
Vector data cubes for features evolving in space and time
Lorena Abad�1, Martin Sudmanns�1, and Daniel Hölbling�1

1Department of Geoinformatics – Z_GIS, Paris Lodron University Salzburg, Salzburg, Austria

Correspondence: Lorena Abad (lorena.abad@plus.ac.at)

Abstract. The amount of geospatial data generated, in par-
ticular from segmentation techniques applied to Earth ob-
servation (EO) data, is rapidly increasing. This, in combi-
nation with the rising popularity of EO data cubes for time
series analysis, results in a need to adequately structure,
represent and further analyse data coming from segmenta-
tion approaches. In this study, we explore the use of vector
data cubes for the structuring and analysis of features that
evolve in space and time with a particular focus on geo-
morphological features due to their high spatio-temporal
variability. Vector data cubes are multi-dimensional data
structures that often contain spatio-temporal data with n-
dimensions, with a geometry as the minimum spatial di-
mension and time as the temporal dimension. We consider
two vector data cube formats, i.e., array and tabular, and
further extend their conceptualisation to contain features
that evolve in space and time. We showcase our implemen-
tation for two geomorphological features, the Fagradalsf-
jall lava flow in Iceland and the Butangbunasi landslide
and landslide-dammed lake in Taiwan. Finally, we discuss
the potential and limitations of vector data cubes, regard-
ing their technical implementation and application to geo-
morphology, and further outline the future research direc-
tions.

Keywords. spatio-temporal data, vector data cubes,
shape-evolving features, geomorphology

1 Introduction

To represent and analyse geographical features in a geo-
graphic information system (GIS), polygon outlines are
commonly created based on field measurements (e.g., GPS
surveys), aerial photography or Earth observation (EO)
satellite imagery. The delineation can be the product of
manual interpretation or of (semi-)automated image seg-
mentation and classification techniques. Examples of the
latter are object-based image analysis (OBIA) (Blaschke
et al., 2014) and deep learning techniques such as convo-
lutional neural networks (CNN) (Hoeser et al., 2020) or
segment anything models (SAM) (Kirillov et al., 2023).

Consequently, a series of objects in vector formats repre-
senting geographical features can be created for different
points in time. Such geospatial objects intrinsically deal
with geometries changing over time and can be seen as
regions that grow or shrink, i.e., change their shape over
time (Erwig et al., 1999).

The ability to analyse EO data time series with EO data
cubes (EODC) can prove promising when combined with
segmentation techniques. EODCs facilitate the querying
of dynamic information at high temporal intervals, al-
lowing a more comprehensive understanding of landscape
dynamics. Although segmentation approaches for satel-
lite image time series analysis have not been fully im-
plemented within EODCs (Lang et al., 2019), advances
in deep learning techniques can quickly develop towards
this end (Belgiu and Csillik, 2018; Abidi et al., 2021;
Simoes et al., 2021). Hence, ways to adequately represent
and analyse the objects resulting from segmentation ap-
proaches, considering their changes in space and time, are
needed.

In this study, we explore the use of vector data cubes
for the structuring and analysis of features or objects that
evolve in space and time, i.e., shape-evolving features.
In particular, we focus on polygon features that do not
change their location (in contrast to trajectory data) but
rather change their extent and shape at different points in
time. We have selected geomorphological features as an
exemplary case because of their high spatio-temporal vari-
ability. Nevertheless, vector data cube approaches can be
extended to any other geospatial feature like urban area
expansion, vegetation patches, or wetlands, to name a few
examples.

2 Vector data cubes

Geospatial data cubes are defined as multi-dimensional
data structures based on regular or irregular grids (rep-
resented as arrays), often containing spatio-temporal data
with n-dimensions (Strobl et al., 2017; Baumann et al.,
2018). The structured manner of representing spatio-
temporal data has become an intuitive way to organise big
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EO data, usually in raster or gridded formats, with mini-
mum two spatial dimensions, i.e., x / y or latitude / lon-
gitude. However, vector data can also be organised within
data cubes, where the minimum spatial dimension required
is a geometry. When talking about spatio-temporal data
cubes, be them raster or vector, an additional dimension,
i.e., time, is often included.

The typical example of the use of vector data cubes is loca-
tions that contain multi-temporal data such as in-situ sen-
sor station datasets, aggregation of raster information over
specific areas, or the results of raster data sampling at point
locations (Pebesma, 2021). In these cases, the geometry of
these locations does not change over time, but their associ-
ated parameters do. Representing multi-temporal data with
unique locations in vector data cubes in comparison to tra-
ditional data structures in GIS, such as long or wide table
formats, has several advantages. For instance, data replica-
tion in the form of duplicated rows or an excessive amount
of columns for table formats is avoided. Further, an array-
like representation of vector data allows indexing for fast
lookup tasks and the use of several operations popular for
raster data cubes such as filtering, aggregation, reduction
and resampling.

Another way of representing spatio-temporal data in tabu-
lar formats has been implemented by Zhang et al. (2022)
in their R package {cubble}. The concept behind {cub-
ble} relies on the tidy data framework (Wickham, 2014) by
structuring the relational temporal and spatial data in two
different, yet interlinked tables or data frames. These are
referred as spatial and temporal tables or faces of a spatio-
temporal cube. {cubble} combines the power of the {sf}
package for spatial vector data analysis (Pebesma, 2018)
and the {tsibble} package for time series analysis (Wang
et al., 2020). In this manner, data replication is minimised
and a flexibility between analysing the spatial or temporal
component of the data is introduced.

In this study, we have explored array and tabular formats
for spatio-temporal data, considering that both represent
ways of structuring data as vector data cubes. This is be-
cause even if the approach by Zhang et al. (2022) is mostly
tabular, it can be directly coerced (i.e., translated) into and
from array formats, namely the ones supported by the R
package {stars} (Pebesma and Bivand, 2023). Therefore,
for the purpose of this paper, we refer to vector data cubes
in 1) array and 2) tabular formats.

3 Extending the cube design

The organisation of geospatial data in the domains of
space, time, and theme is a known concept (Sinton, 1978;
Yuan, 1999), as these domains are inherent to geospatial
phenomena. Subsequently, different approaches with vary-
ing focus have been implemented (e.g., online analytical
processing (OLAP) data cubes, temporal GIS, raster data
cubes, and array databases). What is common is that ac-
cess of the values (often called measures) is facilitated

through coordinate values or indices along dimensions that
represent the domains (e.g., latitude / longitude for space).
For instance, organising weather station data into a data
cube would at least involve the geometry dimension with
the unchanging locations of the stations, and the time di-
mension with the data timestamps.

In the case of shape-evolving features such as geomorpho-
logical landforms, one of the parameters that changes, or
in other words, the measure, is the geometry itself. There-
fore, we have assigned the changing geometries to the cell
values. This approach leaves only the time as a dimension
of the data cube. A unique group identifier for each fea-
ture set could become a second dimension, which is used
to index the feature set. However, a spatial dimension is
required to perform any spatial analysis. To handle this,
we have come up with the concept of summary geometry,
which, as its name implies, is a geometry that represents all
the changing geometries for a feature. The summary geom-
etry (symbolised as geom_sum) can be defined depending
on the use case and the way we want to analyse the data.
We have identified the following cases, where geom_sum
could be:

a) the union and dissolve operation of all polygons over
time corresponding to the same feature,

b) the centroid of a),

c) the bounding box of a), or

d) a representative point of the temporal feature set

Representative points in d) for geomorphological features
could be, for example, the location of the crater from
which lava erupts, or the location of the landslide dam that
blocked a river and generated a landslide-dammed lake.

For data cubes in tabular format, Wang et al. (2020) de-
fine two contextual semantics: index, which is a variable
ordered from past to present, and key, a set of variables
that define observational units over time. Each observa-
tion is uniquely identified by an index and key. Hence, for
the tabular format, the geom_sum dimension becomes the
key for the spatial table. The time dimension becomes the
index column for the temporal table.

The resulting spatial table contains one row per feature set,
with the geom_sum and a list-column ts, which stands
for time series. The ts list-column stores the time series
data in a nested format. For shape-evolving features, the
ts list-column contains the time as the index, along with
the changing geometries and other attributes that change
over time. This information is then stored in the temporal
table.

In practice, the tabular format requires an identifier other
than a geometry column, and hence an id column or an-
other type of identifier is recommended for a seamless in-
teraction between the spatial and temporal tables.

Figure 1 demonstrates how the shape-evolving features are
represented in both an array and tabular vector data cube.
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Figure 1. Structuring shape-evolving features in vector data
cubes in array and tabular formats. a) Schema of shape-evolving
features over time. b) Vector data cube in array format, with the
summary geometry geom_sum represented by a POINT geom-
etry. Adapted from OpenEO developers (2024). c) Vector data
cube in tabular format showing the spatial and temporal tables.
Adapted from Zhang et al. (2022).

3.1 Geomorphology applications

Geomorphological features are often highly dynamic in
space and time. Assessing the evolution of landforms such
as glaciers, proglacial lakes, lava flows, landslides or gully
erosion allow the understanding of landscape patterns and
interrelations. Moreover, some of these features are related
to natural hazards, where monitoring their evolution be-

comes relevant for disaster risk reduction (DRR) and mit-
igation. Depending on the activity level of the landform,
changes in their shape or surface area over time are ex-
pected. Extracting the outlines of these dynamic landforms
allows spatio-temporal analysis, for example, to compute
changes in area or volume, or to aggregate information
from gridded datasets to represent zonal statistics for the
landform. Therefore, we have considered geomorpholog-
ical landforms as exemplary features to test vector data
cubes.

3.2 Vector data cube implementation

Geomorphological analyses often focus on the evolution
of a limited number of landforms over time. Therefore, to
showcase the use of vector data cubes for shape-evolving
features we have selected two examples of such studies.
The first study by Hölbling et al. (2020) analysed the evo-
lution of the Butangbunasi landslide in Taiwan from 1984
to 2018 and related the changes in area to typhoon events,
correlating heavy rainfall with the landslide size expan-
sion, but also quantifying the natural re-vegetation effect.
The authors used an OBIA approach to segment and clas-
sify the landslide area along with landslide-dammed lakes
occurring for a couple of time steps. For the second study,
Pedersen et al. (2022) performed a near real-time pho-
togrammetric surveying of the 2021 Fagradalsfjall erup-
tion on the Reykjanes Peninsula, Iceland. The main fo-
cus was the lava flow monitoring, where area, volume and
thickness change maps were computed. The lava outlines
were digitised manually from orthomosaic imagery col-
lected during the surveys.

We performed the experiments in R software v. 4.3.2 (R
Core Team, 2023). With the delineations from both stud-
ies, we proceeded to organise and wrangle the data to com-
bine the different files into a single {sf} data frame. It was
important to guarantee that each observation belonged to
the same geomorphological landform, that the timestamps
were consistent and clearly identified, and that the geome-
tries were valid. Moreover, we worked with a single ge-
ometry per time step, meaning that we combined individ-
ual polygons into multi-polygons when mapped for the
same time step, and ordered them chronologically. Then,
we computed geom_sum, in this case, the centroid of the
union and dissolve of all geometries corresponding to the
feature set. The geom_sum was repeated for every row
corresponding to the same feature set. Once the data were
pre-processed, we could coerce the spatial data frames into
the vector data cube formats.

3.2.1 Array format

For the array format, we used the {stars} package. We cre-
ated an array object including the data that would pop-
ulate the array cells (the changing geometries of the fea-
ture set), the dimensions and their names (geom_sum and
time). Next, we created a dimensions object with the
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function stars::st_dimensions(), containing the
values for the dimensions of the cube. Finally, we com-
bined these objects in a stars object. The way the vec-
tor data cube is structured is illustrated with the example
of the lava flow outlines (Fig. 2). Once the data cube is
created, we can perform different spatial analyses, for ex-
ample, computing the area of the changing geometries or
filtering the data in the cube within specific dates (Fig. 3).
Examples of these computations are presented in the com-
putational notebook in the GitHub repository (see 3.3).
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Figure 3. Lava flow outlines in Fagradalsfjall, Iceland. a) Lava
flow outlines of the complete lava flow time series. b) Filtered
lava flow time series between 18.03.2021 and 25.03.2021.

3.2.2 Tabular format

For the tabular format we used {cubble}. Here we
exemplify the approach with the Butangbunasi land-
slide and lake outlines in Taiwan. For this vector data
cube format we defined the key as the feature type
(i.e., class) and the index as the time dimension,
in this case called date. {cubble} presents the spa-

tial and temporal tables separately. To get each of
them one would call cubble::face_spatial()
or cubble::face_temporal(), respectively. When
creating the cube, the default table face is spatial, i.e.,
a nested form. The nested list-column corresponds to
the time series, which is stored row-wise per feature set
(Fig. 4a). The temporal face is structured as a long format
table (Fig. 4b).

This dataset contains further information on the individual
geometries, such as the satellite sensor used to map the
data and the area of the objects. With these attributes we
can do time series plots to visualise the variations in time,
as shown in Figure 5.
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Figure 5. Time series plot of attributes of the Butangbunasi land-
slide and landslide-dammed lake dataset. a) Butangbunasi land-
slide and lake delineations at different points in time represented
in a multi-dimensional form. b) Time series graph of landslide
area with a marker at the bottom of the panel for every lake oc-
currence.

3.3 Data and Software Availability

The Butangbunasi landslide and lake outlines can be ob-
tained from Hölbling et al. (2024). The lava flow outlines
for the Fagradalsfjall eruption can be obtained from Peder-
sen et al. (2023), along with derived digital elevation mod-
els (DEMs) and orthomosaics.

A GitHub repository with an example notebook contain-
ing the code to download and wrangle the data, create
vector data cubes, perform spatial analysis and generate
the figures in 3.2 can be accessed here: https://github.com/
loreabad6/vdc-space-time-feats. The repository also con-
tains the system set-up and software versions used.
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#> stars object with 2 dimensions and 1 attribute
#> attribute(s):
#> geometry
#> MULTIPOLYGON : 2
#> POLYGON :28
#> epsg:3057 : 0
#> +proj=lcc ...: 0
#> dimension(s):
#> from to refsys point values
#> geom_sum 1 1 ISN93 / Lambert 1993 TRUE POINT (339860 380008)
#> datetime 1 30 POSIXct FALSE 2021-03-20 08:45:00,...,2021-09-30 16:20:00

Figure 2. Vector data cube of lava flow outlines as a {stars} object.

a)

cube_tab |>
face_spatial()

#> # cubble: key: class [2], index: date, nested form, [sf]
#> # spatial: [271664.917737363, 2567227.57526178, 274148.347513089,
#> # 2568861.92906261], WGS 84 / UTM zone 51N
#> # temporal: date [date], sensor [chr], area [[ha]], geom [GEOMETRY [m]]
#> class x y geom_sum ts
#> * <chr> <dbl> <dbl> <POINT [m]> <list>
#> 1 lake 274148. 2567228. (274148.3 2567228) <tibble [20 x 4]>
#> 2 landslide 271665. 2568862. (271664.9 2568862) <tibble [20 x 4]>

b)

cube_tab |>
face_temporal()

#> # cubble: key: class [2], index: date, long form
#> # temporal: 1984-12-12 -- 2021-08-28 [8D], has gaps!
#> # spatial: x [dbl], y [dbl], geom_sum [POINT [m]]
#> class date sensor area geom
#> <chr> <date> <chr> [ha] <GEOMETRY [m]>
#> 1 lake 1984-12-12 <NA> NA GEOMETRYCOLLECTION EMPTY
#> 2 landslide 1984-12-12 Landsat 5 66.2 MULTIPOLYGON (((271637.5 2568620, 2716~
#> 3 lake 1989-10-23 <NA> NA GEOMETRYCOLLECTION EMPTY
#> 4 landslide 1989-10-23 Landsat 5 62.4 MULTIPOLYGON (((273712.5 2566845, 2735~
#> # i 36 more rows

Figure 4. Vector data cube of landslide and lake outlines as a {cubble} object a) in the nested form (i.e., spatial face) and b) in the long
form (i.e., temporal face).

4 Discussion

4.1 Implementation design

We have exemplified the use of vector data cubes for a
single geomorphological feature evolving over time, that
is the lava flow in Fagradalsfjall; and also with two fea-
ture sets that evolve over time, i.e., the Butangbunasi land-
slide and the associated landslide-dammed lake. However,
feature extraction workflows can result in several shape-
evolving features, be them of the same type (e.g., a land-
slide spatio-temporal databases) or different (e.g., a spatio-
temporal database with several landslides and lakes).

In these situations, we might face different issues, mainly
with the amount of geometries to be handled and the scal-
ability of the approach. As we have seen with the Butang-
bunasi case, we encounter situations where a geometry is
present at a specific point in time for the landslide class,
while at the same time the geometry for the lake is ab-
sent since there was no lake occurrence for that timestamp.
For the array implementation, this means the inclusion of
empty geometries within the array cells. Even if we can in-
clude such lack of data, the advantages of using the array
approach in terms of performance and scalability might
become limited. In these cases, working with tabular for-
mats could result in a more efficient approach. However,
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the array format allows the addition of further dimensions,
which is not the case for the tabular format as it is tailored
for handling space-time data specifically. The addition of a
dimension referring to the geomorphological feature type
(c.f., Fig. 4, the dimension class) could become useful
when the analysis focuses on different geomorphological
feature types in an area. Further exploration towards scal-
ing these approaches will be tested in future work.

Similarly to what is presented by Hamdani et al. (2020)
and Hamdani et al. (2023), we expect that structuring the
data in vector data cubes will allow a seamless integration
with gridded data structured in raster data cubes. Issues
regarding computational performance for such integration
still need to be tested in future work.

Even though we have introduced the vector data cube for-
mat using the R ecosystem, Python packages could also
support similar data structures, for example with the pack-
age {xvec}, currently under development (Fleischmann
and Bovy, 2022). {xvec} follows the concepts and im-
plementation of {stars} and supports the handling of data
with {xarray} (Hoyer and Hamman, 2017), a package of-
ten used for raster data cube analysis. For the tabular for-
mat, possible implementations, including approaches that
involve {geopandas} (Jordahl et al., 2020) could be further
explored.

Finally, the concept of summary geometry could be ex-
tended to line and point geometries, although the assump-
tions to conceptualise how to represent the summarising
geometry would need to be revised.

4.2 Potential for geomorphology

Focusing on a small number of geomorphological feature
brings the advantage of guaranteeing that the analyst can
match the delineations to the same feature, making it pos-
sible to assign a unique identifier to the feature set.

However, geomorphological analyses could require the
combination of data from distinct sources that have per-
formed mapping of a feature over time, or could focus
on multiple features mapped in an area that evolve over
time, e.g., landslide-dammed lakes originating from the
Kaikōura earthquake in 2016 in New Zealand (Abad et al.,
2022). Here, assigning a unique identifier to individual
features could prove useful to track the evolution of sin-
gle objects over time. Techniques on how to perform such
spatio-temporal grouping of feature sets still have to be
further investigated.

Moreover, transitioning from a pixel-based analysis of ge-
omorphological features to an object-based representation
can enhance the spatio-temporal analysis of regional land-
scape changes. For instance, instead of reporting overall
statistics of water pixels detected for the Kaikōura region,
one could calculate statistics on the number of landslide-
dammed lake features detected in the area, as well as being
able to analyse the evolution of the lakes at the object level.
We believe that this study is an initial point towards such

analyses, where vector data cube representations could be
a way to structure data coming from EODC analyses.

With the rapidly increasing amount of geospatial data, it
is essential to develop ways to store, manage, and analyse
them efficiently. Enhancing the analysis and representation
capabilities of shape-evolving features, particularly geo-
morphological features, is important in several respects.
Vector data cubes can facilitate the generation of pertinent
information on the spatio-temporal dynamics of features
such as landslides or lava flows, which can contribute to
better understanding landscape evolution, be used as input
for natural hazard modelling, and support hazard mitiga-
tion and DRR efforts.

5 Conclusion

Several ways to structure and analyse spatio-temporal vec-
tor data have been proposed within GIScience. Vector data
cubes as outlined in this paper build on top of these con-
cepts. In this study, we presented a proof-of-concept of
the use of vector data cubes for features that evolve in
space and time. We showcased this with examples of ge-
omorphological features, where established methods for
analysing time series at the object level are currently lack-
ing. We expect that the extended use of vector data cubes
outlined in this paper can improve the insights derived
from EO data.
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