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Abstract. Crowdsourcing platforms have become an 

important data source for modelling and observing human 

behavioural and social activities, such as mobility, social 

interactions and urban dynamics. This study uses 

observation data from iNaturalist, an online social 

network of voluntary users sharing biodiversity 

information, which was collected from 20,434 parks in the 

United States. It explores the relationship between park 

characteristics and the mean travel distance of users to 

parks. The latter is based on the average of distances 

between an iNaturalist user’s typical main area of 

iNaturalist contributions and the locations of the user’s 

observations falling inside a park of interest. The 

DBSCAN clustering algorithm is used to determine each 

user’s main contribution area. An Eigenvector Spatial 

Filtering (ESF) model shows that the log of the average 

distance travelled to parks is positively associated with 

certain park management types (e.g. National Parks, State 

Parks) and biodiversity, but negatively associated with the 

population around a park. The results provide insights into 

the nature of iNaturalist user visitation patterns to parks 

which can be used for targeted outreach campaigns and a 

more user-centric approach to promote park attractions 

and biodiversity conservation. 
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1 Introduction 

1.1 iNaturalist 

In the era of digital engagement, environmental 

consciousness, and citizen science, iNaturalist stands as a 

beacon for biodiversity enthusiasts, researchers, and 

 
1 https://www.inaturalist.org/stats 

casual nature observers alike. Launched in 2008, with 

over 190 million observations and 7.4 million registered 

users in February 20241, this crowdsourcing application 

has revolutionized the way its users perceive and interact 

with the natural environment. At its core, iNaturalist 

facilitates the recording and sharing of biodiversity 

observations, i.e., the uploading of photographs of flora 

and fauna, which are then identified by the community 

(Unger et al., 2021). This collaborative platform not only 

contributes to the vast database of biodiversity records but 

also fosters a global community passionate about nature 

and conservation (Mesaglio and Callaghan, 2021). 

While the primary focus of iNaturalist data analyses has 

been on assessing biodiversity (Chandler et al., 2017), 

sampling bias (Callaghan et al., 2021), and observation 

data quality (Hochmair et al., 2020), the application 

harbours a wealth of data that extends beyond species 

identification with the potential to analyse spatial and 

temporal patterns of iNaturalist user participation. An 

example is the distinction between residents and short 

term visitors (Dimson and Gillespie, 2023). Unlike 

traditional biodiversity databases, iNaturalist's user-

generated content offers a unique lens through which one 

can explore how individuals interact with the natural 

environment, including their movement patterns, the 

distance they travel to make observations, and their choice 

of contribution locations. 

1.2 User travel behaviour extraction  

Crowdsourced data, such as tweets (Jurdak et al., 2015), 

photographs (Ma et al., 2020), or travel reviews (Owuor 

et al., 2023) are commonly used to analyze travel 

behaviour.  
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However, the analysis of travel behaviour based on 

iNaturalist observations remains underexplored although 

the unique nature of its data, which is rooted in the pursuit 

of biodiversity observation, combined with spatio-

temporal information, offers a novel perspective on 

spatial behavioural patterns. Specifically, it allows for the 

investigation of travel behaviour within the framework of 

recreational and educational activities related to 

biodiversity (Di Cecco et al., 2021). This presents an 

opportunity to understand not just where people go, but 

why they choose certain destinations, particularly natural 

parks and reserves, over others (Tu et al., 2020). 

To narrow this research gap, this study aims to use 

iNaturalist observation data to explore the relationship 

between park attributes (such as served population, and 

management type) and their attractiveness to users, 

measured by mean travel distance of users to parks. It 

therefore offers new insights into the role of 

crowdsourced biodiversity data for enhancing our 

understanding of human-nature interactions. To avoid the 

influence of spatial  

2 Methodology 

2.1 Data collection 

iNaturalist offers a comprehensive dataset that includes 

species names, geolocations, timestamps, and the names 

of contributors and identifiers of observations. The latter 

are crucial for validating species identifications. Each 

observation that is provided with a photo, location, and 

observation date is automatically placed into the “Needs 

ID” category. An observation becomes research grade 

when the community agrees on species-level ID or lower, 

i.e., when more than 2/3 of identifiers agree on a taxon. 

Research grade observation data can be downloaded from 

the Global Biodiversity Information Facility (GBIF) 

Website. For this study, we collected iNaturalist research 

grade observations from across the United States covering 

the period from August 2022 to August 2023, which were 

subsequently loaded into a PostgreSQL database for 

further analysis. The download included observations 

from 224,123 users. Most of them (58.6%) contributed 

between 1 and 5 observations (Figure 1). 

 
2 https://www.tpl.org/park-data-downloads 

 

Figure 1. Distribution of users based on observation counts 

Shapefiles for 143,689 U.S. parks were obtained from the 

Trust for Public Land2. The shapefiles include attributes 

such as park name, managing authority, address, and the 

demographics of the population living within a 10-minute 

walk radius. Due to the large number of management 

types provided in the shapefile (more than 20), and in 

order to simplify the analysis, management types were 

reclassified into seven key categories, i.e., national (for 

parks with names ending in “National Park”), federal, 

state, county, city, district, and regional. All other 

management types, such as “School”, were aggregated 

under the “others” category. The total number of parks 

falling into the different park management categories 

(black bars), and those with at least one iNaturalist 

observation (grey bars), are shown in Figure 2. The 

subsequent analyses presented in this study utilize the 

latter category of parks.  

 

Figure 2. Number of all parks in the U.S. and subset of parks 

with iNaturalist observations 

2.2 Primary activity location and travel distance 

To assign each observation an estimated travel distance, 

the “home” region or, more specifically, center location 

of its observer’s primary activity area, is needed. Since 

iNaturalist user profiles rarely provide a user self-reported 

location, this information has to be drawn from 

observations. Various approaches for this purpose have 

been developed for other crowd-sourced data platforms, 
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such as OpenStreetMap (Zielstra et al., 2014) or Flickr 

(Bojic et al., 2016). In the first step, an observer’s 

observation point locations were spatially clustered using 

DBSCAN, configured with a minimum cluster size of 3 

points and a radius of 10 kilometres. Next, the cluster with 

the largest number of different contribution dates was 

selected as the observer’s main activity region. Figure 3 

demonstrates the process for a user’s 465 contributions 

which were subdivided into 19 clusters. Using the points 

from the major cluster, the center point was subsequently 

computed and assumed as the primary activity location of 

an observer. This allowed to compute the distances 

between each observation location and a user’s primary 

activity location. 

 

Figure 3. Primary activity cluster of one iNaturalist user 

Next, the travel distance to each park was determined, 

where only parks with iNaturalist observations from at 

least two users were used. For this purpose, in a first step 

the average distance across the observations in a given 

park was computed for each observer. A second step 

computed the mean over all these average distances to 

obtain one distance associated with a park. The 

distribution of obtained travel distances to 20,434 parks 

for the 1,965,018 analyzed observations falling into parks, 

based on this approach, is shown in Figure 4. 

 

Figure 4. Distribution of mean travel distance to parks 

2.3 Park attributes 

Besides the average travel distance to a park, other 

contribution related attributes were computed for each 

park, including number of total iNaturalist observations 

(Figure 5) and number of distinct species identified in a 

park (Figure 6). The latter represents a proxy for 

biodiversity.  

 

Figure 5. Distribution of observation counts in parks 

 

Figure 6. Distribution of species counts in parks 

Descriptive statistics regarding observer-averaged travel 

distance and species count for the different park 

management categories for parks with at least two 

different users are presented in Table 1. It shows that 

mean travel distance and mean species count across 

analyzed parks is highest for national parks. 

Table 1. Descriptive statistics for different park 

management types 

Park Type Distance (km) Species Count 

 Max Mean Mdn Max Mean Mdn 

National 

Park 
1,195 697 795 1,183 422 304 

Federal 4,370 543 433 3,208 207 61 

State 7,441 469 285 1,140 69 25 

County 6,253 319 133 1,791 41 14 

City 6,227 289 89 1,186 26 8 

Others 5,181 287 109 913 37 11 

District 2,265 221 92 1,018 45 12 

Regional 3,855 202 58 627 46 13 
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2.4 Statistical analysis 

When modelling travel distance to parks with the ordinary 

least squares (OLS) method, a strong positive 

autocorrelation was found in the model's residuals with a 

Moran's I of 0.35 (p < 0.001). To mitigate the influence of 

spatial autocorrelation on model results, an Eigenvector 

Spatial Filtering (ESF) model was constructed utilizing 

the "besf" function from the "spmoran" R package 

(Murakami and Griffith, 2019). Park management was 

used as a categorical predictor, consisting of eight levels. 

Other predictor variables initially considered included 

park size, biodiversity of a park (measured by the number 

of different species of iNaturalist contributions), 

population within a 10-minute walk from the park, 

expressed in 1,000s, and number of nearby parks within 

10 km. Pairwise correlation analysis between predictor 

variables revealed a high significant correlation between 

biodiversity and iNaturalist contribution count (Pearson r 

= 0.87, p < 0.001), which led to the exclusion of the 

contribution count from the final ESF model. Also, park 

management type was found to be correlated with park 

size (e.g. city parks had the smallest mean area of parks) 

which led to the exclusion of the area variable from the 

final ESF model. The ESF model was manually built in a 

stepwise approach to improve model fit while controlling 

for multicollinearity. Besides the ESF regression, a 

Kruskal-Wallis test with Dunn’s post hoc test was applied 

to determine the statistical significance between distances 

associated with different park management types. 

3 Analysis Results 

The ESF model (r2 = 0.307) had a higher adjusted R-

squared value than the OLS model (r2 = 0.022). Analysis 

of 166 eigenvectors, filtered through the ESF model 

identified 66 eigenvectors as significant. The Moran's I of 

0.049 (p < 0.001) among residuals of the ESF model 

demonstrates a substantial reduction in spatial 

autocorrelation compared to the OLS model.  

Table 2 shows the results of the final ESF regression 

model where only significant predictors (except for park 

management types) were included. The Variance Inflation 

Factor was < 3 for all variables, indicating that no 

multicollinearity was present. Model results indicate that 

both biodiversity and nearby park number are positively 

associated with the average travel distance to parks. This 

shows that higher biodiversity and areas with a higher 

concentration of parks encourage travellers from farther 

away to visit a park after controlling for park management 

type. As opposed to this, parks in more populated areas 

offer close access to its local population, hence reducing 

necessary travel distances to visit a park.  National, 

federal, and state parks are associated with longer visitor 

travel distances than parks with the “other” parks 

management category. However, there was no significant 

association with an increase of decrease of travel 

distances to smaller park types, such as county or city 

parks compared to parks with the “other” parks 

management category. These findings highlight the 

nuanced ways in which park management, biodiversity, 

and park surroundings shape visitor behaviours and 

preferences.  

Table 2. ESF Regression results 

 Coefficient 

Intercept 291.2*** 

Biodiversity count 6.90*** 

Population -9.09* 

City Park -2.40 

County Park -24.23 

State Park 57.59*** 

Federal Park 166.7*** 

National Park 243.9*** 

Regional Park -10.81 

District Park -35.20 

Number of parks within 10km 0.065** 

N 20,434 

Residuals Moran’s I 0.049 

Adjusted R2 0.307 

Note: “Others” is the default category for park management 

A Kruskal-Wallis Test indicated a significant difference 

in travel distance across park management categories, H 

(7, n = 20,434) = 941.9, p < 0.001. A Dunn’s post hoc test 

with a Bonferroni adjusted alpha level of 0.0018 (0.05/28) 

showed that differences in distances between all park 

category pairs but Regional and District, and City and 

District were statistically significant.  

 

Figure 7. Boxplot of mean distances for park management 

category 

4 of 5AGILE: GIScience Series, 5, 18, 2024 | https://doi.org/10.5194/agile-giss-5-18-2024



4 Discussion 

This study highlights the crucial influence of park 

management and biodiversity on visitor attraction, 

particularly travel distance to parks, showing that federal 

and national parks as well as parks in the vicinity of other 

parks draw visitors from further distances. In contrast, 

parks in more densely populated areas serve more 

localized populations. These insights advocate for 

management practices that balance ecological 

preservation with enhancing public access to green 

spaces. Future work aims to expand this research to the 

analysis of worldwide parks to and cross-reference 

visitation patterns with other crowd-sourced or ground-

truth data. 

References 

Bojic, I., Belyi, A., Ratti, C., and Sobolevsky, S.: Scaling 

of foreign attractiveness for countries and states, Applied 

Geography, 73, 47-52, 

https://doi.org/10.1016/j.apgeog.2016.06.006, 2016. 

Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, 

C. J., and Pereira, H. M.: Large-bodied birds are over-

represented in unstructured citizen science data, Scientific 

Reports, 11, 19073, 10.1038/s41598-021-98584-7, 2021. 

Chandler, M., See, L., Copas, K., Bonde, A. M. Z., López, 

B. C., Danielsen, F., Legind, J. K., Masinde, S., Miller-

Rushing, A. J., Newman, G., Rosemartin, A., and Turak, 

E.: Contribution of citizen science towards international 

biodiversity monitoring, Biological Conservation, 213, 

280-294, https://doi.org/10.1016/j.biocon.2016.09.004, 

2017. 

Di Cecco, G. J., Barve, V., Belitz, M. W., Stucky, B. J., 

Guralnick, R. P., and Hurlbert, A. H.: Observing the 

Observers: How Participants Contribute Data to 

iNaturalist and Implications for Biodiversity Science, 

BioScience, 71, 1179-1188, 10.1093/biosci/biab093, 

2021. 

Dimson, M. and Gillespie, T. W.: Who, where, when: 

Observer behavior influences spatial and temporal 

patterns of iNaturalist participation, Applied Geography, 

153, 102916, 

https://doi.org/10.1016/j.apgeog.2023.102916, 2023. 

Hochmair, H. H., Scheffrahn, R. H., Basille, M., and 

Boone, M.: Evaluating the data quality of iNaturalist 

termite records, PLOS ONE, 15, e0226534, 

10.1371/journal.pone.0226534, 2020. 

Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, 

M., and Newth, D.: Understanding Human Mobility from 

Twitter, PLOS ONE, 10, e0131469, 

10.1371/journal.pone.0131469, 2015. 

Ma, S., Kirilenko, A. P., and Stepchenkova, S.: Special 

interest tourism is not so special after all: Big data 

evidence from the 2017 Great American Solar Eclipse, 

Tourism Management, 77, 104021, 

https://doi.org/10.1016/j.tourman.2019.104021, 2020. 

Mesaglio, T. and Callaghan, C. T.: An overview of the 

history, current contributions and future outlook of 

iNaturalist in Australia %J Wildlife Research, 48, 289-

303, https://doi.org/10.1071/WR20154, 2021. 

Murakami, D. and Griffith, D. A.: Eigenvector Spatial 

Filtering for Large Data Sets: Fixed and Random Effects 

Approaches, Geographical Analysis, 51, 23-49, 

https://doi.org/10.1111/gean.12156, 2019. 

Owuor, I., Hochmair, H. H., and Paulus, G.: Use of social 

media data, online reviews and wikipedia page views to 

measure visitation patterns of outdoor attractions, Journal 

of Outdoor Recreation and Tourism, 44, 100681, 

https://doi.org/10.1016/j.jort.2023.100681, 2023. 

Tu, X., Huang, G., Wu, J., and Guo, X.: How do travel 

distance and park size influence urban park visits?, Urban 

Forestry & Urban Greening, 52, 126689, 

https://doi.org/10.1016/j.ufug.2020.126689, 2020. 

Unger, S., Rollins, M., Tietz, A., and Dumais, H.: 

iNaturalist as an engaging tool for identifying organisms 

in outdoor activities, Journal of Biological Education, 55, 

537-547, 10.1080/00219266.2020.1739114, 2021. 

Zielstra, D., Hochmair, H. H., Neis, P., and Tonini, F.: 

Areal Delineation of Home Regions from Contribution 

and Editing Patterns in OpenStreetMap, 

10.3390/ijgi3041211,  2014. 

 

5 of 5AGILE: GIScience Series, 5, 18, 2024 | https://doi.org/10.5194/agile-giss-5-18-2024

https://doi.org/10.1016/j.apgeog.2016.06.006
https://doi.org/10.1016/j.biocon.2016.09.004
https://doi.org/10.1016/j.apgeog.2023.102916
https://doi.org/10.1016/j.tourman.2019.104021
https://doi.org/10.1071/WR20154
https://doi.org/10.1111/gean.12156
https://doi.org/10.1016/j.jort.2023.100681
https://doi.org/10.1016/j.ufug.2020.126689



