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Abstract. The transportation dynamics within a European
city, V ienna, are examined using a multi-graph repre-
sentation of the city’s network. The focus is on time-
optimized routing algorithms and the effects of altering
the average waiting penalty at traffic lights. The impact of
these modifications, whether an increase to 60, 90, or even
150 seconds or a decrease to 10 seconds, is observed in the
selection of transportation modes and routes for identical
origin and destination pairs. The investigation also extends
to whether routes shift towards secondary street networks
to avoid traffic lights as the waiting penalty increases. Ex-
perimental variations in average waiting time for cars aim
to uncover detailed effects on transportation mode choices,
route length and time changes, and variations in human en-
ergy expenditure. These findings could provide valuable
insights into the transportation network and its possibili-
ties and help in urban planning and policy development.
The results indicate a shift in transportation mode as the
waiting penalty for cars at traffic lights increases, and in
some instances, routes are redirected to roads of lower im-
portance such as residential or service roads.

Keywords. Traffic Lights, Urban Mobility, Transporta-
tion Networks, Public Transport, OpenStreetMap

1 Introduction

Looking deeper into the complex dynamics of urban trans-
port and the resulting impact of traffic lights on vehicle
movements, it is obvious that the preferred mode of trans-
port is by car when it comes to travel duration (Hitge
and Vanderschuren, 2015; Liao et al., 2020). The com-
plexities of waiting times at traffic lights, congestion, and
parking difficulties in city centers expose areas where im-
provements could enhance the overall experience of urban
mobility. Complementary to research efforts that explore
ways to minimize and optimize average waiting times at
traffic lights for cars (Rida et al., 2018; Rida and Hasbi,
2018), our study focuses on investigating the impact of

such changes on average waiting times using the complex
network of V ienna as a use case. Adopting an innovative
approach, to observe the plain transportation network, we
systematically change the average waiting times for cars
whenever traffic lights are present. The goal is to reveal the
resulting changes in transportation patterns, with a partic-
ular focus on routes optimized for time efficiency.

In 2023, V ienna was ranked first in the world for qual-
ity of life, and its transportation network played an impor-
tant role. Wiener Linien, the city’s public transport opera-
tor, runs 5 underground lines, 29 tram lines, and 127 bus
routes. The subway of the city, operates throughout the
night on weekends and public holidays, ensuring contin-
uous service for passengers. With a fleet comprising over
500 tramcars and 450 buses, Wiener Linien boasts a robust
transportation system, making V ienna an ideal urban en-
vironment for this study.

Especially within cities, routing services are integral to our
daily lives, often employed when navigating to a destina-
tion. Whether for new or familiar routes, individuals fre-
quently utilize these services to generate efficient routes.
Even when a routing query seems unnecessary for well-
known routes, people often rely on previously generated
routes. Consequently, the algorithmic output of routing
services serves as a viable proxy for actual routes between
an origin and destination. This allows for a comprehensive
analysis of transportation patterns within a city.

The primary objective of this study is to determine the ef-
fects of manipulating average traffic light waiting penalties
for cars, on randomly generated routes of various lengths
across the city. By adjusting the average waiting times at
traffic lights for cars, meaning the red part of the traf-
fic signal cycle, we can observe how the same Origin-
Destination (OD) pair route is changing. In addition, we
examine the results of such a penalty for average traffic
light waiting times on the length of the route and human
energy expenditure.

Using a comprehensive representation of V ienna’s urban
network and randomly selected OD pairs spanning vari-
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ous distances across the city, our study introduces a unique
approach. We first decrease the waiting penalty for cars
from an average of 30 seconds to 10 seconds in order
to observe if we get any modal change in this best-case
scenario. Then we gradually increase the waiting penalty,
from 30 seconds to 60, 90, and even the extreme case of
150 seconds for only the car as a mode of transportation.
This approach, without using traffic data, presents the op-
timal scenario in terms of transportation within a city. In
essence, we want to observe if the mode of transport will
change when we assign a higher or smaller average wait-
ing penalty to the fastest option, the car (Hitge and Van-
derschuren, 2015; Liao et al., 2020). Given the extensive
research already conducted in the transportation field re-
garding traffic lights and enhancing the driving experience,
we were inspired to go deeper into this topic. Our motiva-
tion came from a desire to explore a spectrum of poten-
tial modifications within this optimal scenario and analyze
their impact on modal share. At the same time, with this
average increase or decrease in waiting time for the traffic
lights for cars, we try to determine if the choice of roads
changes and "smaller" roads are preferred by the algo-
rithm. By altering the average traffic light waiting penalty
for car mode, the objective is to observe changes in routes
between the same OD pairs and assess their broader im-
pact on the entire transportation network. It is important
to emphasize again that our approach is algorithmic, ex-
cluding congestion or any other real time data. However,
during the route generation phase, additional filters are in-
corporated in order to approximate human behavior with
respect to travel choices according to the existing litera-
ture.

This approach allows us to focus on the inherent character-
istics of the transportation network, observing and under-
standing changes in the network in its fundamental state,
before introducing the complexities associated with addi-
tional factors. This initial step is the foundation for subse-
quent analyses that may involve more complex elements
like traffic data.

The present study underscores the dominance of the car
modality as the fastest mode of transportation, which is in
line with relevant works (Hitge and Vanderschuren, 2015;
Liao et al., 2020), highlighting the need for targeted inter-
ventions to improve public transportation options and ef-
ficiency. This is especially crucial in well-designed cities
such as the one in this work, where the routing algorithm
consistently favors individual car travel, indicating areas
for necessary improvements and adjustments in urban mo-
bility planning. Individual cars offer greater speed and
flexibility compared to public transportation or alterna-
tive modes of transport (Hitge and Vanderschuren, 2015).
Routing algorithms optimized by time, prioritize speed in
reaching the destination, and cars often provide the fastest
means of travel. Furthermore, cars offer door-to-door ser-
vice, which plays a huge role as opposed to public trans-
portation routes that may involve transfers or longer walk-
ing distances to reach the destination. For these reasons,

even in well-designed cities with extensive transportation
networks, routing algorithms that are optimized by time in
this best-case scenario most often suggest individual cars
as the fastest mode.

The findings of this research can have substantial environ-
mental implications, potentially used to reduce congestion
and promote greater adoption of eco-friendly transport op-
tions. Such changes in transportation preferences can of-
fer valuable insights for policymakers and urban planners
(Tennøy, 2010). By understanding algorithmic considera-
tions in mode choices, authorities can formulate improved
policies for infrastructure and urban development.

Prior to exploring the specifics of our research, it is crucial
to clarify certain aspects. Firstly, it is worth noting that
conducting such a study in real-life conditions presents
significant challenges, primarily due to the fact that it rep-
resents a scenario, which may either be impractical or ex-
cessively costly to implement. Secondly, our approach fo-
cuses on the manipulation of parameters in the static base-
line modeled transportation network. We then observe the
outcomes resulting from these alterations. Consequently,
the basis for our validation process involves the accuracy
of our baseline scenario modeling in relation to the ac-
tual transportation network. Our dataset is coming from
OpenStreetMap (OSM), supplied by the Vienna govern-
ment, ensuring the correctness of the geometries within
our multi-graph. Additionally, the public transport timeta-
bles are sourced from Wiener Linien, another trusted gov-
ernmental source, and have been integrated into our model
across all public transportation modes making them corre-
spond to reality.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of related work and introduces the ex-
isting literature. Section 3 analyzes the methodology em-
ployed in this study, providing insights into the research
approach. Section 4 shows the results of the experiments
carried out, presenting a detailed view of the results. Sec-
tion 5 discusses the presented findings, providing an in-
depth exploration of their consequences and significance.
In conclusion, Section 6 provides a summary and proposes
future research.

2 Related Work

Reducing waiting times and optimizing traffic light oper-
ations to alleviate congestion are key concerns in urban
transportation management. In this section, we review rel-
evant literature on these topics providing a framework for
our approach, which focuses on assessing the impact of av-
erage waiting time at traffic lights on transportation mode
choices on routing algorithms. There are numerous studies
about traffic lights and how the waiting time can actually
be reduced using state-of-the-art models and techniques.

In recent decades, traffic signal management has become
an important concern within the research community. A
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notable paper by Wiering et al. (2000) presents in detail
the application of multi-agent reinforcement learning (RL)
algorithms to develop intelligent traffic light controllers,
with the goal of minimizing the collective waiting time
for vehicles within urban environments. The RL system
was designed to learn value functions, estimating the ex-
pected waiting times for cars based on diverse configu-
rations of traffic lights. Following this work, further RL
techniques for traffic light control emerged (Wiering et al.,
2004; Prabuchandran et al., 2014; Zhu et al., 2023).

Subsequently, novel techniques were employed to address
the challenges associated with traffic light control. Shinde
(2017) created a new technique called Adaptive Traffic
Light Control System (ATLCS). The proposed system
uses sensor networks for efficient traffic control by adjust-
ing traffic light timings to minimize wait times, optimizing
road capacity, saving travel time, and preventing conges-
tion. Younes and Boukerche (2016) presented the Intel-
ligent Traffic Light Controlling (ITLC) algorithm, which
improved isolated traffic light efficiency by 30% compared
to the Online Algorithm (OAF). They also introduced the
ATL algorithm, demonstrating a 70% enhancement in traf-
fic flow for arterial street coordination. In addressing the
increasing global issue of traffic congestion, the work of
Verma et al. (2022) presents a novel system model that
employs the AnTabu routing algorithm and a traffic light
control system based on fuzzy logic to effectively man-
age traffic flow, significantly reducing the average vehicle
travel time and improving the throughput of the roads in-
tersection. Furthermore, numerous attempts have already
been made to simulate traffic networks, incorporating the
operational dynamics of traffic lights in various models
(Wen, 2008; Harahap et al., 2019).

Congestion is a problem that is highly related to traffic
lights, thus, many recent papers try to model the trans-
portation network and observe the effect of congestion
(Ben-Dor et al., 2022). There is also existing research on
traffic control, which deals with traffic control recognition
at junctions (traffic lights, stop, priority, and right of way
rules) using crowd-sensed GPS data (vehicle trajectories),
as well as features extracted from OpenStreetMap (Zourli-
dou et al., 2022).

Previous research has highlighted the significant impact of
traffic lights on the behavior of both drivers and pedestri-
ans (N. Speisser and Lab, 2018). In a study conducted in
five cities, a clear correlation was observed between wait-
ing times and the rate of running red lights. The findings
suggest potential modifications to existing regulations, es-
pecially for drivers at tram crossings. The study also un-
derscores the importance of considering pedestrian ac-
ceptability and credibility thresholds, proposing a recom-
mended maximum waiting time of less than 90 seconds.

Much research has also been done on fuel consumption
and the total cost of traveling by employing routing algo-
rithms. The work of Ehmke et al. (2018) examines routing
methodologies, comparing the impact of minimizing dis-
tance or travel time against considerations of total cost,

fuel consumption/emissions, distance, and travel time, ad-
vocating for comprehensive cost models and adaptable
routing algorithms as essential to effectively minimize
overall expenses. Wen et al. (2014) introduced two heuris-
tic methods that address the complex issue of solving
the minimum cost path problem within a time-varying
road network that includes congestion charges. Their study
aimed to offer practical solutions for finding the minimum
cost path between node pairs in such dynamic environ-
ments. They compared these heuristic methods against an
alternative exact approach utilizing real-time traffic data.

In addition, we identified studies that use graphs to opti-
mize waiting times at traffic lights. More specifically, Lu-
siani et al. (2020) introduced a method to optimize traf-
fic light waiting times at congested crossroads using com-
patible graphs. The approach simplifies traffic flow sys-
tems, identifies sub-graphs with minimal cliques, and cal-
culates waiting times based on a 60-second cycle assump-
tion. Applied to Pasteur crossroads in Bandung, it reduces
the average waiting time from 282 seconds every hour to
an optimal 135 seconds an hour. Following the aforemen-
tioned study, recent research was conducted to explore the
application of the Compatible Graph and Webster meth-
ods for optimizing the traffic light arrangement in Jepara
(Asih et al., 2023). They employed compatible graph mod-
eling to optimize traffic flow and used the Webster method
to determine traffic light cycle times. Taking into account
variables such as the number of vehicles, road width, and
different traffic densities in the morning and afternoon, the
study proposes a solution with a three-phase cycle, result-
ing in effective cycle times of 98 seconds for the morning
session and 155 seconds for the afternoon session, as vali-
dated through simulation using PTV Vissim software.

In summary, related studies presented various effective
approaches to alleviate traffic congestion, improve traf-
fic light control, and optimize transportation modes. How-
ever, most existing studies are heavily dependent on real-
time data or modeling of real-time data for their analyses,
with a primary emphasis on aspects related to traffic man-
agement.

It is important to note that our algorithmic approach di-
verges from the current studies by not incorporating real-
time data on congestion or traffic light operation. Instead,
our method operates at a higher level, analyzing the im-
pact of average traffic light waiting penalties on trans-
portation mode choices and route changes towards lower-
importance streets across the city. Through the utiliza-
tion of a) the complete network structure derived from the
open-source database, OpenStreetMap (OpenStreetMap
contributors), and b) the NetworkX library (Hagberg et al.,
2008) for the computation of time-efficient routes across
various OD pairs using Dijkstra’s algorithm (Dijkstra,
1959), we can observe the influence that traffic lights have
on the entire transportation network. Once more, it is cru-
cial to emphasize that our primary focus lies on the trans-
portation network itself. Specifically, we are interested in
examining how adjustments to the average traffic light
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waiting penalties will influence the routes within the base-
line scenario.

As noted previously, conducting studies of this nature in
real-world settings is either infeasible or very expensive.
Therefore, our approach enables us to assess the effects of
modifications to the transportation network within this op-
timal scenario. We operate under the assumption that if the
observed outcomes fail to align with the desired results,
implementing such changes in more complex models or
even in reality, may prove pointless.

3 Methodology

3.1 Data and Software Availability

The transportation network in V ienna, which includes
public transportation, walking, biking, and driving a
car, was initially derived from the Open Street Map
(OSM) dataset (OpenStreetMap contributors). Especially
for V ienna, we have access to accurate and reliable data
directly provided by local authorities in OpenStreetMap
(OSM) format. The Overpass API is utilised for download-
ing the data. Roadways in each network are represented
as edges, with nodes representing junctions and public
transport stations. This comprehensive representation ac-
curately depicts V ienna’s transportation system through
a multi-graph model.

The OSM bicycle network primarily comprises bicycle
lanes, which are relatively sparse. To overcome this lim-
itation and adhere to V ienna’s Highway Code, a bicycle
graph was constructed through the intersection of pedes-
trian and car graphs. By establishing connections among
the shared nodes in each network, the multi-layer trans-
portation network was formed. Additionally, it is impor-
tant to note that in this multi-graph representation, it is al-
lowed to change from one node to another with zero cost
if, in the very same node, more than one mode of trans-
portation is available. There is only one exception that
needs to be mentioned. Private modes of transport (bike
and car) are only available at the beginning of a route.
Thus, this approach does not incorporate car and bike shar-
ing facilities.

It is also important to consider the human energy expendi-
ture during travel. By focusing not only on the choices of
transport modes but also on the energy expended by people
using these modes, we gain a holistic understanding of the
impact of traffic light operations on human energy expen-
diture. Kölbl and Helbing (2003) suggests that energy ex-
penditure is a more effective factor in explaining individu-
als’ mobility choices. As individuals move around the city,
they possess some energy that is closely tied to travel time.
This can potentially serve as a more precise indicator of
the mobility choices. Furthermore, we also observe the po-
tential change in the length of the route. According to these
findings, appropriately scaled daily travel time distribu-
tions for different transportation modes, such as walking,

cycling, bus or car driving, follow a universal functional
relationship similar to a canonical-like energy distribution.
Furthermore, Kölbl et al. (2023) approximated these en-
ergy functions through an extensive human-subject survey
study that spans more than two decades in multiple coun-
tries. This dataset holds significant value and can be used
to estimate average energy expenditure for any transporta-
tion mode within a network using publicly available data
sources.

Additionally, the traffic lights, extracted from OSM as
node objects, were assigned to the nearest edges. Within
our directed multi-graph structure, some edges allow
movement in both directions. If a traffic light exists in one
direction and not the other, this information was incorpo-
rated into the graph, reflecting as ’True’ at the junction of
the former direction and ’False’ at the junction of the latter
concerning the traffic light presence.

A traffic light penalty of 30 seconds for V ienna, was used
as a baseline. This value is commonly used as an aver-
age waiting penalty OpenSourceForEver (2021); Caquot
(2022). This penalty was initially applied to construct our
multi-graph representation. Consequently, every node fea-
turing a traffic light is assigned a 30-second penalty for
car, pedestrian, and bike modes. In this study, each layer is
equipped with its own set of traffic lights, each operating
independently. Changes in the average waiting traffic light
penalty are specifically related to the car mode, while the
average penalties for pedestrians or cyclists remain con-
stant. It is important to note that buses and trams, given
priority in V ienna, are exempted from this traffic light
penalty, and other forms of public transport in the city do
not encounter traffic lights.

Regarding speed limits, cars were assigned values based
on the OSM ’max speed’ tag. In instances where this
tag is absent, a default value of 30 km/h is assigned.
This maximum speed value was multiplied by 0.75.
This value gives an estimate of acceleration and decel-
eration on a segment. Then the time value is obtained
by dividing the length of the segment by the adjusted
speed value. Public transport schedules are sourced from
Wiener Linien’s GTFS (General Transit Feed Specifica-
tion) data (https://www.data.gv.at/katalog/dataset/wiener-
linien-fahrplandaten-gtfs-wien), which are publicly avail-
able timetables. Utilizing this data, we can determine the
average time it takes to travel from one station to another,
considering that travel times between stations may vary
throughout the day.

Regarding the bike speed, it is consistently set at 11.5
km/h. For walking, the speed on flat surfaces and uphill is
3.5 km/h (Levine and Norenzayan, 1999),(Kassim et al.,
2020). The uphill is actually reflected through the energy
value, and the higher the elevation, the more energy is con-
sumed. The downhill walk is set at 5 km/h. During the
computation of human energy expenditure for both biking
and walking, the slope of the terrain is taken into account.
This factor is considered to provide a more comprehensive
assessment of the energy expenditure associated with these
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OSM tags Joined Tags

motorway
motorway link
trunk
trunk link
primary
primary link Primary Streets
secondary
secondary link
tertiary
tertiary link

unclassified
residential Secondary Streets
service
living street

Table 1. Open Street Map tags and categorized tags for the Pri-
mary and Secondary Street Network.

modes of transportation, taking into account the impact of
varying terrain conditions. All these values for human en-
ergy expenditure were obtained from the table 1.0.2 and
1.1 from the book of Spitzer et al. (1982).

Finally, OpenStreetMap (OSM) tags were utilized to ob-
serve if routes change toward less important streets. Ta-
ble 1 presents the various tags and how these OSM tag
definitions were used to classify the streets into the Pri-
mary Street Network and the Secondary Street Network.
In addition to the existing tags, we introduced a new tag
labeled "no car segment" to emphasize instances where a
mode transition occurs from car to another mode.

The data and code for this work are both accessible from
our website 1. We used Python programming language
(Version 3.10) for processing the data, creating the multi-
graph, the routing process and analyzing the results.

3.2 Route Generation and Processing

Our sampling strategy works as follows. Origin-
Destination pairs (OD) were randomly selected across
V ienna, 1000 pairs for 21 different length categories were
used for the experiment, resulting in more than 20000
routes. These categories range from short distances, such
as 100m to 500m for the first category, to long distances,
such as 19001m to 20000m (e.g. 501m to 1000m for the
second category, 1001m to 2000m for the third and so on).
Each length category initially comprises 1000 generated
OD pairs. Dijkstra’s algorithm (Dijkstra, 1959) using time
as a cost function instead of the shortest path was em-
ployed to calculate these routes using the NetworkX li-
brary (Version 3.0) (Hagberg et al., 2008). Additionally,
each route retains records of both the total human energy
expenditure and the total distance traveled.

1https://geoinfo.geo.tuwien.ac.at/resources/

Table 2. Filters for Realistic Route Scenarios based on Literature

Mode of Transport Filters

Car ≥ 1 km
Walk ≤ 1.5 km
Bike ≤ 5 km

Overall transfers ≤ 4 + Walking

To guarantee realistic routes and approximate human be-
havior, we applied specific filters in the routing algorithm
to generate feasible routes. Feasible routes are the ones
that adhere to certain human criteria, such as the accept-
able walking distance and the number of transitions be-
tween modes humans are willing to follow. Routes with
a total walking distance exceeding 1500m (Walton and
Sunseri, 2010), (Fonseca et al., 2021) were filtered. Fur-
thermore, following Daniels and Mulley (2013), our ap-
proach involves using a car as a mode of transportation
exclusively for trips greater than 1km. This decision aligns
with the idea that distances ranging from 400m to 800m
are considered walkable. Additionally, the total biking dis-
tance was restricted to less than 5km (Larsen et al., 2010;
Chillón et al., 2016), and the overall transfers from one
mode to another were limited to less than 5. Zha et al.
(2019) used mobile phone GPS data to pinpoint transfer
points between various transportation modes within indi-
vidual journeys. This is used as the foundation for trip
mode segmentation and the recognition of individual trip
mode chains. The authors processed a dataset compris-
ing 1,863 valid trips, and within this dataset, they identi-
fied and utilized 8,243 records of transfer points from one
mode to another. This yields an average of approximately
four transitions per trip. In our research, we implemented
a constraint of four transfers in addition to walking. As
walking is already considered a mode with its own filter,
we excluded it from the count of four transfers. This de-
cision was based on the rationale that walking is an inher-
ent component of transitioning between different modes.
To dynamically implement these filters, we modified Dijk-
stra’s algorithm for determining the shortest path, adapted
specifically for optimizing time efficiency in our context.
This adaptation ensures that the algorithm outputs a "fea-
sible" route, aligning more closely with a realistic repre-
sentation of the situation.

It is important to note that our length categories are ini-
tially defined based on shortest paths. However, after the
implementation of the feasibility change, routes may devi-
ate from the shortest paths, potentially resulting in longer
distances. For instance, if a route between a given OD pair
is originally classified in a 2km distance bin according
to the shortest path but is considered infeasible according
to the literature criteria, the alternative feasible route may
have a greater distance.

Table 2 provides an overview of all applied filters. This
representation aims to illustrate the key parameters and
conditions utilized in the study.
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After constructing the multi-graph representation of the
transportation network and incorporating route genera-
tion with a 30-second waiting penalty for car, bike, and
walking modes, we performed an evaluation of feasible
routes. Our analysis explored the average time spent per
length category, the average route length per category, and
the average human energy expenditure across the entire
length spectrum. Additionally, we explored the distribu-
tion of modes within each length category (i.e., the result-
ing modes based on the routing algorithm). The findings
revealed that algorithmically optimized for time efficiency
in route selection, the car mode is favored across all trans-
portation modes and length categories.

Figure 1. Average travel time in each length category for differ-
ent average waiting times at traffic lights.

Figure 2. Average energy expenditure in each length category
for different waiting times at traffic lights.

Then, we retained the same Origin-Destination pairs and
started the generation of multi-graph representations from
the beginning, with this time-adjusted average waiting
times at traffic lights for only the car as a mode of trans-
portation. The penalties for biking and walking remained
unchanged throughout the process. We explored variations
in average waiting times for cars, meaning that we only
changed the red phase of the traffic light cycle and not

Figure 3. Average travel distance in each length category for dif-
ferent waiting times at traffic lights.

the length of the cycle, by adjusting them to 60s, 90s, and
150s, and then decreasing them to 10s. This approach en-
ables us to readily observe travel mode changes, route vari-
ations, and discrepancies in average travel length, travel
time, and average human energy between all routes in this
best-case scenario across the different traffic light penal-
ties.

4 Results

In this section we present the results of experiments in-
volving average waiting times (red light waiting) for the
car mode at traffic lights. Table 3 provides an overview of
the average modal split corresponding to different average
waiting time penalties at traffic lights.

In Figure 1 the average travel times for the same OD pairs
are presented, using time as a cost function. It is evident
that travel time increases as the waiting time at traffic
lights increases. In addition, the car is the preferred mode
when the algorithm optimizes for time.

Furthermore, the results of the average values for energy
expenditure are also presented in Figure 2. These routes,
as before, are also plotted according to different length cat-
egory bins. In conclusion, the average length traveled for
all routes is shown in Figure 3.

Table 3. Average percentage of each mode for different average
waiting time values for car mode across all length spectrum.

Mode 10s 30s 60s 90s 150s

Bus 7.29% 8.91% 12.50% 14.50% 17.37%
Walk 0.58% 0.73% 1.20% 1.61% 2.12%
Bike 8.89% 9.03% 9.79% 10.79% 12.28%
Car 81.12% 77.84% 68.70% 61.56% 51.74%
Tram 0.17% 0.23% 0.56% 0.95% 1.46%
Subway 0.86% 1.67% 3.84% 5.52% 7.50%
Train 1.09% 1.58% 3.41% 5.07% 7.53%
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Figure 4. This figure illustrates the distribution of OpenStreetMap (OSM) tag labels among the routes within each length category. The
numbers inside the bars represent averaged results for each category. The Primary Street Network is depicted in red, the Secondary
Street Network in yellow, and other means of transport are represented in green. The y-axis represents the different waiting penalties
for cars (seconds), and the x-axis represents the different length categories (meters).

These results provide valuable insights regarding the in-
fluence of the average traffic light waiting penalties on
both route length and human energy expenditure, next to
time. The presented figures offer details on the output of
the routing algorithm under different average waiting time
scenarios for the mode car, contributing to a more com-
prehensive understanding of their influence on modal split
and route choice.

As previously noted, the algorithm often prioritizes the
car as the fastest option when optimizing for time effi-
ciency. Nevertheless, increasing average waiting times for
cars redirects traffic from main roads toward alternative
transportation modes, such as active modes or public trans-
port. This is obvious in Figure 4 which illustrates 19 length
categories associated with car usage in the routes. The x-
axis represents these 19 length categories, while the y-axis
displays varying waiting penalties for cars ranging from
10 to 150 seconds. The Primary Street Network is de-
picted in red, while the Secondary Street Network is rep-
resented in yellow. The green color is used to denote other
modes of transportation, including both active modes and
public transport. The numerical values within the color
bars represent the average percentages corresponding to
each respective street tag based on the length category to
which they belong. This figure facilitates the observation
of how the algorithm redirects traffic flow towards streets

of lower categories and promotes the utilization of more
"eco-friendly" transportation modes.

Additionally in Figure 5, the modal share across the entire
length spectrum is depicted. The sub-figures present modal
distributions for average waiting times for cars of 10, 30,
60, 90, and 150 seconds, showcasing the various modes of
transportation utilized across the routes. The active modes
and public transport data are depicted at the bottom of the
illustration with a texture as a grouping factor.

5 Discussion

This section discusses the results obtained during changes
to the average waiting penalty for traffic lights for the
mode car. Table 3 illustrates the impact of different waiting
times on the suggested mode of transportation. V ienna
has a highly developed transportation system, and tradi-
tionally, the car has been considered the fastest option,
even with an efficient public transport network since, most
of the time, it offers greater speed, flexibility, and door-
to-door approach along with an extensive network .(Hitge
and Vanderschuren, 2015; Liao et al., 2020). However, our
findings reveal an interesting pattern: as the average wait-
ing penalty for traffic lights for cars increases, the algo-
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(a) Mode distribution for 10s average waiting time for cars (b) Mode distribution for 30s average waiting time for cars

(c) Mode distribution for 60s average waiting time for cars (d) Mode distribution for 90s average waiting time for cars

(e) Mode distribution for 150s average waiting time for cars

Figure 5. Distribution of modal share across the different length categories. In the x-axis, the normalized mode share is presented, and
in the y-axis, the different length categories are depicted (meters). As the average waiting penalty increases, the car mode decreases
(orange color), and other modes increase (colors with line hatch). Legend is the same for all subfigures and represents the color for
different modes of transportation.

rithm also favors modes of transportation other than cars
when it tries to find the time-efficient path.

The averaged results presented in Table 3 align with the
information depicted in Figure 4. We initially compare the
impact of reduced average waiting penalty for cars (from
30 to 10 seconds), followed by an analysis of the effects
of increased waiting penalties (from 30 to 60, 90, 150 sec-
onds). It is important to clarify that the modification ap-
plies solely to the duration of the red phase in the traffic
light cycle and also average traffic lights waiting penalties
for bikes and pedestrians remained the same.

As anticipated, when the traffic light penalty decreases
from 30 to 10 seconds, there is an observable increase in
the utilization of the Primary Street Network (depicted in
red). This indicates that the routes mainly follow paths that
primarily traverse larger streets within the city. This trend
gets more intense when the route length increases. Fur-
thermore, a decrease in the traffic light waiting penalty for
cars does not promote the adoption of eco-friendly modes
of transport. The green category in Figure 4, represent-
ing active modes and public transportation, has a minor
change as the length category increases. This suggests that
a reduction in the average waiting penalty, in the best-case
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(a) Route for 10s Waiting Time (b) Route for 30s Waiting Time

(c) Route for 60s Waiting Time (d) Route for 90s Waiting Time

(e) Route for 150s Waiting Time

Figure 6. Route 7 with the same Origin-Destination pairs across different waiting penalties at traffic lights. In this example route, the
mode remains the same between all traffic light penalties. The algorithm exports the most time-efficient route.

scenario, will not result in notable changes in terms of the
time-efficient path and the mode of transportation.

When comparing the average 30-second waiting penalty
for cars with the increased average penalties (60, 90, and
150 seconds), an interesting conclusion arises. Initially,
by increasing the waiting penalty for cars up to a cer-
tain point, the routes are redirected towards lower category
streets (yellow category), particularly for shorter routes
(up to 5-6km). This suggests that the algorithm is trying
to avoid traffic lights, favors smaller streets, most likely
ones that do not include traffic lights (Figure 4). How-
ever, beyond this particular threshold, we observe a no-

table increase in the green category, representing public
transport and active modes. This increase persists until ap-
proximately the 9-10km category, after which it gradually
declines. It is evident that in the extreme case of a 150
second waiting penalty for cars, the percentage distribu-
tion between the car mode and all other modes becomes
nearly equal (50-50). This implies that even in the absence
of congestion data, in the optimal scenario where the av-
erage traffic light waiting penalty for cars increases, we
observe that for shorter travels within the city, public trans-
portation and active modes become nearly as time-efficient
as car travel.
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(a) Route for 10s Waiting Time (b) Route for 30s Waiting Time (c) Route for 60s Waiting Time

(d) Route for 90s Waiting Time (e) Route for 150s Waiting Time

Figure 7. Route 38 with the same Origin-Destination pairs across different waiting penalties at traffic lights. In this example route, the
mode remains the same between the 10s and 30s penalty. However, after that penalty, the modality is changing. The algorithm again
exports the most time-efficient route.

Figure 6 depicts a specific Origin-Destination pair with
its corresponding routes under different waiting times at
traffic lights. As the waiting penalty changes, we can also
observe the change in route. Each sub-figure represents a
unique path chosen by the algorithm to optimize for time
efficiency. The total travel length is shown on top of each
sub-figure. By observing the total length traveled between
the sub-figures, it is evident that the algorithm adjusts the
route by covering more distance to reach the destination in
the most time-efficient manner. It is important to observe
that the mode of transportation selected still remains the
car, which means that it remains the fastest mode.

An intriguing example is evident when examining Fig-
ure 6. Despite Figure 6b depicting a scenario with a 30-
second penalty, Figure 6c presents a route with a shorter
length even though the traffic light waiting time is in-
creased (60s). This shows that in the case of Figure 6c,

the route has fewer traffic lights and most probably lower
speed limits. Otherwise, the algorithm in the first case
would have chosen it.

In Figure 7, another example of the same OD pair is pre-
sented across the different average waiting penalties at
traffic lights. It is evident that the modality is changing
in this case. Figures 7a and 7b have the car as the fastest
option to reach the destination. However, when the traf-
fic light penalty for cars increases to 60 seconds, we can
clearly observe the change in the modality. In the first two,
Figures 6a and 6b, a slight alteration in the route is no-
ticeable, likely indicating an effort to avoid traffic lights.
However, when the waiting penalty for cars is doubled (60
seconds), the car is no longer the fastest option.

While traffic congestion is not modeled in the current ap-
proach, our methodology provides valuable insights by
presenting a "raw" representation of the transportation net-
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work. Optimizing for the best-case scenario, our model
deliberately ignores factors such as parking search times,
congestion and waiting times in public transport.

In this optimized best-case scenario, the results confirm
the belief that cars remain the fastest mode of transporta-
tion (Hitge and Vanderschuren, 2015; Liao et al., 2020).
Surprisingly, when the average waiting penalty for the
mode car increases, the algorithm prefers to follow an al-
ternative route by following routes in secondary streets, in-
stead of changing the modality. This means that the car is
still the faster option even if it requires some extra kilome-
ters to travel in order to reach the destination point. How-
ever, with a significant increase in the traffic light wait-
ing penalty for cars, it can be observed that other modes
become nearly as fast as cars. In Figure 5 the average
mode distribution share is depicted. There, for each av-
erage waiting penalty for cars, we can observe the average
modal share. As mentioned earlier, in trips with a length of
approximately 9 to 10 km, cars and other modes of trans-
portation are utilized equally. In these plots, it is evident
how public transport emerges as the waiting penalty in-
creases, particularly in middle-range trips.

Aligning with the findings in existing literature, our explo-
ration led us to identify a "feasible" path, a theoretically vi-
able route for individuals traveling between an origin and
destination point. Even when the average waiting time at
traffic lights was increased, the car remained the preferred
mode , meaning the fastest mode when the algorithm used
time as a cost function. In Figures 1, 2 and 3 it is obvi-
ous that as the average waiting penalty increases, the red
light time, the values in averaged results also slightly in-
crease. The plots of all travel time, distance, and energy
expenditure for routes look very similar, something that is
expected as time, distance, and human energy expenditure
are highly correlated. However, based on the values ob-
served on the y-axis, it is obvious that there is no substan-
tial difference in the average values for time, distance, and
human energy. Therefore, it can be concluded that an in-
creased or decreased average waiting penalty for cars can
be considered as noticeable when one analyzes the longer
distances, implying that the time, distance, and human en-
ergy spent to reach the destination increase. On the con-
trary, when all distance bins are analyzed together and av-
eraged, these differences remain relatively consistent, re-
vealing probably negligible differences resulting mostly
from the small impact on short routes.

6 Conclusion and Future Work

In summary, this research focuses on a best-case sce-
nario for V ienna and models its multi-modal transporta-
tion network. By decreasing (10 seconds) or increasing
(60, 90, and 150 seconds) the average red time waiting
penalty for the car mode, we investigated modal changes
and observed variations in time-efficient routes (includ-
ing OSM tags for primary and secondary streets, average

travel length, average travel time, and human energy ex-
penditure). Our research within this best-case scenario un-
covered that as the average traffic light penalty increases,
there is a significant shift towards eco-friendly modalities.
We recognize that our research has certain limitations, as
it does not incorporate traffic congestion data and mod-
els an ideal situation for traveling around the city. Never-
theless, this optimal best-case scenario provides valuable
insights into the underlying transport network. By specif-
ically focusing on this optimized scenario, city planners
and policy-making authorities can obtain valuable insights
for immediate practical applications. It is important to first
examine this best-case scenario before going into more
complex modeling.

As an extension to this research, future work could delve
into incorporating traffic data as an additional parameter to
further improve the model’s accuracy. By integrating real-
time traffic conditions into the algorithm, the transporta-
tion network’s responsiveness could be enhanced, provid-
ing a more dynamic and realistic representation of travel.
Additionally, conducting more experiments using existing
models, rather than approximating waiting penalties, could
contribute to the precision of the algorithm. Furthermore,
broadening this research by applying the same test to other
cities would offer valuable insights into how modality
changes may vary across different urban landscapes. This
comparative analysis could uncover city-specific patterns.
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