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Abstract. Over the past decade(s), collecting spatio-
temporal data has become easier due to technological ad-
vancements and more user-friendly collection processes.
Additionally, government agencies, companies, and open
data projects have made general environmental data,
such as points of interest or land use coverage, more
freely available. Scientific studies can combine this spatio-
temporal and non-spatial data to analyze different types
of human mobility data. The results of these studies are
relevant to transportation and urban planning, as similar
information is typically collected by means of surveys.
However, deriving relevant information from Global Nav-
igation Satellite System (GNSS) trajectories remains chal-
lenging due to inaccuracies in the positioning and the un-
availability of groundtruth information regarding individ-
ual user location semantics (e.g. home place, work place,
leisure place or others). This work presents a semantic
location annotation approach based on a Hidden Markov
Model and the Viterbi optimization algorithm. The model
includes location emissions to account for the general us-
age of a particular location. The annotations are applied
to the clustered stop points that identify regions of spe-
cial interest to individual users in a trajectory data set. The
proposed approach demonstrates that the adapted Viterbi
optimization can assign the most probable and meaning-
ful semantic labels to the user’s sequences and provides
insights on the underlying regions of special interest.

Keywords. location of interest, semantic place annota-
tion, GPS trajectories, clustering, HMM, viterbi optimiza-
tion, spatio-temporal analysis

1 Introduction

The availability of smartphones and reliable connections
to Global Navigation Satellite Systems (GNSS) has led
to the creation and use of location-based services (LBS).
LBS is now ubiquitous in everyday life, with applications

in navigation, social media, and many smartphone-based
services.

Due to the widespread use and easy accessibility of
location-based information through various devices, the
collection of spatio-temporal data has reached its peak in
terms of quantity. The type and amount of data collected
depend on the method used for a particular application. For
instance, geo-tagged images or text posts, such as social
media contributions, are used to share geo-locations with
smaller or larger social networks. Location check-ins, al-
though fixed in the spatial domain, can provide sequences
of visited locations for individuals, as well as insights into
user preferences or group dynamics. Another widespread
source of spatio-temporal data is Global Positioning Sys-
tem (GPS) trajectories. Due to the ease of use, particu-
larly of smartphones as low-cost sensors, large quantities
of GPS data are collected daily worldwide. Companies are
interested in location information of users to gain insights
into people’s movement behaviors, connections with other
individuals and general user interests.

Furthermore, the trajectory data can be used for the pur-
pose of automatic spatial information acquisition in the
form of context generation. This can be, for example, the
detection of changes in road networks or general road net-
work updates (Gao et al., 2021; Tang et al., 2019). Beyond
that, the detection and classification of road intersection
regulator rules (Zourlidou et al., 2022a; Golze et al., 2020).
Additional types of information can be, for example, the
detection of road roughness (Hiremath et al., 2021; Wage
and Sester, 2021) or the determination of the traffic flow
(Tu et al., 2021; Li et al., 2021) or the quantification of
traffic flow delays caused by traffic accidents (Golze et al.,
2021).

Large trajectory sets, which contain many users with many
trips over an extended period of time, can provide valuable
insights not only on where individuals have moved, but
also enable predictions of their future movements. Thus, it
could be possible to uncover spatio-temporal behaviors of
the users. Examples in this context are the understanding
of (typical) commuting patterns (Qin et al., 2018) or us-
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ing restricted user groups for the extraction of the spatio-
temporal behavior of tourists in certain cities (Yao et al.,
2021).

In this paper, the approach of (Golze and Sester, 2024) is
extended to allow that the same location could give rise to
different activities. Imagine a shopping center, which trig-
gers the activity shopping for users who pursue this activ-
ity, however, for a worker at the shopping center, it would
trigger the activity working.

The paper is structured as follows. In Section 2, an
overview of the related work is presented. Section 3 de-
scribes the methodology of this work. In Section 4, the re-
sults are presented. The discussion, the main findings and
the outlook are given in Section 5.

2 Related Work

GPS trajectory data is being used to reveal movement pat-
terns and to highlight frequently visited locations. A com-
mon first step is to identify and extract these places from
the GPS trajectories, known as stop points or interesting
places (Feuerhake et al., 2011).

The semantics of interesting places are assigned to an ar-
tificial point, e.g. a cluster center (point) of a collection of
stop points, rather than to an actual measured GPS point.
Furthermore, semantic information is directly attached to
user trajectories, called semantic trajectories. Ying et al.
(2010) propose a similarity measure for these semantically
enriched trajectories embedded in the context of travel rec-
ommendation services by analyzing the semantic move-
ment behavior of users. The work of Lin et al. (2018) ex-
plores the temporal characteristics of trajectories to extract
semantic mobility profiles to detect dwell regions. They
present a similarity measure to compare different users
for further investigation. Another approach for working
with the semantics of spatial points is presented in the
habit2vec framework by Cao et al. (2020). Their approach
is based on the principle of vector representation of the
Natural Language Processing (NLP) domain. They encode
the semantic and temporal information using representa-
tion learning to study typical user habits of the tracked user
base. Andrienko and Andrienko (2018) take a different ap-
proach using a graph-based representation of location re-
gion (states), overlaid with semantics as an additional layer
of information. The work of Chen and Poorthuis (2021)
presents the implementation of an R package that provides
four different approaches from the literature to determine
home locations from spatio-temporal data. They also ad-
dress privacy considerations and research ethics when us-
ing LBS data.

Lv et al. (2016) present a hierarchical clustering approach
to merge trajectory stops enriched with temporal and spa-
tial descriptive features to assign pre-defined semantic
type labels to these stop clusters. The work of Yang et al.
(2018) aims extracting home and work locations. There-

fore, they use clustering to aggregate stop points derived
from GPS trajectories. These are additionally enriched
with temporal signatures, assuming a regular movement
behavior per user (e.g. full-time worker). Recently, pub-
lished work by Cheng et al. (2022) presents an approach
using semantic location annotation based on Point of In-
terest (POI) and Area of Interest (AOI). Furthermore, they
include the temporal domain in their approach represented
by features such as length of stay and visiting time. Li
et al. (2023) introduce a life pattern clustering approach
that identifies groups of users with similar life patterns,
called meta-graph. They implemented a rule-based system
for the detected interesting places of the users, highlight-
ing places such as home places, work places, night places,
day places, or other places.

The work of Wu et al. (2021) performs pattern mining
on historical trajectory data to extract social relationships
and preferences of users. They use features derived from
the points of interest (context specific) and the behav-
ior of interest (user specific). Another work by Hossein-
poor Milaghardan et al. (2021) focuses on the identifica-
tion of trajectory activity patterns by combining geomet-
ric clusters extracted from stop points with their associ-
ated activity sequence. The geometric data are provided as
large trajectory data sets in Korea. While spatio-temporal
analysis of movement patterns is of great interest, espe-
cially in the field of traffic and commuting smaller spa-
tial and temporal frames can also be considered for ex-
ample, in football analysis (Feuerhake, 2016). Moreover,
spatio-temporal pattern mining is applied to non-trajectory
data such as origin-destination (OD) data. Recently, publi-
cations dealing with OD pattern mining focus on shared
mobility patterns of e-scooters and their general usage
(Heumann et al., 2021).

The work of Xu et al. (2021) proposes a Hidden Markov
Model (HMM) to assign the most probable semantic an-
notation labels (home place and work place) to clusters of
stop points extracted from GPS trajectories using OPTICS.
The model employs a dynamic radius for selecting points
of interest (POIs) based on their influence radius at a given
time of day. This way, the approach indirectly incorporates
temporal aspects into their analysis. A similar approach is
presented by Golze and Sester (2024), while focusing on a
broader list of features from the contextual, temporal and
network domain.

3 Methodology

The primary goal of the presented method is to determine
the hidden states, living, working, shopping, leisure and
unknown, under the consideration of observed features:
POI categories, weekday, arrival time, stop duration.

The methodology is structured in multiple parts. In case
the data sets are based on raw GPS trajectories, the loca-
tions of interest first have to be extracted using stop point
extraction and interesting places retrieval, as described in
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(Golze and Sester, 2024). Subsequently, contextual fea-
tures are extracted at these stop points, which relies on a
selection of POIs in the vicinity of the stop point. Those
locations are potential locations which the user has visited
for his/her activities, which ultimately, we are interested
in. In this process, POIs with a larger distance to the stop
point get a lower weight, as calculated with the IDW (in-
verse distance weighting).

Overall, the semantic annotation regarding the POI cate-
gories is applied on three generalization levels. The first
level (Level-1) is the most general, while the subsequent
levels include more detailed information (e.g. Level-1:
Public Service, Level-2: Supply, Level-3: Money). Table
1 provides an overview of the categories included in each
of the generalization levels. Level-1 semantic categories
were used for the annotations in this work.

Table 1. Enumeration of the semantic POI categories (from
OSM) for each level of detail.

Level Semantic Categories

Level-1 Recreation, Commercial, Residential, Transporta-
tion, Public Services

Level-2 Water, Greenland, Touristic, Activity, Agricul-
ture, Industry, Shopping, Food, Office, Accom-
modation, Nightlife, Living, Memorial, Religion,
Railway-System, Street-Network, Airport, Educa-
tion, Security, Social, Health, Supply

Level-3 River, Lake, Park, Garden, Camping, Forest,
Zoo/Park, Attraction, Museum, Sport, Entertain-
ment, Agriculture, Industry, Supermarket, Mall,
Retail, Restaurant, Fast-Food, Office, Hotel, Mo-
tel, Apartment, Bar, Disco, Kiosk, XXX, Liv-
ing, Graveyard, Church, Train-Station, Railway,
Waterway, Harbour, Road, Junction, Parking,
Busstop, Airport, University, School, Kindergar-
den, Library, Police, Fire Department, Military,
Law, Community, Hospital, Doctor, Energy, Wa-
ter, Post & Telecommunication, Environment,
Money

The temporal features describe the time-related character-
istics of the stop points. Due to the nature of time, a dis-
cretization into periods of the day is defined as given in
Table 2. These periods of the day are used to determine
the temporal feature period of day for each stop point. Ad-
ditionally, the features extracted from the timestamps in-
clude the weekday and stop duration at the respective stop
point.

3.1 Semantic Label Prediction

In the presented approach a Hidden Markov Model is used
to estimate the (hidden) semantic labels (living, working,
shopping, leisure and unknown) while the observations are
the estimated features for each stop point. The general
HMM consists of transition and emission probability ma-
trices and is used by e.g. Viterbi optimization. These ma-

Table 2. Discretization of time of the day into periods of the day.

Hour of day Period of day

01 - 04 Night 1
05 - 08 Morning 1
09 - 11 Morning 2
12 - 14 Noon
15 - 17 Afternoon
18 - 21 Evening
22 - 00 Night 2

trices are populated by observations and common knowl-
edge about human mobility behavior. The transition matrix
describes the probability of the most likely next state X2,
given a current state X1. The emission matrix reflects the
probabilities of the most likely observed feature character-
istics, given a certain state X . Table 3 shows an example
for the emission matrix of weekdays, indicating, e.g. that
leisure activities have a higher probability at the weekends.

Table 3. An example emission matrix for the weekdays, starting
with Monday (coded as 0) and the hidden activity labels.

0 1 2 3 4 5 6

living .15 .15 .15 .15 .15 .13 .12
working .18 .18 .18 .18 .18 .09 .01
shopping .13 .13 .13 .13 .2 .3 .005
leisure .1 .1 .1 .1 .1 .2 .3
unknown .1 .1 .1 .1 .1 .25 .25

The HMM and the annotated stop sequences are the input
for the semantic labeling process. This process is imple-
mented using the Viterbi algorithm (Viterbi, 1967). The
Viterbi algorithm is a widely used method for solving op-
timization problems involving hidden states. It is based on
the principles of dynamic programming.

The methodology adjusts the HMM in the way that
location-specific activity emissions (LAs) are introduced
to reflect related activities at a specific location l. These
emissions, LAs, are added to the product of the emissions
obtained by the observed features. The following formula
shows that the LA is an additional factor dependent on the
location l used in the HMM.

P̂ (X) =
n∏
i

P (Xi |Xi−1) ×
n∏
i

P (feat.i |Xi) × LA(l)

(1)

In order to differentiate them from the hidden semantic la-
bel X , they are given different names, e.g. Home, Work,
Shop, Leisure, Unknown. The procedure in this work is
following an alternating estimation approach which con-
sists of three phases:

1. Initial Phase:
In the initial phase, the Viterbi algorithm is applied to
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predict the most likely hidden semantic labels (X) for
each stop in the given user sequences, while storing
the state probabilities of each stop point at a given lo-
cation l, referred to as IA(l). The location emissions
(LAs) in the initial phase are set as equal for each
possible hidden state. In the course of the next steps,
these emissions are adjusted.

2. Update Phase:
The update phase collects all IAs according to their
associated location l to re-estimate the location emis-
sion LA based on the following formula:

LA(l) =
m∑
i

IAi
(l)

m
(2)

3. Alternation Phase:
The updated LAs are used in the alternation phase,
where the Viterbi algorithm is used again to repeat
the prediction of the hidden semantic labels X and to
estimate the new IAs.

When the predicted semantic labels X are the same as in
the previous iteration for all stop points in all sequences,
the whole process ends. The output contains the most
probable labels for each sequence (user specific) as well
as the LA of each location l reflecting the general usage of
the location given by the probabilities of the activities.

4 Experiment and Results

4.1 Data sets

Synthetic Data Set To analyze the effects of the modeling
structure developed in this paper, a synthetic data set
was manually created. This data set allows for different
activities at certain locations and was generated by simu-
lating the daily activity behavior of people who frequently
visit known locations. The data set consists of three
users, two of whom work full-time and one who works
part-time. User 1 and 2 are friends who occasionally visit
each other’s homes. User 1 shops at the workplace of
user 3. Additionally, all users visit different places for
shopping and during leisure time. The data set includes
the movement behavior of the three users over a typical
week. Due to the nature of the synthetic data set, the
groundtruth activities at all locations are known for all
users.

GPS Trajectory Data Set. The GPS trajectory data set
consists of 700 time-ordered sequences of GPS points col-
lected by a single user from December 2017 to March
2019 in Hanover, Germany. The trajectories, ranging from
5 to 14 kilometers in length, represent the daily routines of
a full-time working family member.

4.2 Experiments

The methodology was first applied to the synthetic data
set, which was already in the required input form for the
optimization method, without the need for pre-processing.
The results indicate that the introduction of location emis-
sions and the alternating approach affects the probabilities
for activities at locations with multiple purposes through
visits from different users (see Figure 2). Obviously, in the
course of the iterations, most likely assignments are ad-
justed, e.g. most likely activity Shop (green) changed to
Work (orange).

As exact groundtruth information for the synthetic data set
is available, it can be compared to the most likely assign-
ment given by the Viterbi. The number of correctly and
incorrectly classified locations are shown in the context of
locations shared with other users (see Table 4).

Table 4. Overview of the correctly (T) and incorrectly (F) pre-
dicted sequence labels, broken down by the different users (U1,
U2, U3), and highlighting the locations shared with other users
in the synthetic data set. On the diagonal are the locations that
were shared only with itself.

User # of Shared w U1 Shared w U2 Shared w U3
Visits T | F T | F T | F

U1 29 6 | 1 18 | 2 0 | 2
U2 26 18 | 2 6 | 0 0 | 0
U3 26 5 | 0 0 | 0 17 | 4

Combining this both information from Figure 2 and Table
4 it can be concluded that most wrongly assigned labels
occur due to sharing of the location with another user per-
forming a different activity at the same location. This can
be seen in Figure 1, where the center location (red dot)
reflects this scenario.

The presented approach was also applied to the GPS
trajectory data set containing only one person. It can
be observed from the location emissions that the state
probabilities are either slightly strengthened or weakened
with an increasing number of iterations. When compar-
ing the predicted semantic labels for the locations with
the groundtruth information it is shown that most predic-
tions are correct - except for location 3 where Shop was as-
signed instead of Leisure, and location 8 where Home was
assigned instead of Leisure - still, Leisure also received
the second largest prediction value. Table 5 presents the
results of the previous work by Golze and Sester (2024),
demonstrating that the new version performs similarly, al-
though the label Leisure was split into Shop and Leisure.
However, the new version also provides the probabilities
of the resulting predictions as a way for reasoning.

In summary, the advantage of the new approach is that
the predicted labels can incorporate different, individual-
dependent, activities at one location, which are stored and
updated in the probabilities given by the LAs.
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Figure 1. Synthetic data set with the three users (green, orange and purple) The locations are indicated, green circles if only one user
or nor activity conflict and red squares if otherwise. Basemap: © GeoBasis-DE / BKG CC BY 4.0

Figure 2. State probability change for LA of location 0 (top),
only visited by a single user, and location 2 (bottom), visited by
multiple users of the synthetic data set.

4.3 Data and Software Availability

The original full GPS trajectory data set is not available
due to privacy restrictions. An anonymized version of the
data set is available by Zourlidou et al. (2022b). The devel-
oped code (containing the synthetic data set) can be pro-
vided on request.

Table 5. Comparison of the top three LAs for the locations (high-
est value highlighted in boldface) compared with the groundtruth
labels of the GPS trajectory data set and the results of the work
by Golze and Sester (2024).

Location groundtruth [1] LA

0 Shop
Leisure

time

 Work 0.05
Shop 0.86

Leisure 0.05


1 Shop

Leisure
time

Home 0.06
Work 0.28
Shop 0.59


2 Home Home

 Home 0.94
Work 0.02

Unknown 0.02


3 Leisure Work

Home 0.07
Work 0.18
Shop 0.72


4 Shop

Leisure
time

Home 0.06
Work 0.03
Shop 0.85


5 Work Work

Home 0.05
Work 0.92
Shop 0.01


6 Work Work

Home 0.06
Work 0.88
Shop 0.02


7 Leisure

Leisure
time

Home 0.20
Work 0.13
Leisure 0.62


8 Leisure

Leisure
time

 Home 0.70
Work 0.07
Leisure 0.17


[1] Work of Golze and Sester (2024); here "leisure time" also contains the
activity shopping.

5 Discussion and Outlook

Possible wrong assignments in the results for the GPS tra-
jectory data could be due to different factors: it may be
affected not only by GPS inaccuracy but also by the se-
lection of the parameters for stop point extraction and the
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clustering method used. The resulting stop point clusters
may cover a smaller or larger area, introducing potential
ambiguity due to a wider range of possible activities.

In future work, the level of POI categories will be in-
creased to provide more detailed information of the en-
vironment (compare Table 1. This way, the emission ma-
trix for the POI categories will reflect these details by pro-
viding a more granular view of what can be expected to
be observed in a certain state. Similarly, the set of hidden
semantic labels can be provide a finer differentiation for
more insights into the users’ activities.

Another aspect is estimating the transition and emis-
sion probability matrices using the Baum-Welch algorithm
(Welch, 2003). This learning procedure, however, would
require a large amount of groundtruth annotations, which
are rare for GPS trajectories. To address this issue, we will
first use a synthetic dataset generated through simulation,
which has a much larger scope than the previous synthetic
dataset. The simulated data is derived from a user survey
on user mobility behavior in Germany.

In the future, the approach will be applied on a larger GPS
trajectory data set that fulfills the same prerequisites as the
synthetic data set, e.g. multiple users that eventually inter-
act with the same locations for the same or different activ-
ities.
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