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Abstract. Effective decision-making in natural disaster
management relies heavily on a comprehensive under-
standing of the situation in affected areas. Social media
has been established as a tool to monitor human response
and damage assessment. Given the vast amounts of data
available, computational methods such as topic modelling
are typically employed to reduce information complexity.
However, these methods mostly neglect aspects such as
geographic location and emotional response, which fre-
quently results in sequential workflows of initial semantic
filtering and subsequent spatial or spatio-temporal analy-
sis. This study presents a novel approach for multimodal
information extraction from geo-social media data for aid-
ing decision support in disaster management. The method
leverages a spatial, temporal, semantic, and sentiment-
based clustering approach of social media posts to extract
clusters that provide insights into disaster-related content.
A case study in the Ahr Valley region in Germany demon-
strates the method’s effectiveness in providing actionable
insights for disaster response and management. The ap-
proach offers a tool for the quick assessment of disaster-
related information from social media, potentially aiding
timely and informed decision-making.

Keywords. disaster management, social media, natural
language processing, spatial machine learning

1 Introduction

With billions of posts available, the analysis of online so-
cial networks has proven increasingly useful for decision
support, both during and after the occurrence of natural
disasters (Phengsuwan et al., 2021; Wang and Ye, 2018;
Xiao et al., 2015). As the number of active social media
users is constantly rising (Newman et al., 2023; Ortiz-
Ospina and Roser, 2023), disasters such as floods, wild-
fires, or earthquakes are one of many topics discussed on
social media platforms. Potentially, these discussions can

provide insights into disaster response actions and situ-
ations on-site. A fraction of social media posts are geo-
referenced (Sloan and Morgan, 2015; Serere et al., 2023),
especially microblogging posts such as tweets. Such geo-
referenced information can be valuable for event detection,
damage assessment, aid improvement, or exploratory data
analyses in disaster situations (Chae et al., 2012; Crooks
et al., 2013; Kar et al., 2018; Ragini et al., 2018; Resch
et al., 2018).

A major research challenge has always been the extrac-
tion of relevant information from the myriad of posts
these platforms provide. Previous efforts have mostly uti-
lized topic modelling or text classification combined with
spatio-temporal analysis to extract disaster-related infor-
mation from large collections of social media posts (Kar
et al., 2018; Chae et al., 2012; Crooks et al., 2013).
The joint analysis of semantics, sentiments, space, and
time – potentially providing insights into what is hap-
pening where, and when – has hardly been considered.
This study addresses this research gap by introducing a
novel approach for aiding decision support in disaster
management by leveraging multimodal social media anal-
ysis. The approach computes multimodal clusters using
a joint spatio-temporal topic-sentiment model, providing
human-interpretable outputs. The utility of these outputs
is demonstrated in a case study regarding the 2021 Ahr
Valley flood in Germany.

2 Related Work

Social media data has been used in a multitude of ways
to aid disaster management efforts in all four phases mit-
igation, preparedness, response, and recovery of the dis-
aster management cycle (Albtoush et al., 2011). Kar et al.
(2018) developed a pipeline to classify tweets by needs
using a Support Vector Machine (SVM), geo-coding them
using OpenStreetMap, and mapping the results with satel-
lite imagery and other information for improved aid and
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medical supply. Resch et al. (2018) combined topic mod-
elling with Latent Dirichlet Allocation (LDA) and spatio-
temporal analysis for footprint and damage assessment.
The detected hotspots were validated using data from the
2014 Napa Earthquake and official earthquake footprint
reports. Chae et al. (2012) took a similar approach that also
leveraged LDA and visual analytics for the exploratory
analysis of abnormal topics on social media in various
disaster situations. Crooks et al. (2013) argued that so-
cial media feeds represent a sensor system that allows for
the identification and localization of earthquake impacts
by analysing keyword-filtered, geo-referenced tweets from
the Mineral Earthquake in Virginia in 2011. Aulov and
Halem (2012) presented a comparable method for view-
ing social media data as human sensors for disaster mon-
itoring. Huang et al. (2018) integrated remote sensing im-
agery with social media data to compute a near real-time
flood probability map that could be used by emergency re-
sponders to identify areas in need of immediate attention.
Similarly, Havas et al. (2017) combined information de-
rived from social media, remote sensing technologies and
crowdsourcing to improve disaster management systems.
Chae et al. (2014) analysed Twitter data regarding Hurri-
cane Sandy to extract spatial and temporal behavioral pat-
terns. Huang and Xiao (2015) encoded social media posts
into classes within the different disaster phases and trained
a classifier using logistic regression. Lastly, Wang et al.
(2016) examined the distribution of information during the
2012 Beijing rainstorm with the help of content classi-
fication and statistical models. Categorising these efforts
into the initial framework, social media data has mostly
been utilized to support the phases preparedness, response
and recovery of disaster management (Phengsuwan et al.,
2021).

These previous approaches all require the training of clas-
sifiers or leverage topic modelling techniques that have
been outperformed by newer techniques (Egger and Yu,
2022). Furthermore, they neglect the multimodal nature
of textual data which contains not only semantic but also
emotional information that might be of use for efforts such
as improving disaster response (Ragini et al., 2018). Nep-
palli et al. (2017) highlighted the connection between sen-
timents expressed in social media posts and the distance to
the disaster during Hurricane Sandy in the United States
of America (USA).

Parimala et al. (2021) partly addressed this issue and pre-
sented a multimodal algorithm for risk assessment after
and during disasters using social media data from Twit-
ter. The method combines semantic text classification, sen-
timent analysis, and spatio-temporal analysis to predict
the severity of a disaster. The algorithm is limited by
its supervised nature, meaning that it requires the train-
ing of a semantic classification model for the respec-
tive disaster. Additionally, the utilized sentiment analysis
technique can only handle English tweets and has been
outperformed by newer transformer-based methods (e.g.
Camacho-Collados et al., 2022).

The model presented in this study addresses the issues
of previous research efforts by introducing a fully unsu-
pervised approach for the multimodal assessment of so-
cial media posts. The required input is merely a collection
of social media posts and no specific classification model
must be trained. The approach not only categorizes posts
into interpretable clusters but also extracts relevant seman-
tic information for emergency response entities which has
not been achieved so far.

3 Methods

The proposed methodology is based on a clustering ap-
proach that leverages multimodal feature vectors. Given
textual social media posts as input data, multimodal clus-
ters are computed using a multi-step procedure that con-
sists of three phases: (1) feature engineering, (2) cluster-
ing, and (3) information extraction. Each output cluster
is associated with a semantic topic, a cluster sentiment,
location, time and emergency-relevant information. A vi-
sual overview of the methodology is depicted in Fig. 1,
while each step is explained separately in the following
sub-sections.

3.1 Feature Engineering

To obtain a unified representation for each post consist-
ing of multiple modalities, numeric feature vectors are
computed. Each feature vector consists of semantic com-
ponents e1, ...,e5, sentiment components s1, ...,s3, pla-
nar coordinates x,y and a timestamp t. The semantic
part of the feature vector is computed using the mul-
tilingual distiluse-base-multilingual-cased-v1 transformer
model, a knowledge-distilled version of the multilingual
Universal Sentence Encoder (USE) by Yang et al. (2020)
available in the Sentence-BERT (SBERT) implementa-
tion of Reimers and Gurevych (2020). The model yields
high-dimensional embedding vectors in a semantic space.
These high-dimensional representations are subsequently
reduced to five dimensions using Uniform Manifold Ap-
proximation and Projection (UMAP) and scaled to unit
length. This configuration was chosen since SBERT out-
performed similar approaches such as doc2vec (Le and
Mikolov, 2014) and has successfully been employed in
combination with UMAP for previous topic modelling ef-
forts (e.g. Grootendorst, 2022). Allaoui et al. (2020) fur-
ther showed that clustering results can be improved signif-
icantly when UMAP is applied as a pre-processing step.
The sentiment part of the feature vector consists of sen-
timent probabilities for the classes negative, neutral, and
positive. It is computed using the multilingual RoBERTa
model pre-trained on tweets and fine-tuned for sentiment
classification by Camacho-Collados et al. (2022). The co-
ordinates of each post are latitude/longitude coordinates
projected onto a plane using an equidistant map projection
and normalised to a range of [0,1]. Analogously, the time
is converted to Unix time and normalised to a range of
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Figure 1. Overview of the methodology used to obtain multimodal clusters from social media data.

[0,1]. All features, including semantic components, senti-
ment probabilities, planar coordinates, and timestamps are
normalised to prevent skew from large values and can be
weighted to emphasize certain characteristics.

3.2 Clustering

The numeric vectors resulting from the feature engineer-
ing process are clustered such that coherent groups con-
cerning their semantic content, sentiment, location, and
time are achieved. For the clustering procedure, a modi-
fied Growing Self-Organizing Map (GSOM) (Alahakoon
et al., 2000) that follows the idea of the Geographic Self-
Organizing Map (Geo-SOM) of Bação et al. (2005) is em-
ployed. In this study, it is called the Geographic Growing
Self-Organizing Map (Geo-GSOM) and describes an un-
supervised neural network that grows neurons on a flex-
ible grid based on the accumulated error of data points
assigned to neurons. Each input data point is mapped to
the closest neuron called the Best Matching Unit (BMU)
which is updated together with its neighbours during train-
ing such that the quantisation error is minimized. Geo-
graphic coordinates are redistributed evenly over the entire
study area during each training iteration ensuring that the
neuron grid stays spatially coherent at all times. As a re-
sult, neurons that are nearby in the grid represent clusters
that are geographically close. After training, the identity of
the BMU represents the cluster identity of each respective
post. The Geo-GSOM was chosen over the classic Geo-
SOM to allow the network to capture topological informa-
tion with its structure.

3.3 Information Extraction

To provide a semantic representation of each cluster, the
top k keywords are extracted using a modified term fre-
quency and inverse document frequency (tf-idf) procedure
(Sparck Jones, 1972; Grootendorst, 2022) where the doc-
ument frequencies are computed using the original input

data, and the term frequencies are calculated using the con-
tamination of all documents in the respective cluster. By
definition, the Geo-GSOM learns a representative vector
in the feature space for each cluster which, in turn, is asso-
ciated with exactly one neuron in the network. These rep-
resentative vectors can be used to extract a learned approx-
imate geospatial location for each cluster by re-scaling
and re-projecting the learned coordinate dimensions of the
Geo-GSOM units. Additionally, the most common senti-
ment and an approximate time can be obtained by calculat-
ing the respective mode and mean. For non-spatial proper-
ties, cluster statistics were consistently more reliable dur-
ing manual experiments because the Geo-GSOM tries to
learn many dimensions at once. As the keyword repre-
sentation of topics is not easily intuitively interpretable,
summarising cluster labels are computed using the Llama-
2-70b-chat generative language model (Touvron et al.,
2023). The model is prompted with the cluster keywords
and a sample of the associated posts, asking it to compute
a short, informative cluster label that provides an overview
of the content for emergency responders. In addition, the
language model is presented with a second prompt consist-
ing of the posts and a request to extract the most important
information for emergency responders in one or two sen-
tences. As a result, each cluster has semantic keywords, a
cluster label, a sentiment, a location, a time, and cluster-
specific relevant information for emergency response enti-
ties.

3.4 Data and Software Availability

The methodological workflow including the Geo-GSOM
was implemented in Python (van Rossum, 1995). The code
is available by request. The dataset collected for the case
study was obtained using the former Twitter (now X) Ap-
plication Programming Interface (API) and can only be re-
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distributed as a list of post IDs due to X’s terms of service1.
It is also available by request.

4 Case Study

To demonstrate the method’s use, the 2021 Ahr Valley
flood in Germany served as a real-world scenario. From 14
to 15 July 2021, heavy rainfall hit the region causing a ma-
jor flood, severe structural and economic damage as well
as human casualties (Bundesministerium des Innern und
für Heimat, 2022; Koks et al., 2021). For a detailed anal-
ysis of the response to the catastrophe via social media,
11 177 geo-referenced tweets posted within the Ahr Val-
ley region in Germany and surroundings in July 2021 were
obtained via the former Twitter v1.1 API using the filtered
stream and recent search endpoints. The tweets were fil-
tered using a bounding box and using the month of July
as the timeframe. The resulting data set consists of tweets
in multiple languages, mainly German and English. While
this would have been a challenge for many previous topic
modelling approaches such as LDA (Blei et al., 2003), the
proposed multimodal model can handle mixtures of lan-
guages natively due to the multilingual embedding model
that is employed.

During feature engineering, the individual feature weights
were set to wgeo =

3
2 , wsent =

1
3 , and wt =

1
4 based on

the results of exploratory analyses. Specifically, the ge-
ographic features of the input vectors were weighted
highly such that the approach yielded geographically
well-formed clusters. Sentiments and time were weighted
slightly lower. The Geo-GSOM was parametrised to grow
a large number of neurons to obtain granular local clus-
ters of social media posts. Specifically, after experiment-
ing with different configurations, the number of iterations
where new neurons are grown based on the accumulated
error was fixed to 10 full passes over the input data. This
setup was chosen because it produced clusters that were
both (1) balanced in size and (2) still differentiated be-
tween different topics and sentiments in areas with high
tweet density.

Overall, the Geo-GSOM algorithm yielded 92 clusters. To
identify clusters that might be concerned with the flood,
the clusters were filtered, allowing only those with key-
words "hochwasser", "flut", "flood", "hilfe", "notfall" to
remain. These keywords were chosen based on the event
and with emergency responders as a target group in mind.
Using this process, 13 clusters consisting of a total of 1 592
tweets were identified as flood-related. Subsequently, clus-
ter labels were computed with Llama-2.

As discussed in Sec. 3.3, each output cluster is associated
with a neuron of the Geo-GSOM which, in turn, has a rep-
resentative feature space vector. The feature space vectors
were used to obtain a learned geospatial location for the re-
spective clusters. Moreover, the top 25 semantic keywords,

1https://developer.twitter.com/en/developer-terms/policy

the most common sentiment and the average posting time
were extracted for all clusters. Subsequently, summaris-
ing cluster labels were computed using the keywords and
a subset of the underlying tweets.

In Fig. 2, the computed cluster labels are mapped at the
respective cluster locations with additional information
about the cluster sentiment. The convex hull of the under-
lying posts conveys a sense of the spatial spread. The map
was further enriched with a heatmap of the posts within
each cluster. Exemplary mappings of cluster keywords and
tweets to labels are depicted in Table 1.

The cluster labels alone do not necessarily capture all
disaster-relevant information present in the posts. Some
clusters were only partly disaster-related (e.g. 8, 38 or
55) but still contained posts with explicit information
about weather updates and local events. Therefore, ad-
ditional disaster-relevant information was extracted from
each cluster based on the posts using Llama-2. The results
are visible in Table 2 together with the cluster sentiment
and the average posting time of the tweets in the cluster.
Notably, clusters 8, 14, 39, 54, 55, 76, 82 and 87 all had
their temporal mean around July 15 and mostly contained
information about warnings, evacuation efforts and in-situ
reports. In contrast, 13, 27, 38, 71, 74 had their tempo-
ral mean a few days after the flood event and were more
concerned with reports about damage, displacements and
impact. The computed clusters are therefore coherent with
the disaster’s timeline.

All clusters that contained relevant information were neg-
atively or neutrally connoted aligning with the findings of
Neppalli et al. (2017) who showed that the sentiments of
social media posts were linked to the distance to the dis-
aster. The cities and municipalities impacted most heav-
ily by the flood were located along the Ahr and Rhine
rivers (Bundesministerium des Innern und für Heimat,
2022; Koks et al., 2021) which - as visible in Figure 2 - is
also where a majority of the flood-related posts occurred.
Based on the results presented in this case, the methodol-
ogy can be used to obtain an overview of the overall situ-
ation on social media while simultaneously extracting the
most important information for emergency response enti-
ties. It could particularly provide insights for the phases
prepardness, response and recovery of the disaster man-
agement cycle, allowing for monitoring before, during and
after the event.

5 Conclusions

This study introduced a novel method for the multimodal
analysis of social media data and its use in disaster man-
agement. It leverages state-of-the-art language processing
models and an unsupervised neural network called the
Geo-GSOM to compute clusters of posts that share a se-
mantic topic and sentiment, and that are geographically
and temporally close. The outputs demonstrated in a case
study are human-interpretable and the topic labels com-
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Figure 2. Visualisation of the multimodal output cluster labels together with the associated sentiments, post concentration and the
convex cluster hulls.

Table 1. Exemplary labels computed from the cluster keywords and a sample of the underlying tweets.

ID top 15 keywords exemplary tweets cluster label

38 ahrweiler, menschen,
regierung, nena,
erkrankung, hochwasser,
ahrtal, jahren, personen,
home, sinzig, macht,
people, schützen, imp-
fung

"Earlier German chancellor promised these victims would not
be forgotten. One question we keep hearing from people here,
when will official aid arrive?",
"Es gibt z.B. Hochwasserwarnstufen 1-4 aber wenn die
zuständigen öffentlichen Stellen nichts tun (schlafen, versagen)
wie immer bei solchen Katastrophen ist man hilflos.",
"Es ist wirklich schrecklich was das Hochwasser hinterlassen
hat. Eine reine Katastrophe. Wir sind sprachlos von der riesigen
Spendenaktion und der großen Hilfsbereitschaft. Vielen Dank
an Alle. Folgt uns gerne mal auf Twitter."

Flood Disaster and Gov-
ernment Criticism

76 unwetter, halt, laschet,
grade, hochwasser,
hunger, since, bonn,
möchte, wetter, stadt,
wasser, richtig, leider,
tierheim

"Got called at 3 am in the morning. Luckily the water is getting
pumped out by firefighters! Unfortunately, the whole street was
flooded - which is why they had to work at night too. A visiting
old lady also lost her car in the underground garage. The flood
came way too quick.",
"Dass die Nachrichten nach dem #Unwetter immer noch schlim-
mer werden, hätte ich nicht gedacht... Soviele Tote und Zer-
störung ....",
"RIP washing machines. One car was trapped inside the un-
derground garage when it started flooding....I couldn’t find my
gummi boots and it was very dark in the basement. It was a great
mistake..."

Weather Disasters & Ev-
eryday Struggles

puted by a generative Large Language Model (LLM) are
significantly more readable than the topic-word-based out-
put of standard topic models (e.g. Blei et al., 2003; Groo-
tendorst, 2022). In addition, potentially relevant informa-
tion for emergency responders was explicitly extracted
from the disaster-related clusters. This way, an overview
of the discussion about a disaster on social media and the
relevant information for emergency responders could be
obtained quickly. The clusters are regionally constrained,
allowing the user to draw local conclusions about spe-

cific areas. Since the output clusters are inherently mul-
timodal, additional dimensions could be provided as input
and leveraged for improved filtering or decision-making.

The methodology was particularly tailored to providing
emergency response entities with rapid, interpretable in-
formation about the discussion on social media during and
after the disaster. In future studies, its applicability for dif-
ferent types of disasters in different geographical regions
might be explored to examine its generalisability. Further-
more, a sensitivity analysis of the Geo-GSOM and feature

5 of 8AGILE: GIScience Series, 5, 28, 2024 | https://doi.org/10.5194/agile-giss-5-28-2024



Table 2. Relevant information for emergency responders extracted from the posts using Llama-2 by cluster ID.

ID sentiment size relevant information temporal mean

8 neutral 37 Flood warning in Germany, especially in the Eifel region. Rescue services are on
high alert.

2021-07-15 20:50

13 neutral 17 Updates on current flood situation in Eifel region, Germany. 2021-07-19 06:04
14 negative 74 Severe weather warning in Germany, with heavy rain and thunderstorms expected. 2021-07-16 14:42
27 negative 27 Damage and displacement caused by floods in Schuld and Bad Münstereifel, Ger-

many.
2021-07-17 02:56

38 negative 287 Request for help from people affected by floods in Germany. 2021-07-20 10:22
39 neutral 118 Reports of flooding, landslides, and road closures in Germany. 2021-07-13 22:57
54 neutral 78 Updates on rescue operations and aid distribution in flooded regions of Germany. 2021-07-15 15:43
55 neutral 254 Flood warning and evacuation alert in the Voreifel region due to heavy rainfall and

rising river levels.
2021-07-15 16:06

71 neutral 31 Deployments by volunteer fire department and rescue service in Mayen-Koblenz
area, Germany.

2021-07-21 20:35

74 negative 34 Impact of floods on people’s lives in Germany. 2021-07-20 11:01
76 negative 152 Power outages and evacuation requests due to severe weather in Rhine Valley, Ger-

many.
2021-07-15 10:59

82 neutral 397 Evacuation alerts due to overfilled dams in Wuppertal, Rheinbach, and Rade-
vormwald, Germany.

2021-07-15 20:20

87 neutral 86 Updates on flood situation in Belgium and Netherlands, including rising water levels
and evacuations.

2021-07-15 11:42

engineering parameters should be conducted. For some
situations, it might be more valuable to lay more empha-
sis on time to obtain a timeline of topics associated with
sentiments in geographic space. In a real-world applica-
tion, posts can be collected and analysed in all stages of
the disaster. Yet, a critical aspect of disaster information
is the abstraction of complexity and the simplest possi-
ble visualisation, which is intuitively and quickly under-
standable and convertible into concrete disaster manage-
ment actions. This is subject to further usability research
together with disaster managers.
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