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Abstract. Generative AI based on foundation models pro-
vides a first glimpse into the world represented by ma-
chines trained on vast amounts of multimodal data in-
gested by these models during training. If we consider the
resulting models as knowledge bases in their own right,
this may open up new avenues for understanding places
through the lens of machines. In this work, we adopt
this thinking and select GPT-4, a state-of-the-art represen-
tative in the family of multimodal large language mod-
els, to study its geographic diversity regarding how well
geographic features are represented. Using DBpedia ab-
stracts as a ground-truth corpus for probing, our natu-
ral language–based geo-guessing experiment shows that
GPT-4 may currently encode insufficient knowledge about
several geographic feature types on a global level. On a
local level, we observe not only this insufficiency but also
inter-regional disparities in GPT-4’s geo-guessing perfor-
mance on UNESCO World Heritage Sites that carry sig-
nificance to both local and global populations, and the
inter-regional disparities may become smaller as the ge-
ographic scale increases. Morever, whether assessing the
geo-guessing performance on a global or local level, we
find inter-model disparities in GPT-4’s geo-guessing per-
formance when comparing its unimodal and multimodal
variants. We hope this work can initiate a discussion on
geographic diversity as an ethical principle within the GI-
Science community in the face of global socio-technical
challenges.
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1 Introduction

Like humans, machines are capable of learning from ob-
servations to draw inferences. However, if we do not
fully understand the components and nature of the geo-
data landscape, naively feeding these data to machines for

training, validation, and testing purposes could yield unex-
pected and undesired results. In a pioneering work in im-
age classification, Shankar et al. (2017) conducted a stress
test on the generalizability of two classifiers pre-trained
on two of the most commonly used image benchmark
datasets. For images crowdsourced from Hyderabad, In-
dia, neither classifier could recognize well categories like
groom and bridegroom. Also, the classifier trained on one
dataset showed poorer performance on web images from
the Global South, e.g., Ethiopia. Such failures could be at-
tributed to a more Western representation bias exhibited by
both benchmark datasets. Situating GIScience in the cur-
rent AI4Science1 trend, we must ask ourselves: Are these
models being developed and used for knowledge discov-
ery for the benefit of all, irrespective of where we are or
where we come from (Janowicz, 2023)?

The issues of geographic diversity exist not only in com-
puter vision, but also in natural language processing tasks
such as geoparsing (Liu et al., 2022). Just as we have re-
alized this fact, the geo-data landscape is facing a dis-
ruption brought by the release of ChatGPT as a recent
breakthrough in foundation models (Bommasani et al.,
2021). More recent large language models (LLMs) also
support modalities such as images, greatly improving text-
to-image generation and visual question answering. This
success in multimodality is significant for the next gen-
eration of GeoAI models that could also be pre-trained
with geo-data ranging from location descriptions to remote
sensing and street-level images, and from vector data to
cartographic maps. However, such models would still suf-
fer from a lack of geographic diversity when learning la-
tent spatial representations in a task-agnostic manner (Mai
et al., 2022). Additionally, more and more geo-data could
become generated by machines at scale. On Hugging-
Face, there are 43,616, 14,864, and 354 models for text,

1https://www.microsoft.com/en-us/research/lab/
microsoft-research-ai4science
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text-to-image, and image-to-text generation, respectively2,
which can be further deployed and fine-tuned for various
purposes. Currently, it costs only $0.00025/1k characters
for inputs and 20 times the price for outputs when using
Gemini Pro, one of the state-of-the-art multimodal closed-
source models3. The increasing accessibility of generative
AI may foster a feedback loop, where content created by
these models is used to train subsequent generations. This
raises concerns about the potential to perpetuate and am-
plify biases present in current and future models.

In this short paper, we examine the geographic diversity—
or lack thereof—of GPT-44, the state-of-the-art multi-
modal LLM in OpenAI’s GPT series. Janowicz (2023)
suggested that what an LLM reveals is a mirror of the
world through multiple distortions, e.g., one from our ob-
served world to the digital world and another from the
sampled world to the learned (and possibly debiased)
world, embedded in high-dimensional vector space. Our
work uses this analogy to guide the investigation into the
geographic diversity of GPT-4, in the process examin-
ing what it means for a foundation model to be called
geographically diverse. The main subject of our inves-
tigation is the collection of geographic features5 that
constitute gazetteers referred to as the vocabulary of ge-
ography (Jackson, 2006). This subject is different from
previous studies that may fall into an environmental-
determinism trap, as they tend to attribute local machine-
learning failures simply to data bias against a studied
area. Also, previous work ignores the modifiable areal
unit problem (Openshaw, 1984), most often using country-
level differences in data distribution and model perfor-
mance as the sole indicator of geographic diversity. Stem-
ming from the platial root of GIScience, we consider that
the notion of geographic diversity has another facet, i.e.,
how well geographic features are represented. These fea-
tures could be areas where a concept holds true but shifts,
physical features that extend across the landscape, or
human-made sites that carry historical and cultural mean-
ing. In addition to countries, other kinds of relevant geo-
graphical units could be used when assessing geographic
diversity.

We approach this notion of geographic diversity centered
around the extension (i.e., the instances to which a cat-
egory applies) of geographic feature types, and we be-
lieve it is necessary not only to record where models
would fail but also to develop innovative ways of assess-
ing geographic diversity. Therefore, we design a natural
language–based geo-guessing experiment, and suggest us-
ing its performance as an indicator. During the experiment,
we mask the geographic feature mentioned in a piece of
text and ask GPT-4 to supply its actual name.

2Retrieved from https://huggingface.co/models on January
10, 2024

3https://blog.google/technology/ai/
gemini-api-developers-cloud

4https://openai.com/research/gpt-4
5https://wiki.gis.com/wiki/index.php/Geographic_feature

2 Related work

Zhao et al. (2021) were among the first to try to theo-
rize about the intersection of generative AI, GIScience and
the broader discipline of geography. They raised the prob-
lem of deep fake geography, which situates fake geogra-
phy (e.g., location spoofing or the fact that maps could tell
lies) in the deep-learning era, and conducted an empiri-
cal study by using generative adversarial networks to in-
ject landscape features from two other cities into satellite
images of Tacoma in Washington, United States. As the
resulting images appear to be authentic, the authors later
developed detection models using visual and frequency-
domain features. In the same work, it was also predicted
that deep fakes would become an inevitable part of our so-
ciety, and therefore, how to understand the fast emergence
and negative impacts of associated techniques remains a
key question.

Interestingly, the rapid progress in LLMs makes it impor-
tant to look at generative AI as not merely a data gener-
ator but as a knowledge base. Petroni et al. (2019) con-
ducted a fill-in-the-blank cloze test on a wide range of
pre-trained language models including BERT6, an early
language model using the Transformer architecture which
forms the fundamental building block of today’s LLMs.
They found that BERT can store relational knowledge in
its training data and recall factual, commonsense knowl-
edge without fine-tuning.

More recent work that involves knowledge extraction in-
dicates that geographic knowledge, as a kind of special-
ized knowledge, is encoded in these models, as well. Lié-
tard et al. (2021) designed three probing tasks about co-
ordinates, population sizes, and neighboring countries, re-
spectively. As the model size increased, more geographic
knowledge was found to be learned. Similarly, Bhandari
et al. (2023) focused directly on LLMs and probed for
coordinates of cities. They found that LLaMA7 in zero-
shot settings can outperform LLaMA in few-shot settings.
In addition, they discovered that LLMs have the ability
to predict a place based on contextual information (con-
taining an input place and a spatial preposition) and to
achieve distance-based spatial reasoning about cities. Jang
et al. (2023) retrieved textual responses (structured as bul-
let points) from ChatGPT and street-level images from
DALL·E 28 to study the place identity of 31 cities. Then,
they examined the semantic similarity between the place
identity from the perspective of the models and the place
identity embedded in two ground-truth text and image
datasets. The results showed that ChatGPT and DALL·E
2 can represent salient features of cities.

These post-BERT works suggest that the usage of gen-
erative AI in the form of LLMs should not be limited to

6http://ai.googleblog.com/2018/11/
open-sourcing-bert-state-of-art-pre.html

7https://ai.meta.com/blog/large-language-model-llama-meta-ai
8https://openai.com/dall-e-2

2 of 7AGILE: GIScience Series, 5, 38, 2024 | https://doi.org/10.5194/agile-giss-5-38-2024

https://huggingface.co/models
https://blog.google/technology/ai/gemini-api-developers-cloud
https://blog.google/technology/ai/gemini-api-developers-cloud
https://openai.com/research/gpt-4
https://wiki.gis.com/wiki/index.php/Geographic_feature
http://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
http://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.meta.com/blog/large-language-model-llama-meta-ai
https://openai.com/dall-e-2


content generation. Using GPT-4 as an example, we focus
on its learned representation (rather than reasoning) about
geographic features beyond administrative features, e.g.,
cities or countries. We probe it for factual knowledge in
the form of unstructured texts rather than triples. In ad-
dition, our experiment differs from mainstream probing
techniques that query about feature attributes. Instead, we
query GPT-4 about a feature, itself, based on the assump-
tion that contextual words are geo-indicative.

3 Ground-Truth Data Acquisition

Our ground-truth corpus is retrieved via SPARQL queries
from DBpedia9. DBpedia is currently one of the largest
open knowledge bases that uses Semantic Web and
Linked Data technologies to extract structured data from
Wikipedia (Lehmann et al., 2015). We select geographic
features that belong to subclasses of the dbo:Place
category and subsequent subclasses, as well. This se-
lection includes a subset of all geographic features
that exist in DBpedia, in which other classes, such as
dbo:ArchitecturalStructure, also contain rele-
vant features.

As our work does not explicitly involve the probing of
multilingual knowledge of GPT-4, we retrieve only En-
glish abstracts which, however, may contain non-English
feature names. Features that lack an English abstract and
that lack mentions of their names in the abstract are omit-
ted from our study. These additional classes are not consid-
ered in this work. Figure 1 shows the retrieval workflow, in
which the first step is to retrieve dbo:Place subclasses
and subsequent subclasses, and the second step is to re-
trieve the name and the abstract of an instance.

4 Geo-guessing Experiment

DBpedia abstracts allow us to conduct a geo-
guessing experiment on GPT-4. We use two
GPT-4 variants, gpt-4-1106-preview and
gpt-4-vision-preview. Both models were
trained with data up to April 2023. Com-
pared with the gpt-4-1106-preview (that
was the GPT-4 Turbo model before the more
recent release of gpt-4-0125-preview),
gpt-4-vision-preview has the additional
ability to understand images, and therefore,
gpt-4-vision-preview is multimodal. We probe
both models in zero-shot settings and set the temperature
(i.e., the randomness in the output) to 0. No candidate
answer is provided for the model in the experiment,
meaning that it is an open-ended question-answering task.
Figure 2 shows an example of how the experiment can
be achieved in the OpenAI Playground10. The system

9https://www.dbpedia.org
10https://platform.openai.com/playground

prompt is Return only the name of XX in
the given paragraph. The user prompt is an
abstract that masks the target feature as XX. In this
example, gpt-4-1106-preview outputs Gulf of
Thailand as the correct answer. It is also worth noting
that as GPT-4 uses both publicly available data (such
as Internet data) and data licensed from third-party
providers (Achiam et al., 2023), its training data may
include DBpedia as an open knowledge source. Therefore,
we assume that GPT-4 should output the precisely correct
answer if it memorizes the corresponding parts of its
training data.

5 Evaluation Results

Our current experiment involves four subclass
types, dbo:Valley, dbo:Bay, dbo:Sea,
and dbo:WorldHeritageSite. The fea-
ture types dbo:Bay and dbo:Sea are
subclasses of dbo:BodyOfWater, and
dbo:BodyOfWater and dbo:Valley are subclasses
of dbo:NaturalPlace. Both dbo:NaturalPlace
and dbo:WorldHeritageSite are subclasses of
dbo:Place. Figure 3 illustrates a DBpedia geographic
feature-type hierarchy, in which the grey circle represents
dbo:Place subclasses excluded from our current work.
In total, there are 15 dbo:Valley, 40 dbo:Bay,
152 dbo:Sea, and 981 dbo:WorldHeritageSite
instances, respectively, used in our experiment.

5.1 Analysis Results on a Global Level

First, we measured the geo-guessing performance as
the percentage of features correctly named by GPT-4.
Table 1 shows the evaluation results by model and feature
type. For each feature type, gpt-4-vision-preview
correctly predicted fewer than half of the total features.
The model gpt-4-1106-preview correctly pre-
dicted slightly more than half of the features belonging
to dbo:Bay and dbo:Sea, with values of 0.55 and
0.51, respectively. Both gpt-4-1106-preview
and gpt-4-vision-preview performed low-
est on dbo:Valley and highest on dbo:Bay.
Except for dbo:Valley (0.2 versus 0.27), sur-
prisingly, gpt-4-1106-preview outperformed
gpt-4-vision-preview on three other feature types.
This may indicate that a gpt-4-vision-preview
trained on additional image data (e.g., image–text pairs)
does not necessarily encode more geographic knowledge
than the pure language model gpt-4-1106-preview.

5.2 Local-Analysis Results about UNESCO World
Heritage Sites

From the four selected feature types, we focus on
dbo:WorldHeritageSite features next. According
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Figure 1. The retrieval process of a dbo:Sea feature dbr:Mediterranean_Sea and its abstract from DBpedia

Figure 2. An example geo-guessing experiment about a dbo:Bay feature dbr:Gulf_of_Thailand, implemented with the Chat
mode in OpenAI Playground

Figure 3. The hierarchy of DBpedia’s dbo:Place subclasses used in our work-in-progress

to the United Nations Educational, Scientific and Cul-
tural Organization (UNESCO), "World Heritage sites be-
long to all the peoples of the world, irrespective of

the territory on which they are located"11. Therefore,
these sites are geographic features that carry both inter-
pretations by local populations and universal values for

11https://whc.unesco.org/en/about
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Table 1. The percentage of correct predictions by gpt-4-1106-preview and gpt-4-vision-preview on features belonging
to dbo:WorldHeritageSite, dbo:Valley, dbo:Bay, and dbo:Sea

Feature Types gpt-4-1106-preview gpt-4-vision-preview
dbo:WorldHeritageSite 0.38 0.31

dbo:Valley 0.2 0.27
dbo:Bay 0.55 0.475
dbo:Sea 0.51 0.46

all of humanity. Compared with the previous analysis
on dbo:WorldHeritageSite features from a global
perspective, here we define localness with two kinds of ge-
ographical units to examine GPT-4’s performance regard-
ing this unique feature type. One kind of unit is countries,
and the other one is regions defined by UNESCO for its ac-
tivities12. We then measured GPT-4’s performance as the
percentage of correct predictions aggregated by these two
units. When assessing by countries, we only include coun-
tries with more than ten sites in our ground-truth corpus.

Table 2 shows the top ten countries ordered by the percent-
age of correct predictions by gpt-4-1106-preview
and gpt-4-vision-preview, respectively, on
dbo:WorldHeritageSite features. For both models,
there were inter-country disparities in their geo-guessing
performance. In addition, their performance was less than
or equal to 0.5, indicating a severe lack of encoded knowl-
edge in GPT-4 about dbo:WorldHeritageSite on
a country level. Both models had the same accuracy
for four countries, including Spain (0.31), Germany
(0.23), Switzerland (0.17), and Chile (0.07). However,
gpt-4-1106-preview performed better in all the rest
six countries, including France (0.5 versus 0.2), India
(0.47 versus 0.41), China (0.39 versus 0.33), Italy (0.38
versus 0.29), Belgium (0.33 versus 0.25), and Japan (0.19
versus 0.13). The inter-model disparities indicate that
gpt-4-1106-preview generally had a better country-
level performance than gpt-4-vision-preview
when geo-guessing dbo:WorldHeritageSite
features.

Table 3 shows the UNESCO-regions or-
dered by the percentage of correct pre-
dictions by gpt-4-1106-preview and
gpt-4-vision-preview, respectively, on
dbo:WorldHeritageSite features. In addition
to inter-UNESCO-regional disparities in the perfor-
mance of both models, we again observe that their
performance was less than 0.5, which indicates a
similar lack of UNESCO-region-level knowledge about
dbo:WorldHeritageSite encoded in GPT-4. Except
for Arab States (0.28), gpt-4-1106-preview had a
better performance than gpt-4-vision-preview
in all the rest four UNESCO regions, including Latin
America and the Caribbean (0.413 versus 0.26), Asia
and the Pacific (0.407 versus 0.36), Africa (0.4 ver-
sus 0.37), and Europe and North America (0.36

12https://whc.unesco.org/en/activities

versus 0.27). Again, this reveals inter-model dis-
parities in GPT-4’s geo-guessing performance on
dbo:WorldHeritageSite features on a UNESCO-
region level, and gpt-4-1106-preview generally
performed better on this level as well.

When comparing Table 2 and Table 3, we notice
greater disparities in the country-level performance
than in the UNESCO-region-level performance. The
gpt-4-1106-preview model had an accuracy with
a range of 0.43 on a country level, compared with a
range of 0.133 on a UNESCO-region level. Same for
gpt-4-vision-preview, the accuracy had a range of
0.34 on a country level, which was larger than a range of
0.11 on a UNESCO-region level. This means that as the
geographic scale increased from countries to UNESCO re-
gions, inter-region disparities in the geo-guessing perfor-
mance of both models on dbo:WorldHeritageSite
features might become smaller.

6 Conclusions and Future Work

In this initial work, we explore the notion of geographic
diversity through the lens of LLMs, aiming to better un-
derstand how well geographic features are represented. In
contrast to the common perspective of seeing GPT-4 as a
data generator, we also consider it a geographic knowledge
base in its own right. We study geographic diversity with
a geo-guessing experiment as an open-ended question-
answering test, where GPT-4 is utilized to predict a ge-
ographic feature masked in a piece of text. Using English-
language DBpedia abstracts, we find that GPT-4 may
encode insufficient geographic knowledge about several
feature types, including dbo:WorldHeritageSite,
dbo:Valley, dbo:Bay, and dbo:Sea, on a global
level. On a local level, we observe not only this insuffi-
ciency but also inter-regional disparities in GPT-4’s geo-
guessing performance for dbo:WorldHeritageSite
features that carry both local and global significance. In-
terestingly, when assessing on a larger geographic scale,
inter-regional disparities may become smaller. Moreover,
the multimodal variant of GPT-4 may encode even less ge-
ographic knowledge than the unimodal version, whether
on a global level for all selected feature types or on a
local level for dbo:WorldHeritageSite alone. We
speculate that GPT-4 does not perform well in our experi-
ment due to reasons such as the loss in training data com-
pression, the vulnerability to factual contradictions appear-
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Table 2. The top ten countries (with more than ten sites) ordered by the percentage of correct predictions by gpt-4-1106-preview
and gpt-4-vision-preview, respectively, on dbo:WorldHeritageSite features

gpt-4-1106-preview gpt-4-vision-preview
France (0.5) India (0.41)
India (0.47) China (0.33)
China (0.39) Spain (0.31)
Italy (0.38) Italy (0.29)

Belgium (0.33) Belgium (0.25)
Spain (0.31) Germany (0.23)

Germany (0.23) France (0.2)
Japan (0.19) Switzerland (0.17)

Switzerland (0.17) Japan (0.13)
Chile (0.07) Chile (0.07)

Table 3. The regions (defined by UNESCO for its activities) ordered by the percentage of correct predictions by
gpt-4-1106-preview and gpt-4-vision-preview, respectively, on dbo:WorldHeritageSite features

gpt-4-1106-preview gpt-4-vision-preview
Latin America and the Caribbean (0.413) Africa (0.37)

Asia and the Pacific (0.407) Asia and the Pacific (0.36)
Africa (0.4) Arab States (0.28)

Europe and North America (0.36) Europe and North America (0.27)
Arab States (0.28) Latin America and the Caribbean (0.26)

ing in data conflation, the tendency for LLMs to repeat
other named entities (in the prompt) as the correct an-
swer, and so forth. Considering that the training data of
GPT-4 is likely to have already included DBpedia, one
promising way of enhancing its performance is to imple-
ment retrieval-augmented generation (Lewis et al., 2020),
a general-purpose fine-tuning approach that could use DB-
pedia again as an external knowledge base.

Future work will require a larger-scale but granular anal-
ysis of geographic features, supported by various ground-
truth knowledge corpora and comprehensive probing tech-
niques. While our experiment provides linguistically and
geographically contextual (unstructured) data about a tar-
get feature, it is neither a geoparsing task where the fea-
ture is unmasked nor a visual GeoGuessr13 game where a
player is asked to locate where a photo was taken. How-
ever, these two tasks could give us the inspiration to de-
velop better probing techniques for geographic knowl-
edge. For instance, one could ask LLMs to output a feature
name along with geospatial information if representing
it with different geometric primitives (e.g., points, lines,
polygons), or to list features that are topologically con-
nected if spatial predicates are given. Also, one could re-
place a masked abstract with their own dataset consisting
of multi-perspective descriptions about a geographic fea-
ture. In fact, knowledge graphs, such as DBpedia, pro-
vide a rich body of structured knowledge, which could
help achieve both mainstream probing and conduct our
proposed geo-guessing experiment. As knowledge graphs
also provide information ontologies, we could study both
the intension (i.e., the properties of a category) and the

13https://www.geoguessr.com

extension of a geographic feature type and their roles in
foundation models.
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