
The Challenges of Line Buffers: Issues and Methods
Šimon Leitgeb�1

1Department of Geography, Masaryk University, Brno, Czechia

Correspondence: Šimon Leitgeb (leitgeb.simon@gmail.com)

Abstract. This paper discusses the challenges of flat-cap
and other linestring buffers, emphasizing automated appli-
cations. The pitfalls of existing implementations are intro-
duced, stemming from the lack of a satisfactory flat-cap
buffer definition. The buffers’ roots in computational ge-
ometry are explored. Several candidate methods for robust
buffer construction are described, and a novel method is
proposed. The specifics and shortcomings of these meth-
ods are discussed, outlining a possible path forward.

Keywords. buffer, flat-cap buffer, offset, straight skele-
ton, weighted straight skeleton

1 Introduction

Buffers are an essential part of geography and cartography.
They can be used for proximity analysis and visualization
alike. As a line or a point has no inherent thickness or di-
mension, they would be invisible when drawn on a screen
or printed on paper. Lines and points therefore need to be
buffered to be visible.

Buffers are generally understood as a zone surrounding a
geographic feature, defined by a buffering distance d. Any
point closer to the feature than d should be a part of this
zone. This general buffer will be referred to as a regular
buffer throughout this paper.

Regular buffer is a concept rooted in mathematics. It can
be defined as the Minkowski sum (MS) of the feature in
question and a disk with a radius equal to the buffering
distance. A Minkowski sum of shapes A and B could
be roughly described as the area covered by copies of B
placed at all points of A.

Minkowski sum is a well-explored topic in constructional
geometry, CAD, and other disciplines. See the Encyclo-
pedia of Mathematics (2011) for its definition, and Wein
(2006) for an example of an MS construction using the
convolution method.

However, some types of buffers encountered in GIS and
computer graphics cannot be defined as a Minkowski sum
and can lack a general definition altogether, especially in

the case of line buffers. Therefore, the Minkowski sum or
offset curve construction methods cannot be used (convo-
lution methods) or must be heavily adjusted (e.g. medial
axis or straight skeletons). This paper will refer to these
buffers as irregular because of this behaviour. See Fig. 1
for a brief overview of some regular and irregular line
buffers.

All regular line buffers have round caps and joins; irreg-
ular line buffers can have round, bevel, and mitre joins
(with an optional mitre limit) and round, square, or flat
caps (also called butt caps), see the Shapely user manual
(Gillies and Shapely contributors, 2024) as an example.
They can also be single-sided or have a variable width,
meaning the buffer distance depends on some property of
each segment. This wide buffer variety leads to many, of-
ten inconsistent, buffer implementations across different
tools. This issue is also acknowledged in the W3C Editor’s
Draft of the SVG 2 specification (SVG Working Group,
2018).

Polygon buffers can also be irregular, but the issues men-
tioned in this paper never occur in their implementations
due to the absence of caps. Point buffers are, on the other
hand, always regular since an MS of a point and any shape
S results in a translation of S. Therefore, polygon and
point buffers are not the main focus of this paper.

1.1 Motivation

The difference in definition aside, some irregular buffer
variants lack a fundamental property of the regular buffer:
not all points within the buffering distance are interior to
the buffer. These variants include flat caps, bevel joins and
mitre joins with a small mitre limit.

While irregular buffers certainly have their merits, this be-
haviour can lead to some hard-to-predict artefacts, mak-
ing the availability of implementation details for irregular
buffers paramount for the user. This is especially relevant
when automated processes are of concern, for example:

• Line visualization in computer graphics and cartogra-
phy;

1 of 7

AGILE: GIScience Series, 5, 35, 2024. https://doi.org/10.5194/agile-giss-5-35-2024
Proceedings of the 27th AGILE Conference on Geographic Information Science, 4–7 Sept. 2024.
Editors: Alison Heppenstall, Mingshu Wang, Urska Demsar, Rob Lemmens, and Jing Yao.
This contribution underwent peer review based on a full paper submission.
© Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

https://orcid.org/0000-0001-6009-3593

Figure 1. An example of a regular buffer (a) and two irregular buffers, a flat-cap buffer with a mitre join (b) and a square-cap buffer
with a bevel join (c).

• Coverage path planning for autonomous robots and
precision agriculture (e.g. obtaining the area covered
by a harvester or a painting robot). Even more spe-
cialized approaches than irregular buffers might be
required in some cases.

From the experiments done in some of the widely used
GIS software, it seems that most of these implementations
calculate the offsets of each input segment individually,
trimming the offsets at intersection points and detecting
self-intersecting loops. This approach often works well but
can sometimes produce surprising results, mainly when
using flat caps.

Notice that in Fig. 2a, the intermediate segments of a flat-
cap buffer form no closed loops (unlike regular buffers,
Fig. 2b), and a heuristic is necessary to close the bound-
ary and obtain a valid polygon. Since many options for
this heuristic can be devised, and none is necessarily more
intuitive than the other, each implementation can produce
different outputs for the same input (see Fig. 3).

Any advances in irregular buffer construction could also
benefit the implementations of parallel offsets. Since they
often seem to use the same strategies as flat-cap buffer im-
plementations, they also lead to similar issues. Offsets are
also used in cartography (e.g. coloured public transport
lines) and coverage path planning.

Figure 2. The intermediate offset segments of a flat-cap buffer
with round joins (a) and a regular buffer (b).

Figure 3. Examples of a flat-cap buffer of the line from Fig. 2
created in QGIS (a) and ArcGIS (b) with the same buffer dis-
tance.

1.2 Contribution

This paper describes some of the methods that could be
used for constructing flat-cap buffers without the ambi-
guity caused by these heuristics. Most of these methods
are also applicable to regular or other irregular buffers. A
novel method is also proposed in section 4, providing an
intuitive alternative to the other methods, and expanding
upon them.

2 Data and Software Availability

The figures in this paper were created using GeoGebra and
Inkscape. QGIS 3.34.2-Prizren and ArcGIS Pro 3.1.0 were
used to create the example buffers.

The data used to create the examples in this paper is avail-
able in a repository on Zenodo and is accessible via the
following DOI: https://doi.org/10.5281/zenodo.10658846.
See the attached README.md for the parameters used.

3 Methods overview

Several methods are presented as options for flat-cap
buffer construction. The following three methods provide
the basis for a new method, described in section 4. Mitre

2 of 7AGILE: GIScience Series, 5, 35, 2024 | https://doi.org/10.5194/agile-giss-5-35-2024

https://doi.org/10.5281/zenodo.10658846

joins and flat caps are used in the examples to demonstrate
the specifics of each method.

3.1 Quadrilaterals

A buffer can be trivially constructed by buffering each seg-
ment separately and dissolving these shapes to obtain the
result. A regular buffer can be produced using circles and
rectangles centred at each vertex or segment of the input
line, respectively.

Irregular buffers can also be constructed with a similar
approach. Angle bisectors are constructed at each vertex
of the input line and segment buffers are then bounded
by these bisectors and lines parallel to the segment at the
specified offset distance d. Buffer caps are formed by ex-
tending the set of bisectors with:

1) Lines perpendicular to the terminal segments, pass-
ing through the terminal vertices, forming a flat cap
(depicted in Fig. 4),

2) Two rays originating at each terminal vertex A per-
pendicular to each other, their bisector extending in
the same direction as the terminal segment |BA|,
forming a square cap (depicted in Fig. 5).

These boundaries form quadrilaterals that, given a suffi-
cient distance d, become degenerate, forming a triangle
instead.

Figure 4. The set of bisectors of a flat-cap buffer.

While this method is simple to implement, the buffer result
is not always intuitive since one side of the buffer might
stop propagating (Fig. 6), and holes can be formed in some
instances of a flat-cap buffer (Fig. 7). No existing buffer
implementations seem to use this approach.

3.2 Straight skeleton

A polygon P can be partitioned into cells of a Voronoi
diagram, where any point of a cell has a distinct closest
point on the boundary of P . A single cell consists of all
points closest to a given boundary edge of P . The medial

Figure 5. The set of bisectors of a square-cap buffer.

Figure 6. A flat-cap buffer of a two-segment linestring. The input
line (red) is buffered along its bisectors (dashed lines) four times
(black lines), and the final buffer is the light blue area.

axis is a subset of a Voronoi diagram, consisting of the
cell boundaries. The medial axis can be used to obtain an
offset of P with round joins (a regular buffer), as the offset
vertices lie on the medial axis. Offset construction using
the medial axis was explored e.g. by Choi et al. (2008).

Aichholzer et al. (1996) introduced the straight skeleton of
a polygon. It is similar to the medial axis but is defined by
wavefront propagation instead (see Aichholzer and Auren-
hammer, 1996, for its description). The straight skeleton
can be used to obtain a mitred offset of P .

The construction process is best imagined using the sur-
face of a hip roof. The straight skeleton and medial axis
consist of the lines (hips and valleys) where the roof sur-
faces intersect. While using a straight skeleton, the roof
surfaces are always flat, while the medial axis can include
curved surfaces.

3 of 7AGILE: GIScience Series, 5, 35, 2024 | https://doi.org/10.5194/agile-giss-5-35-2024

Figure 7. A hole artefact created by the quadrilateral method.

Figure 8. An example of a straight skeleton (dashed segments)
with the original polygon in red and incremental offsets in grey.

In this model, an offset of the input feature is resembled by
the contour line with a height equal to the offset distance
d (provided that there is a 1:1 ratio of height to offset dis-
tance, meaning all surfaces intersect their respective edges
at a 45° angle). The buffer area is then resembled by all
surface points with a height higher than or equal to d.

Aichholzer and Aurenhammer (1996) extended the con-
struction of a straight skeleton from polygons to planar
straight-line graphs (PSLGs). A PSLG is a collection of
non-intersecting straight-line segments in a plane. There-
fore, both polygons and linestrings in GIS can be consid-
ered PSLGs.

Numerous improvements in straight skeleton construction
speed and versatility were made, recently also by Palfrader
and Held (2015). While their paper only discusses poly-
gon offsets, their contribution also includes the SURFER
library, which handles open linestrings as well. Their im-

plementation produces buffers with square caps and mitre
or bevel joins.

3.3 Weighted straight skeleton

The weighted straight skeleton is a modification of the
straight skeleton method that allows assigning weights to
the edges of the PSLG, changing its propagation speed.
This method allows for constructing flat-cap buffers by
adding hidden edges with zero length and zero weight as
the flat line caps.

Figure 9. An example of a weighted straight skeleton, modified
from Fig. 8. The right-most edge has double the weight of the
other edges, making its surface more slanted.

While Biedl et al. (2015) only allow non-zero weights for
the PSLG edges, and the CGAL implementation only sup-
ports strictly positive weights, Held and Palfrader (2017)
propose additively-weighted straight skeletons that delay
the propagation of arbitrary PSLG edges. By setting the
edge delay to a very high number, its weight essentially
becomes zero, allowing for the flat-cap buffer construc-
tion.

One ambiguity is encountered when two parallel wave-
front edges with different weights become adjacent, for
example, after an edge event, as described by Biedl et al.
(2015). They argue that stopping the propagation of one of
the edges is the only reasonable approach. However, they
suggest terminating the lower-weighted edge is as justified
as the higher-weighted one.

Considering the flat-cap buffer, this would mean either
stopping the propagation of non-zero weight edges alto-
gether or “covering” the area above the flat cap when the
flat cap becomes adjacent to a parallel edge. Zero-weight
edges are also prone to terminating other edges from prop-
agating at larger buffer distances, leading to results that
could be hard to predict.

These properties make the usability of flat-cap buffers con-
structed with a weighted straight skeleton questionable.
However, given the ongoing interest in straight skeleton
based offsetting and its weighted variant, novel approaches
to resolving these ambiguities might be suggested, poten-
tially making this method worthwhile.

4 of 7AGILE: GIScience Series, 5, 35, 2024 | https://doi.org/10.5194/agile-giss-5-35-2024

4 Incremental extension

A novel intuitive approach could be described as follows
(see Fig. 10 for a visual representation):

1) Offset all edges by a very small distance,

2) Find intersections of neighbouring offsets on the ob-
tuse sides of vertices and trim their interior parts,

3) Extend the offsets on the reflex sides of vertices until
they intersect (modifying this step allows for round
and bevel joins),

4) Repeat until the desired buffer distance d,

5) Connect the offset sides by the paths traced by the
terminal vertices at each step to obtain a closed buffer
boundary.

This process advances all edges until they shrink to a sin-
gle point. If this edge is terminal (the first or last edge
of the offset chain), the next edge becomes terminal and
stops shrinking on one side. The extension event propa-
gates across any number of edges, until all edges degen-
erate or a reflex vertex is encountered; then, the extended
edge grows infinitely.

This novel approach could most likely be implemented us-
ing a weighted straight skeleton by modifying the skeleton
structure after an edge event involving a zero-weight edge.
A new zero-weight edge could be added, perpendicular to
the newly adjacent edge, providing a third option for solv-
ing the ambiguity mentioned by Biedl et al. (2015). Flat
caps no longer stop the propagation of other faces this way,
preserving as much of the original geometry as possible.

However, which modifications to split and vertex events
would be needed when implementing this method still
needs to be determined.

Some of the artefacts encountered with the quadrilateral
method are avoided using this approach, arguably produc-
ing a more intuitive result (Fig. 11). However, some arte-
facts remain (Fig. 12), revealing a fundamental issue with
flat-cap buffers. The result becomes hard to predict since
the buffer cap can influence other edges.

5 Mitres

Long spikes are formed using mitre joins when two line
segments meet at a sharp angle. The length of these spikes
approaches infinity as the angle included by the segments
approaches zero. If the spike points towards another edge,
it might also form self-intersections with the rest of the
buffer.

Mitre limits are usually used to prevent very long spikes.
However, the limit needs to be chosen manually, as it de-
pends on the scale of the input shape (different inputs
might require different mitre limits). Approaches based on

the straight skeleton prevent self-intersections altogether
via split events, leading to another discrepancy across the
available approaches.

Round or bevel joins might be more desirable for automa-
tion for their predictability since they have no parameters
that need to be manually chosen.

6 Conclusions

The methods described in this paper represent some of the
options for buffer construction. Only two of them are suit-
able for flat-cap buffers without modifications (the quadri-
lateral and incremental extension methods) and neither are
implemented in existing software.

Due to the output differences across the methods and the
outputs often being hard to predict, it would seem that us-
ing flat-cap buffers is inadvisable. However, there are still
use cases for them. Because some require little to no user
input, they would all benefit from a method with less am-
biguity.

The list of methods is by no means complete; other options
might be needed for different use cases. The weighted
straight skeleton and incremental extension methods need
to be further explored to assess their applicability for flat-
cap buffers. If these methods fail to provide satisfactory
results, other methods might need be proposed, even on a
case-by-case basis.

Buffering and offsetting are also closely related (offsets be-
ing linestrings parallel to other linestrings), making robust
buffering methods useful for offsets as well.

Any revision of the flat-cap buffer and parallel offset im-
plementations available in the JTS and GEOS libraries
would benefit all the numerous GIS software that uses
these libraries. Access to the algorithm used and other im-
plementation details in the GIS software documentation
would benefit its users. If this information is unavailable
and a reliable output is needed, using round or square caps
might be preferable.

Competing interests. The author declares that he has no conflict
of interest.

Acknowledgements. The author would like to thank his col-
leagues and friends for their consultations, patience and under-
standing during the research leading up to this paper.

References

Aichholzer, O. and Aurenhammer, F.: Straight skeletons for
general polygonal figures in the plane, in: Computing and
Combinatorics, edited by Cai, J.-Y. and Wong, C. K., pp.
117–126, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/3-540-61332-3_144, 1996.

5 of 7AGILE: GIScience Series, 5, 35, 2024 | https://doi.org/10.5194/agile-giss-5-35-2024

https://doi.org/10.1007/3-540-61332-3_144

Figure 10. The construction process of the incremental extension method. Dashed in gray are the trimmed parts, dashed in black
extended parts, traces forming the flat caps are highlighted in green.

Figure 11. The artefact from Fig. 2 is filled with the incremental
extension method. One side of the buffer stops propagating after
the last iteration (highlighted in blue).

Aichholzer, O., Aurenhammer, F., Alberts, D., and Gärt-
ner, B.: A Novel Type of Skeleton for Polygons, pp.
752–761, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-80350-5_65, 1996.

Biedl, T., Held, M., Huber, S., Kaaser, D., and
Palfrader, P.: Weighted straight skeletons in the
plane, Computational Geometry, 48, 120–133,
https://doi.org/10.1016/j.comgeo.2014.08.006, 2015.

Choi, H. I., Choi, S. W., Han, C. Y., Kim, T.-w., Kwon, S.-H.,
Moon, H. P., Roh, K. H., and Wee, N.-S.: Two-dimensional
offsets and medial axis transform, Advances in Computational
Mathematics, 28, 171–199, https://doi.org/10.1007/s10444-
007-9036-5, 2008.

Figure 12. Hole artefacts can still occur with incremental exten-
sion.

Encyclopedia of Mathematics: Minkowski addition, available at:
http://encyclopediaofmath.org/index.php?title=Minkowski_
addition&oldid=49911, last access: 8 April 2024, 2011.

Gillies, S. and Shapely contributors: Shapely 2.0.3 documen-
tation, available at: https://shapely.readthedocs.io/en/stable/
manual.html#shapely.BufferCapStyle, last access: 10 April
2024, 2024.

Held, M. and Palfrader, P.: Straight skeletons with additive and
multiplicative weights and their application to the algorithmic
generation of roofs and terrains, Computer-Aided Design, 92,
33–41, https://doi.org/10.1016/j.cad.2017.07.003, 2017.

6 of 7AGILE: GIScience Series, 5, 35, 2024 | https://doi.org/10.5194/agile-giss-5-35-2024

https://doi.org/10.1007/978-3-642-80350-5_65
https://doi.org/10.1016/j.comgeo.2014.08.006
https://doi.org/10.1007/s10444-007-9036-5
https://doi.org/10.1007/s10444-007-9036-5
http://encyclopediaofmath.org/index.php?title=Minkowski_addition&oldid=49911
http://encyclopediaofmath.org/index.php?title=Minkowski_addition&oldid=49911
https://shapely.readthedocs.io/en/stable/manual.html#shapely.BufferCapStyle
https://shapely.readthedocs.io/en/stable/manual.html#shapely.BufferCapStyle
https://doi.org/10.1016/j.cad.2017.07.003

Palfrader, P. and Held, M.: Computing mitered off-
set curves based on straight skeletons, Computer-
Aided Design and Applications, 12, 414–424,
https://doi.org/10.1080/16864360.2014.997637, 2015.

SVG Working Group: Scalable Vector Graphics (SVG)
2; W3C Candidate Recommendation, available at:
https://www.w3.org/TR/2018/CR-SVG2-20181004/painting.
html#TermStrokeShape, last access: 12 February 2024, 2018.

Wein, R.: Exact and efficient construction of planar Minkowski
sums using the convolution method, in: European symposium
on algorithms, pp. 829–840, Springer, 2006.

7 of 7AGILE: GIScience Series, 5, 35, 2024 | https://doi.org/10.5194/agile-giss-5-35-2024

https://doi.org/10.1080/16864360.2014.997637
https://www.w3.org/TR/2018/CR-SVG2-20181004/painting.html#TermStrokeShape
https://www.w3.org/TR/2018/CR-SVG2-20181004/painting.html#TermStrokeShape

