 0.020** 
Constant 78.825   
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of traffic emission residuals for spatial panel models. 
Based on customized SWM, we reveal that incorporating 
the socioeconomic flow (WX) improves the model 
performance substantially and the Manski model, which 
incorporates the spatial lag term of both socioeconomic 
flow (WX), emissions (WY), and error terms (λ), performs 
best (R2 = 0.62). It demonstrates that traffic emission is 
highly related to income (-99.07 and 345.757** for focal 
and nearby, respectively) and car ownership rates 80.151 
and 177.498** for focal and nearby, respectively). The 
results suggest that the affluent and high car ownership 
regions are responsible for producing more traffic 
emissions, whilst low-income communities tend to suffer 
more traffic emissions. This is reconfirmed by the 
distribution of income and car ownership rates where 
high-income areas with high car ownership rates tend to 
produce more traffic CO2. This suggests that the low-
income communities areas are facing additional barriers 
and challenges in accessing essential services, 
opportunities for upward mobility, and a fair share of 
societal resources, which can lead to increased stress, 
limited social cohesion, a less productive and dynamic 
workforce, negative impacts on physical and mental 
health (Alegría et al., 2018). To mitigate such inequality, 
Glasgow receives a significant allocation due to its 
comparative deprivation and incidence of low-income 
households (Glasgow City Council, 2019).  

For prediction results, we find a higher value of 
traffic emissions and the hot spot in Glasgow city center. 
A typical example to deal with this issue is the Low-
Emission Zones in the city center proposed by Glasgow 
City Council and implemented in June 2023 (Glasgow 
City Council, 2019), which aimed to control traffic 
emissions. However, whether such a policy could reduce 
traffic emissions still needs further evaluation. For 
example, we do not know whether vehicles would bypass 
the zones to avoid penalties and produce more emissions. 
Due to the high traffic emissions with short and local 
journeys (27% and 54% of trips in Glasgow in 2019 were 
less than 1km and 3km in length, respectively), the 
Glasgow Transport Strategy proposed to encourage more 
journeys on foot, by cycles and public transport, and 
shared mobility to create an efficient integrated system 
and decarbonize the traffic emissions (Glasgow City 
Council, 2022). Additionally, different landscape metrics 
for the same land use may display a reversed correlation 
with traffic emissions. Therefore, it is essential to apply 
multiple landscape metrics and land uses simultaneously 
to comprehensively clarify the impacts of urban form on 
traffic emissions. This also explains why many previous 
studies have not reached a consensus on the urban form-
traffic CO2 relationship to a certain extent. 

5 Conclusions 
 

The motivation behind this research is to fill the gaps 
in applying the emergent DF data in the fields of 
environmental monitoring, social justice, and climate 
mitigation. In this study, we investigate how social 

inequality relates to traffic CO2 emissions in Glasgow by 
leveraging real mobility data and improving hyperlocal 
traffic CO2 prediction by redefining the spatial 
relationship. The conclusions show that, compared to 
traditional distance-based SWM, incorporating the real O-
D flows into the SWM could better predict traffic 
emissions. For example, the nearby areas with high 
income and car ownership rates show a stronger 
correlation with traffic CO2 than the focal areas. Given 
that income and car ownership rates are most correlated 
to traffic CO2, the study also reveals two aspects of 
environmental justice issues: 1). There is inequality in 
income and car ownership distribution. The high-income 
areas also have higher levels of car ownership rates, and 
vice versa, which indicates additional barriers and 
challenges for low-income communities; and 2). There is 
inequality for emission contributors. The highest traffic 
CO2 emissions are produced by nearby high-income and 
high car ownership areas which are away from the focal 
areas, and the low-income communities suffer more 
traffic emissions produced by them. It reveals that 
disadvantaged groups bear the costs of emissions 
disproportionately generated by the advantaged. The 
complex effects of socioeconomic factors on traffic CO2 
emissions and environmental justice require local 
governments to customize the measures for controlling 
CO2 emissions to create healthy and equitable cities. 
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