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Abstract. The Earth’s ecosystem is facing serious threats
due to the depletion of natural resources and environmen-
tal pollution. To promote sustainable practices and formu-
late effective policies that address these issues, both ex-
perts and non-expert stakeholders require access to mean-
ingful Open Data. Current Earth monitoring programs
provide a large volume of open Earth Observation (EO)
data typically organized and managed in EO Data Cubes
(EODCs). From these datasets, satellite-derived indices
can be calculated for assessing various environmental as-
pects in areas of interest over time. However, current EOs
lack semantics and are isolated from significant Web re-
sources, greatly hindering their comprehension and lim-
iting their use to specialized users. To enhance EO data
with semantic richness and ensure their understanding by
a wider audience, it is pertinent to adopt a Linked Open
Data (LOD) approach. In this paper, we present the Linked
Earth Observation Data Series (LEODS) framework de-
signed to publish aggregated EO data in the LOD Cloud.
LEODS provides a processing chain that converts EO data
into EO-RDF data cubes based on a spatio-temporal mod-
eling approach that ensures integration and future seman-
tic enrichment of EO data while preserving the advantages
of traditional EODCs and following the FAIR principles
(i.e., findable, accessible, interoperable, and reusable).
To highlight the advantages of our proposal, we explore
through SPARQL queries and visualizations, the results of
implementing LEODS with study areas located in Switzer-
land and France.

Keywords. Spatiotemporal data, Knowledge Graphs, Se-
mantic Enrichment, Spatial Aggregation, Data Cube,
Earth Observations

1 Introduction

The Earth’s ecosystem faces imminent dangers from the
depletion of natural resources and pollution of air, soil,
and water. Leading organizations such as the Interna-
tional Union for Conservation of Nature (IUCN)' and
the Intergovernmental Panel on Climate Change (IPCC)?,
along with numerous studies (Schuldt et al. (2020); Sa-
lomon et al. (2022)), constantly highlight the serious con-
sequences of human activities on the environment. In re-
sponse, stakeholders — ranging from policymakers, cit-
izens, associations, and analysts — are increasingly fo-
cused on monitoring and understanding environmental
changes at the local level. This effort, allows them to be
better informed and acquire knowledge for promoting sus-
tainable environmental practices and policies. Therefore,
access to meaningful and comprehensible Open Data is
indispensable for enhancing the understanding and inter-
pretation of climate change trends over time.

Monitoring programs such as US Landsat® and European
Copernicus Sentinel* provide a free and open collection
of satellite data depicting the Earth, also known as Earth
Observation (EO) data. These datasets enable experts to
assess various environmental characteristics in areas of in-
terest, such as monitoring the health of vegetation through
satellite-derived indices as the well-known Normalized
Difference Vegetation Index (NDVI) (Appel and Pebesma,
2019). Due to the enormous amount of EO data, most
state-of-the-art works (Lewis et al., 2017; Giuliani et al.,
2017; Appel and Pebesma, 2019) propose to adopt Earth
Observation Data Cubes (EODCs) (Baumann, 2017) as a
technological solution for storing, managing, accessing,
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and analyzing large EOs (Giuliani et al., 2017). However,
traditional EODCs have two major limitations: (1) their in-
terpretation is usually reserved for specialists even when
metadata is available to explain the satellite-derived in-
dices (Augustin et al., 2019); (2) their relative isolation
from available Web resources supplied by the Open Data
Initiative (Ubaldi, 2013) complicates the proper contextu-
alization and investigation of a study area (Nativi et al.,
2017; Giuliani et al., 2019). Consequently, the expert-
oriented and non-contextualized data available in EODCs
are insufficient to adequately understand environmental
changes over time and their underlying causes.

In order to address these challenges, a paradigm that has
gained popularity in recent decades, known as Linked
Open Data (LOD), offers a comprehensive framework for
describing and connecting Web-based information (Patel
and Jain, 2021; Hogan, 2020; de Sousa, 2023). By lever-
aging Semantic Web (SW) technologies, including stan-
dards like RDF (Resource Description Framework) and
OWL (Web Ontology Language) for ontology modeling,
data can be effectively described and published as Knowl-
edge Graphs (KG) within the LOD Cloud. This approach
not only enhances data accessibility for both humans and
machines (Cyganiak et al., 2014), but also provides ro-
bust support for data integration (Tran et al., 2020b), all
while adhering to the FAIR principles (i.e., findable, acces-
sible, interoperable, and reusable). Therefore, to enhance
EO data with semantic richness, guarantee its understand-
ing by a wider audience, and break down data silos while
introducing causal links between different datasets, it is
pertinent to adopt a LOD approach.

Precisely, the RDF Data Cube (QB) is a SW technology
specifically designed for publishing data in the form of
open-linked data cubes (Richard Cyganiak and Tennison,
2014). This World Wide Web Consortium (W3C) stan-
dard ontology enables the integration of heterogeneous
data sharing common dimensions such as time and space.
Moreover, it facilitates the semantic enrichment of EO data
by linking it to various resources within the LOD Cloud.
Due to its compatibility with the Statistical Data and Meta-
data eXchange (SDMX) standard model 5. the QB vo-
cabulary is extensively utilized by national and interna-
tional statistical agencies, such as those in Scotland® and
France’, for publishing and exchanging socioeconomic
data. However, despite its potential, it is not widely em-
ployed for the publication of EO data, with notable excep-
tions such as the collaboration between the Open Geospa-
tial Consortium (OGC) and the W3C. This initiative fo-
cuses on representing dense raster-level EO data in the
LOD Cloud using the QB vocabulary (Brizhinev et al.,
2017). Nevertheless, it is important to note that this ap-
proach may result in high data storage costs, as each pixel
is stored in the cube.

Ssdmx.org/
Sstatistics.gov.scot/home
"rdf.insee.fr/def/index.html
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Our research aims to effectively leverage the QB vocab-
ulary in conjunction with several SW technologies to ex-
plore their advantages within the EO domain. Therefore,
we introduce the Linked Earth Observation Data Series
(LEODS) framework, which is specifically designed to in-
tegrate and publish aggregated EO data on the LOD Cloud.
LEODS provides and implements a processing chain fo-
cused on transforming EO data into what we call EO-RDF
data cubes. Primarily, our approach aggregates satellite-
derived indices at the lowest administrative division level
to be as close as possible to stakeholders and ensure con-
textualization with local resources. This strategy also helps
to mitigate the high storage costs associated with pixel-
level data. Besides, note that for uniformity in this study,
the term “municipality” is hereafter adopted as the denom-
ination of the lowest administrative division level ®. Sub-
sequently, the framework adopts SW technologies for the
spatiotemporal modeling of the cubes, ensuring their se-
mantic enrichment and integration with various Web re-
sources such as socio-economic, urban, climatic, and leg-
islative texts Finally, to illustrate the benefits of our pro-
posal, we utilize SPARQL queries and visualizations to
explore the results of implementing the LEODS frame-
work in real study areas located in the geographical exten-
sion of Switzerland and part of France. As a result, three
EO-RDF data cubes with hierarchical dimensions: spatial
(municipalities, departments, countries), temporal (daily,
monthly, seasonal, annual), and indices (vegetation, water,
snow, and urbanization) are now available in a SPARQL
endpoint.

Furthermore, LEODS is the first step towards the main
objective of the French-Swiss collaborative project called
TRACES?, that is, to build a Knowledge Graph (KG)
integrating EO data with various data sources (socio-
economic, urban, legislative texts, etc.) to monitor the en-
vironmental evolution of areas of interest.

The article is structured as follows: Section 2 outlines the
related work. Section 3 introduces the LEODS framework
and the entire processing chain it supports. In Section 4,
the study areas and the results obtained are presented. Sec-
tion 5 offers discussions on the paper. Finally, Section 6
concludes the article and presents future work.

2 Related work

As noted by (Augustin et al., 2019; Van Der Meer et al.,
2022), traditional EODC:s store sensor data lacking seman-
tic information. To accurately interpret EO data, a pro-
cess of semantic enrichment is essential, which involves
augmenting EOs with additional contextual information.
Two approaches for semantic enrichment are commonly

8The lowest administrative division level term varies among
regions, e.g., “commune” in France and Switzerland and “munic-
ipality” in Great Britain.

“TRACES project PRCI Franco-Suisse. Funded by ANR and
FNS. Website: traces-anr-fns.imag.fr/
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employed in literature: content-based and ontology-based
methods. Content-based methods specialize in extracting
meaningful features directly from the image content, in-
cluding pixel color information (Augustin et al., 2019),
land cover types (Simoes et al., 2021; Datcu et al., 2003),
and pixel quality (Sudmanns et al., 2021), thus enhanc-
ing the sensor data. On the other hand, ontology-based ap-
proaches (Brizhinev et al., 2017; Lefort et al., 2012; Ayadi
et al., 2022) leverage SW technologies to represent and
augment EO data with Linked Data resources. These latter
methods are described below.

In the LOD paradigm, ontology models, also named as
vocabularies, are used to define domain-specific concepts
and their relationships. During our research, we have iden-
tified several ontologies centered on EO data; the most rel-
evant ones are:

1. The joint W3C and OGC Spatial Data on the Web
(SDW) Working Group developed a set of ontologies
to describe sensors, actuators, observations, proce-
dures, etc. A first module called SOSA (Sensor, Ob-
servation, Sampler, and Actuator)'? and an extension
module called SSN (Semantic Sensor Network)'!.
Although both ontologies can be easily integrated to
support in-depth descriptions related to sensors, the
ontologies may be too complex if a simple sensor de-
scription is needed.

2. The W3C RDF Data Cube Vocabulary (QB)? is a
W3C recommendation for the publishing of mul-
tidimensional data beyond the EO domain in the
form of open-linked data cubes. The QB vocabulary
is aligned with OLAP (Online Analytical Process-
ing) concepts, allowing efficient storage, manage-
ment, and accessibility of the data. Although the vo-
cabulary is widely used in socio-economic domains,
a mis-modeling of its components (e.g., dimensions,
measures, and attributes) can lead to silos of cubes
that cannot be reused in LOD Cloud resulting in ma-
jor isolation problems.

3. The Agricultural Information Model (AIM) is an on-
tology developed in the framework of the Horizon
2020 DEMETER project Palma et al. (2022). The
goal of AIM is to enable information interoperabil-
ity between data domains such as agricultural data,
EO data, and meteorological data by using state-of-
the-art ontologies such as SNN/SOSA, GeoSPARQL,
and OWL-Time. At the moment AIM remains under
development and is expected to be approved as an
OGC standard in the future.

Later, with or without relying on the ontologies above, sev-
eral initiatives to publish EO data in the LOD Cloud were
proposed, including those of TELEIOS and LEO projects

10w3.org/ns/sosa/
'w3.org/ns/ssn/
12w3.0rg/TR/vocab-data-cube/
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(Koubarakis et al., 2014). In both studies several tools,
such as Geotriples and Sextant (Nikolaou et al., 2015;
Kyzirakos et al., 2018), and ontologies such as stRDF
(Koubarakis and Kyzirakos, 2010) were developed to man-
age big EO data. Specifically in (Koubarakis et al., 2016),
the authors propose to use the stRDF ontology to publish
satellite image data in the LOD Cloud. However, their ap-
proach is limited to using SW technologies to publish only
satellite image metadata (e.g., time of acquisition and ge-
ographical coverage) as LOD, while ignoring the publi-
cation of other relevant information such as environmen-
tal indices that can be calculated from the imagery. In the
work of (Tran et al., 2020a, b), the authors argue that raster
data is not human-readable and that SW ontologies can
be used for the integration of data calculated from raster,
e.g., land cover indices, change indicators, etc. Thus, as
a first contribution, they propose a network of ontologies
that allows the representation of such data in the LOD
Cloud. Among the ontologies, they reuse the SOSA vocab-
ulary to describe raster observations, and the TSN (Territo-
rial Statistical Nomenclature Ontology)'? and OWL-Time
ontologies to associate spatio-temporal concepts. Subse-
quently, a methodology is introduced to extract features
from the pixel data and map them to the semantic model.
Although a network of ontologies seems to be the most ap-
propriate approach to comply the LOD vision, this specific
work does not use the QB ontology despite being a stan-
dard recommendation suitable for modeling and integrat-
ing heterogeneous spatio-temporal data. QB has already
been used to organize data of various natures in the LOD
Cloud, such as medical data (Leroux and Lefort, 2012; Ro-
driguez and Hogan, 2021; Casey et al., 2022), historical
data (Bayerl and Granitzer, 2015) and especially socio-
economic data'* due to its compatibility with the SDMX
model. However, despite the benefits of the QB vocabu-
lary, it is rarely used in the field of EO data. In the follow-
ing, we describe the limited works found in the literature
that adopt an ontology network approach involving QB to
publish and enrich EO data in the LOD Cloud.

In (Brizhinev et al., 2017), the W3C and the OGC consor-
tia introduced a method for publishing EO raster data us-
ing ontologies such as QB, SNN, and GeoSPARQL. The
proposal describes how dense geospatial raster data can
be organized in the dimensions of the cube: latitude, lon-
gitude, and time, and also explains how pixel metadata
and their provenance can be attached to their components.
However, within this approach, data is published pixel by
pixel, which is very costly in terms of data storage. Fur-
thermore, it would be more appropriate to publish aggre-
gated data at the lowest administration level, e.g., munici-
palities, which are meaningful to stakeholders and enable
an adequate contextualization of a given area with com-
plementary resources such as socio-economic ones. The
works of Lefort et al. (2012); Ayadi et al. (2022) describe

Blig-tdcge.imag fr/tsn/index.html
14Scotland: statistics.gov.scot/home and France: rdf.insee.fr/
def/index.html
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a similar approach to represent meteorological data such
as temperature and humidity as LOD to monitor climate
variability and capture its behavior. Among the reused on-
tologies, the QB vocabulary is used to create spatiotem-
poral slices of meteorological observations enriched with
statistical attributes. In addition, both methods leverage the
SSN ontology to perform a more tailored description of the
observations, such as sensor-related features and data col-
lection methodology. Although this procedure granularly
and technically contextualizes the EOs, the result is a data
cube restricted to represent only meteorological data. We
believe that this part of their approach diverges from our
objective, since non-expert stakeholders are not concerned
with such a low level of granularity description of the ob-
servations and the lack of such data does not affect the
interpretation of the environmental evolution.

In our work, we are interested in opening up EO data for
wide audiences by reusing standard semantic models in-
cluding the RDF data cube. Unlike most of the related
work described above, our focus is neither on the simple
representation of metadata as LOD nor on the treatment
of EO data at the raster level. Instead, we focus on pub-
lishing satellite-derived indices aggregated at the lowest
administrative division level, to be as close as possible to
expert and non-expert stakeholders interested in the en-
vironmental aspects of their municipalities. Therefore, a
specific framework is needed to describe how to prepro-
cess, model, publish, and explore aggregated EO spatio-
temporal data on the LOD Cloud. The approach should
adopt a multidimensional modeling generic enough (a) to
be applicable to any globally measured EO data and (b)
to ensure the integration, through shared spatiotemporal
dimensions, with data cubes published in domains other
than EO.

3 The LEODS framework

In this section, we present the LEODS framework, which
supports the transformation of EO data into RDF data
cubes; while assuring its future integration and enrichment
with several Web resources. As illustrated in Figure 1,
LEODS covers a processing chain that: (1) aggregates EO
data, initially at the pixel level, to the municipality level,
(2) designs a multidimensional model that gives structure
to the data cubes, (3) instantiates the model and publishes
the data as EO-RDF data cubes on the LOD Cloud, and
(4) provides users with predefined SPARQL queries to ex-
plore the open-linked data cubes. In the following subsec-
tions, each step of the LEODS framework is explained.

3.1 Step 1: EO data preparation

The initial phase of our framework focuses on aggregat-
ing EO data from pixel to municipality level, aiming to
(1) be as close as possible to the stakeholders, (2) ensure
municipalities contextualization with available local Web
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resources, and (3) manipulate multidimensional structured
data. This process begins with satellite image acquisition
for a specified study area and observation period, followed
by essential preprocessing steps like geometric correction
and denoising. The spatial aggregation occurs at the lowest
administrative division level, i.e., the municipality level,
where derived environmental indices, such as NDVI, are
calculated with various temporal aggregations like sea-
sonal and annual. Zonal statistical methods, such as mean
and standard deviation (std) calculations, are then applied
to summarize the data for each index. Finally, the prepro-
cessed data are delivered as vector time-series stored in
tabular files. This phase is optional if the user is directly
working with time series of EO vectors.

3.2 Step 2: Modeling EO semantic data cubes

The LEODS framework’s second step focuses on model-
ing the Data Structure Definition (DSD) of the QB on-
tology to encapsulate the essential characteristics of EO
data into RDF data cubes. To achieve this, our first objec-
tive is to link the EO vector time-series values, obtained
previously, with the components of the DSD. These com-
ponents include: (1) Observations: Representing the ob-
served values in the dataset. (2) Dimensions: Observations
can be organized along two or more dimensions. Given
the nature of EO data, standard dimensions like space and
time are essential. Additionally, domain-specific dimen-
sions, such as environmental indices derived from satellite
imagery, should be incorporated. It is advisable to refer to
the list of standard dimensions'> provided by the SDMX
model to determine if tabular values can be mapped as di-
mensions. We also suggest defining the dimensions with a
hierarchical structure to allow essential SPARQL queries
when exploring the data. (3) A#tributes: Provide context to
observations. For instance, the value 50 becomes mean-
ingful when associated with attributes like hectares (HA).
The QUDT vocabulary'® offers a range of attributes that
can be readily reused. (4) Measures: Refer to the specific
phenomenon observed and are closely related to attributes.
In the EO data domain, typical measures include zonal
statistics (e.g., mean, std), land cover surface, and land sur-
face temperature. SDMX provides a list of standard mea-

sures'’, simplifying the identification of this component.

Once the DSD components have been identified, it is nec-
essary to describe the data itself using standard ontologies
that specify the dimensions of the data. Examples of rel-
evant ontologies include: (1) The OWL-Time ontology'$,
developed by the W3C, as a standard for representing tem-
poral information in the LOD Cloud. It defines classes and
properties for describing time-related concepts such as in-
stants, intervals, and durations. (2) The GeoSPARQL on-

3 purl.org/linked-data/sdmx/2009/dimension
16 qudt.org/vocab/unit/

17purl.org/linked- data/sdmx/2009/measure
8w3.org/TR/owl-time/
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Figure 1. Pipeline of the LEODS framework.

tology'®, developed by the OGC, as a standard for repre-
senting and querying geospatial data in the Semantic Web.
GeoSPARQL allows the integration of geospatial data
with other linked data sources, facilitating spatial analy-
sis and reasoning. (3) The Territorial Statistical Nomencla-
ture (TSN) ontology is the outcome of our prior research
(Bernard et al., 2018). It focuses on the semantic repre-
sentation of geographic divisions, including administrative
units such as regions, districts, and municipalities, as well
as their temporal evolution. (4) The Simple Knowledge
Organization System (SKOS)? is a widely used ontology
for representing hierarchies systems such as thesauri and
taxonomies. It provides a set of classes and properties to
describe concepts, labels, and relationships between con-
cepts.

Furthermore, it is recommended to enhance the cube com-
ponents with basic semantics. For example, connecting the
spatial dimension to official geographic KGs available in
the LOD Cloud can provide a more detailed characteri-
zation of municipalities. Additionally, including metadata
that describes and provides context about the components,
such as their provenance and meaning, improves inter-
pretability and reusability

DSD modeling is a crucial step and some criteria should
be considered during the process: (a) the model must be
generic enough to ensure integration with heterogeneous
data sharing standard dimensions such as time and space
and to be applicable to any globally measured EO data be-
yond environmental indices, and (b) the cube components
should be properly defined and reusable as possible to mit-
igate the silos of RDF data cubes.

3.3 Step 3: Publishing EO semantic data cubes

After modeling the structure of the RDF data cubes, the
next step consists of the semi-automatic transformation of
the EO vector time-series into EO-RDF data cubes follow-
ing the modeled DSD. This process can be facilitated us-
ing tools such as the RDFlib library?!, the Open Refine

1% opengeospatial.org/standards/geosparg]
y3.0rg/2004/02/skos/
2! rdflib.readthedocs.io/en/stable/
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tool??, the RDF mapping language??, and the command-
line tool Tarql?*. Open Refine supports the RDF language
as an extension, allowing the instance of basic components
of the model. However, we recommend using it for an
initial interaction process with QB components and RDF
syntax, as the tool can be restrictive during implementa-
tion. For greater flexibility, we suggest using the RDFlib
library to instantiate the full conceptual model of the cubes
(the DSD) in RDF triples using Python; which simplifies
the RDF syntax. Then, ad-hoc Tarql scripts can be imple-
mented to automatically convert the observations, in tab-
ular files, to RDF files following the DSD cube model.
Subsequently, both the instantiated model and the observa-
tions files can be concatenated into a single file containing
EO-RDF data cubes. Then, to fully comply with the vision
of the LOD paradigm, the produced linked cubes must be
published and made accessible to interested stakeholders
through a SPARQL endpoint, a Web service that enables
the querying of RDF data.

3.4 Step 4: EO semantic data cubes exploration

Finally, once the EO-RDF data cubes are accessible, it
is crucial to initiate the exploration phase, demonstrat-
ing how to extract meaningful information from these
cubes. For this aim, we propose to use the GraphDB
tool®, which, in addition to storing triples, includes a LOD
graph visualization module. This visualization is essential
for discovering and navigating through the cube compo-
nents. GraphDB also supports SPARQL and GeoSPARQL
queries, essential for manipulating and retrieving informa-
tion from EO-RDF data cubes. Thus, to facilitate analy-
sis and interpretation, we suggest providing users with a
set of predefined queries that exploit the advantages of the
implemented cube model. Greater diversity in the queries
enhances the chances for interested users, experts or non-
experts, to comprehend the breadth of information that can
be extracted from the EO-RDF data cubes.

22 openrefine.org/

2 rml.io/specs/rml/

2* tarql.github.io/
 graphdb.ontotext.com/

50f 12


opengeospatial.org/standards/geosparql
w3.org/2004/02/skos/
rdflib.readthedocs.io/en/stable/
openrefine.org/
rml.io/specs/rml/
tarql.github.io/
graphdb.ontotext.com/

4 TImplementing the LEODS framework

4.1 Study area selection process

The TRACES project partners are the creators of the
Swiss Data Cube (SDC), a well-known EODC providing
analysis-ready data on the geographical extent of Switzer-
land and part of France since 1984 (Giuliani et al., 2017).
Therefore, by following the LEODS framework’s process-
ing chain, we initially identified three significant study ar-
eas within the SDC: Evian in France, Fribourg in Switzer-
land, and Grand-Geneva, situated along the border of both
countries. Through preprocessing and spatial aggregation
of the selected images, we obtained a total of 365 munic-
ipalities across the three study areas: 37 in Evian, 127 in
Fribourg, and 201 in Grand-Geneva. Subsequently, we cal-
culated three families of environmental indices: (a) Land-
sat land cover characterization indices (LIS), (b) Land-
sat land surface temperature indices (LST), and (c) Land
cover indices based on the standard Corine nomenclature
(CLC) (See Table 1). LIS and LST indices are accessible
as seasonal data from 1985 to 2022, providing approxi-
mately 152 observations per index (4 observations per year
over 38 years). Zonal statistics, including mean, std, and
data quality features, were computed for both families.
Contrarily, the CLC dataset only provides 5 observations
for the years 1990, 2000, 2006, 2012, and 2018. Although
lacking zonal statistics, it does offer calculations of land
cover area occupation in hectares (HA) and percentages
(%). After completing the processing steps the data was
delivered as EO vector time-series in CSV files (Refer Fig-
ure 2). Further information on the indices can be found in
our repository (Milon-Flores et al., 2024).

4.2 Conceptual model of EO-RDF data cubes

The second phase of our framework involves modeling the
structure of EO-RDF data cubes. As outlined in Section
3, the Time and Space dimensions are inherent to evolv-
ing EO data. Hence, we aim to identify the tabular val-
ues that best correspond to the cube components. In Fig-
ure 2, we readily identify the tunit_code as the val-
ues aligning with the Spatial dimension. Specifically, this
column denotes the codes assigned to the selected munic-
ipalities, where "FR" indicates French municipalities and
"CH" indicates Swiss municipalities. To ensure seamless
integration and enrichment within the cubes, we find it ap-
propriate to associate the spatial dimension with the TSN
ontology. Consequently, each municipality inherits prop-
erties such as t sn:name and tsn: code, enhancing its
description. Continuing, we identify the concepts of date
and season as time-related. However, since the stan-
dard OWL-Time ontology lacks seasonal concepts such as
spring and summer, we create and extend these concepts in
the ontology to fully represent the temporal dimension of
the cube. Subsequently, we identify the var column as our
domain-specific Indices dimension. During our research,

AGILE: GlIScience Series, 5, 11, 2024 | https://doi.org/10.5194/agile-giss-5-11-2024

Space Tlms. Indices Measures (attributes)

4 4 4 4

LIS_id | tunit_code date season var qual (%) | mean (-) std (-)
1 CH2061 | 1985-01-15 DJF NDGlal 1 0.01 0.02
2 CH2338 | 1985-07-15 JUA swi 1 0.05 0.09
3 |CLC_id| tunit_code ‘ date var land cover (ha) | land cover (%)
1 FR74001 1990-12-31 cle_11 86 1.46
2 FR74005 1990-12-31 cle_11 199 13.19
3 FR74013 1990-12-31 cle_11 210 45.36

Figure 2. Identifying the QB components in the LIS and CLC
tabular files. The column tunit_code denotes the municipal-
ity codes and is aligned with the spatial dimension. The columns
date and season pertain to the temporal dimension. The
columns var describe the indices obtained for each dataset. Cor-
respondingly, qual, mean and std represent statistical mea-
sures derived from the LIS satellite indices aggregated at the
municipality level. In contrast, land cover (HA) and land
cover (%) denote, respectively, the number of hectares and
the percentage of hectares within municipalities for the class c1c
in the CLC dataset.

Administrative]
Dhvision Level 1 |==p| Level2 |=»| Level...

l:lqr:::".
Space
e=iTime Indices<
) T ]
\DSD-LIS \DSD—LST \DSD-CLC
g*mean (=) § *mean (°C) § * land cover
& *std (-) 8 *std (°C) 8 area
2 *quality (%) 2 *quality (%) 2 (HA) (%)

Figure 3. Final DSD design of the three EO-RDF data cubes.

we discovered the lack of an ontology dedicated to the
description of satellite indices. Therefore, leveraging the
SKOS vocabulary, we have developed and enriched a the-
saurus covering the full range of indices. Later, we tailor
each dimension to be hierarchical, meaning the Spatial di-
mension is organized as "municipalities, departments, and
countries", the Temporal dimension is organized as "daily,
monthly, seasonal, and annual", and the Thematic indices
as "low-level indices, application domain, environmental
indices, and overall indices". Note that special attention is
dedicated to the Indices dimension to ensure its generality,
allowing for the integration of indices beyond the scope
of EO (e.g., population, sensing instruments, etc.) into the
cube. In identifying measures and attributes for CLC, we
easily categorize the Land Cover Area measure with
two units (HA and %). Whereas, for LIS and LST, we
identify three common measures: mean, std, and data qual-
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indices

Indice family ion domain | Indice Name Total number of indices
NDVI ‘ Normalized Difference Vegetation Index
NDWI [ Normalized Difference Water Index
Water
L Urt NDBI ‘ Normalized Difference Built-Up Index 20
r
NDSI | Normalized Difference Snow Index
Snow
LST Temperature st Surface Temperature 1
cLC Land cover cle-11 | Urban fabric s

Table 1. Three families integrate the selected environmental in-
dices for our case study: LIS, LST and CLC.

ity, each associated with various attributes such as temper-
ature in degrees Celsius (°C), percentage (%), and unitless
values (-)°. For this reason, we instantiate three DSDs to
preserve the diverse units within the same data cube. Fig-
ure 3 illustrates the final conceptual model of our EO-RDF
data cubes, encompassing hierarchical dimensions, mea-
sures, attributes, and reused ontologies. Finally, metadata
and LOD connections are incorporated to enrich and con-
textualize the cube components. A significant contribution
lies in the provided metadata for the indices. Since there
is limited information available on expert-oriented indices
like NDBI on the LOD Cloud, descriptions, calculation
formulas, and bibliographic citations have been added to
semantically enrich each index. A similar process is con-
ducted for the municipalities by establishing connections
to LOD resources available in official statistical agencies.
Specifically, Swiss municipalities are linked to the Fed-
eral Statistical Office (FSO)>’ SPARQL endpoint, while
French municipalities are associated with data from both
the National Institute of Statistics and Economic Studies
(INSEE)?® and the National Institute of Geographic Infor-
mation (IGN), the latter being semantically described and
hosted in the GeoChange repository?’. As a result, besides
enriching the EO data, the linking process also enables the
acquisition of valuable information absent in the original
dataset.

4.3 Production of EO-RDF data cubes

To instantiate the cubes semi-automatically, Python and
Targl scripts have been implemented and executed. The
scripts specifically map values from tabular files to RDF
files following the modeled structure. As a result, three
EO-RDF data cubes, in addition to preserving all the ad-
vantages of traditional EODCs, now organize multidimen-
sional Linked Data that integrates basic semantics, such
as metadata and connections to LOD resources. This sig-
nificantly contributes to their enrichment and reuse. The

25LIS measurements are unitless because they are calculated
as aratio of differences between two spectral bands, and the units
are canceled during the calculation.

Tbfs.admin.ch/bfs/en/home.html

Binsee.fr/fr/accueil

®ge0.1d.admin.ch/query
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cubes have been stored in a GraphDB triple store, where
users can access them through a SPARQL endpoint®.

4.4 Spatio-temporal SPARQL queries for linked
data exploration

The last step of the framework consists in explor-
ing the produced EO-RDF data cubes. SPARQL and
GeoSPARQL queries can be used to retrieve relevant in-
formation from them. As part of our methodology, we aim
to provide stakeholders with predefined SPARQL queries
that facilitate the exploration of the open link cubes. Al-
though our current focus in this study is spatio-temporal
queries, we have implemented different types of queries
currently accessible in a GitHub repository (Milon-Flores
et al., 2024). The repository hosts basic queries to re-
trieve cube components such as dimensions, measures
and attributes, as well as more advanced queries that ex-
ploit the hierarchical components of the cubes to per-
form OLAP operations such as Drill-down and Roll-up.
As an initial query, the Listing 1 code retrieves enriched
metadata related to the indices. Specifically, Table 2 sam-
ples metadata for NDVI, including essential links to well-
known LOD databases such as Wikidata (Vrandec¢i¢ and
Krotzsch, 2014) and DBpedia (Auer et al., 2007), along
with a link to the GeoNetwork catalog provided by the
TRACES team 3'. This enrichment process has been ap-
plied to all the indices investigated in this research, which
represents a significant contribution of our work.

SELECT ?property ?metada
WHERE {
?TI skos:hasTopConcept ?TIenv.
?TIenv skos:narrower ?domain.

?domain skos:narrower ?indices.
?indices ?property ?metada
FILTER (?indices = traces-codelist:NDVI)

Code Listing 1. SPARQL query that retrieves indices metadata.

property metadata

owl:sameAs wikidata.org/wiki/Q718775

dct:description "NDVI is the most common vegetation index in remote ..."

dct:description "Formula: (N - R)/(N + R) ; Bands: ["'R","N"] ; Bands ..."

skos:exactmatch traces-gn.unepgrid.ch/geonetwork/...

dct:bibliographicCitation ntrs.nasa.gov/citations/19740022614

Table 2. Output of the SPARQL query presented in Listing 1.

Regarding the implemented spatio-temporal queries, in the
following listings, we present two queries that demonstrate
the strengths of our final EO-RDF data cube design by re-
trieving geo-spatial information not present in the origi-
nal dataset and by manipulating all the dimensions of the
data cubes. Specifically, Query 2 retrieves the geographic
coordinates of the municipalities belonging to the Grand-
Geneve case study (Table 3). Since we have enriched each

3steamerlod.imag.fr/repositories/TRACES
3ltraces-gn.unepgrid.ch/geonetwork/srv/fre/catalog.search#
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municipality with official LOD resources, we can connect
to the SPARQL endpoints of FSO (Swiss municipalities)
and GeoChange (French municipalities) and run a feder-
ated GeoSPARQL query to extract their spatial coordi-
nates. The reader should note that this information was
not present in the original dataset and that, due to the LOD
connections, the data is no longer isolated. This is one of
the fundamental principles of the LOD paradigm.

SELECT DISTINCT ?name ?code ?coordinates
WHERE {
?area sett:studyArea traces-geo:GrandGeneve;
tsn:hasName ?name;
tsn:hasIdentifier ?code;
owl:sameAs ?bounderies.
SERVICE <steamerlod.imag.fr/repositories/
geochange?>

?bounderies geo:hasGeometry ?geometryFR.
?geometryFR geo:asWKT ?coordinates.

}

SERVICE <geo.ld.admin.ch/query>

{
?bounderies geo:hasGeometry ?geometryCH.
?geometryCH geo:asWKT ?coordinates.

Code Listing 2. GeoSPARQL query that retrieves the geographic

coordinates of municipalities in Grand-Geneve.

name code coordinates
"Allinges" | "FR74005" | "POLYGON ((6.450841005360..))
"Armoy" | "FR74020" | "POLYGON ((6.450841005360..))
"Cervens" | "FR74053" | "POLYGON ((6.450841005360..))

Table 3. Output of the SPARQL query presented in Listing 2.

Later, we perform a slice-type query (Listing 3) in which
the spatial dimension is fixed on the community of Grand-
Geneve, the temporal dimension is fixed on the year 1985,
and the indice dimension is fixed at NDVI to retrieve the
average mean values of the selected slice (Table 4). Then,
by using the Python Folium library*?, we can plot the re-
trieved coordinates and average NDVI values of the mu-
nicipalities on a heat map. Thus, to generate the final chart
depicted in Figure 4, we have run the query multiple times,
each time varying the year value, specifically 1985, 2010,
and 2022, to enable temporal comparison. The initial find-
ings reveal a notable expansion of vegetation across vari-
ous landscapes, notably in natural, agricultural, and moun-
tainous areas, as indicated by the darker green coloring.
Moreover, there is a significant increase in the average
vegetation values, rising from a maximum of 50% to 65%
in recent years. To better explain the underlying factors
driving this vegetation surge, works such as (Obuchow-

32python-visualization.github.io/folium/latest/#
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icz et al., 2023) suggest exploring the correlation between
NDVI and other indices, such as surface temperature.

SELECT ?name ?code
WHERE {
?obs rdf:type gb:Observation;
:dataSet :Seasonaly-LIS-dataset;
:dimensionArea ?area;
:dimensionTime ?time;
:dimensionIndice codelist:NDVI;
:measureMeanUnitless ?mean.
?area sett:studyArea traces-geo:GrandGeneve;
tsn:hasName ?name;
tsn:hasIdentifier ?code.
?time time:year "1985"""xsd:gYear.
}
GROUP BY ?name ?code
ORDER BY 7?name

(AVG (?mean) AS ?avgmean)

Code Listing 3. SPARQL query that calculates the average NDVI
values in the municipalities of Grand-Geneve in 2022.

name code avgmean
"Aire-la-Ville" | "CH6601" | "0.40374833""xsd:float
"Allinges" "FR74005" "0.5516""xsd:float
"Amancy" "FR74007" | "0.5443302""xsd:float
"Ambilly" "FR74008" | "0.37145054"~xsd:float

Table 4. Output of the SPARQL query presented in Listing 3.

Therefore, we have to perform a variation of the previ-
ous slice-type query by exploiting the LST dataset and
calculating the mean surface temperature in the Grand-
Geneve community during the same periods (i.e., 1985,
2010, and 2022). Figure 5 illustrates that urban municipal-
ities, depicted in dark red, have experienced a pronounced
increase in temperature, while in mountainous regions the
phenomenon, known as "Elevation Dependent Warming"
(mou, 2015), is observed; i.e., temperature increases are
more significant at higher elevations as the climate warms.
As for average temperature values, considerable changes
have been observed over the years. The minimum temper-
ature has risen from -2°C in 1985 to 5°C in 2022, while
the maximum temperature has increased from 12°C to
17°C. In addition, a clear visual correlation is observed
between NDVI and temperature variables. This correlation
suggests that increased vegetation activity or productivity
is observed as a consequence of increased temperatures;
in other words, higher temperatures create more favorable
conditions for vegetation growth.

To conclude the exploration phase, in addition to SPARQL
queries, users can also exploit GraphDB’s visual interface
to analyze the stored data. Thus, we strongly encourage in-
terested users to visually explore the EO-RDF data cubes
to deepen their understanding. For illustration, Figure 6
provides an overall view of the cube structure with real EO
data. In particular, we can observe how the observations
are interconnected in the cube through its shared dimen-
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Figure 4. Average NDVI values in the municipalities of Grand-Geneve over the years 1985, 2010, and 2022 respectively.
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Figure 5. Average surface temperature in the municipalities of Grand-Geneve over the years 1985, 2010, and 2022 respectively.

sions, which are also connected to various LOD resources. without incurring the high storage costs associated with
Hence, through the effective utilization of queries and vi- pixel-level data storage. Furthermore, recent studies such
sualization, one can obtain insights that support the im- as (Obuchowicz et al., 2023; Poussin et al., 2021) have
plementation of sustainable environmental practices and successfully demonstrated the wealth of information that
policies. can be obtained at a national scale. These studies highlight

the significance of capturing local environmental changes
for informing policy decisions. However, one consequence
of data aggregation is the loss of information. Common
zonal statistics, such as standard deviation, may not be
suitable for accurately analyzing the data. Therefore, spe-
cific strategies need to be employed to address this draw-

5 Discussion

5.1 Advantages and limitations of aggregating pixel

EO data back. For instance, the incorporation of more sophisticated
zonal statistics, including metrics such as z-score, mode,

The aggregation of EO data at the municipality level of- minimum, and maximum, can provide a more detailed pic-
fers numerous advantages. First, the information obtained ture of the environmental indices. Additionally, generat-
allows us to be as close as possible to the stakeholders, ing new EO-RDF data cubes at the Urban administration
in particular citizens and policymakers interested in the  jeye] can offer another avenue to compensate for informa-
environmental aspects of their municipality. In addition,  jon Joss. Finally, in cases where users need more detailed
by aggregating EO data, one can ensure its enrichment  gata, they can access the pixels stored in the SDC through
with local resources (such as legal text and urban plan- the enriched LOD connections of the indices (i.e., by ac-
ning), thus providing a more detailed characterization of  (egsing the GeoNetwork catalogue). Whit these strategies,
the municipalities. Importantly, this aggregation facilitates  we aim to mitigate the limitation of our approach while

comparative analyses of different municipalities over time,
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Figure 6. Overview of the EO-RDF data cubes structure. The three generated datasets are interconnected through their DSD. In turn,
each dataset (e.g., Seasonally-LIS-dataset) comprises a series of observations (e.g., Obs1000000) with its corresponding dimensions,
i.e., space (CH5859), time (2020/10/15), and indices (Visible Atmospherically Resistant (VAR)).

maximizing the utility of aggregated EO data for various
stakeholders.

5.2 Adaptability to dynamic municipal boundaries

The boundaries of geographic territories such as munic-
ipalities change over time. For this reason, we use our
TSN and TSN-Change?? ontologies for the description of
territorial units and their changes over time (e.g., name
changes, code changes, mergers of two municipalities or
divisions, etc.). This approach allows us to represent in the
graph the evolutionary trajectories of these administrative
units, along with their associated environmental changes.
Furthermore, it is worth mentioning to interested users
that, in this work, Swiss municipalities’ boundaries cor-
respond to the 2022 version, while French municipalities
correspond to the 2019 version. Information related to the
different versions of the municipalities such as popula-
tion, boundaries coordinates, etc, can be accessed through
SPARQL queries. Basic examples are currently available
in our repository (Milon-Flores et al., 2024).

6 Conclusions and future work

In this paper, we presented the LEODS framework, fo-
cused on the integration and semantic enrichment of EO
data in LOD Cloud. Through a processing chain, our
framework describes how to embody EO data into open-
linked data cubes. During the process, EO data, originally
at the pixel level, was aggregated at the lowest adminis-

33ig-tdcge.imag.fr/tsnchange/index.html
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trative division level to be closer to stakeholders and en-
sure its contextualization with other local Web resources.
Subsequently, a careful modeling of the cubes was con-
ducted generically enough to ensure their future integra-
tion with heterogeneous data sharing spatiotemporal di-
mensions and with various indices beyond the EO domain.
To illustrate the advantages of our approach, we have im-
plemented the LEODS framework with real study areas.
As a result, three EO-RDF data cubes, not longer iso-
lated but enriched with metadata, connected to various
LOD resources, following FAIR principles, and preserv-
ing the advantages of traditional EODCs are now avail-
able to stakeholders in a SPARQL endpoint. The struc-
ture of the cubes incorporates a model generic enough to
guarantee its integration with other resources through its
spatio-temporal dimensions, as well as to ensure the inclu-
sion of indices beyond the scope of the EO. Furthermore,
predefined queries were provided to stakeholders to facil-
itate their exploration and analysis of the data. We expect
that both expert and non-expert users can benefit from our
approach. As an example, the produced cubes, incorporat-
ing relevant information on the environmental aspects of
the selected municipalities, can be consulted and explored
by analysts, citizens, policymakers, or interested organiza-
tions to propose effective environmental policies. In future
work, we aim to use the EO-RDF data cubes as a first step
in creating a KG that describes the environmental trajecto-
ries of municipalities. Additionally, we intend to add more
indices to our existing EO-RDF data cubes and to continue
to enrich them with new LOD resources.
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7 Data and Software Availability

All three EO-RDF data cubes, in Turtle format,
are available at github.com/DanielaFe7-personal/
Traces-EO-RDF-data-cubes with a permissive li-
cense. Supplementary material, such as SPARQL queries
and relevant information about the used dataset, is also
available in the GitHub repository. In addition, the knowl-
edge graph is available in an open SPARQL endpoint
(steamerlod.imag.fr/repositories/TRACES) based on a
publicly accessible GraphDB repository>* (version 8.4.1).

8 Appendix

8.1 Glossary

AIM Agricultural Information Model
CLC Corin Land Cover
DSD Data Structure Definition

EO Earth Observation

EODC Earth Observation Data Cube

FAIR Findable, Accessible, Interoperable, and Reusable
FSO Federal Statistical Office

HA Hectares

INSEE National Institute of Statistics and Economic Studies
IGN National Institute of Geographic Information

IUCN International Union for Conservation of Nature
IPCC Intergovernmental Panel on Climate Change

KG Knowledge Graph

LEODS Linked Earth Observation Data Series
LIS Landsat land cover indices

LOD Linked Open Data

LST Landsat land surface temperature indices
NDBI Normalized Difference Built-Up Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NDSI Normalized Difference Snow Index
0OGC Open Geospatial Consortium

OWL Web Ontology Language

QB RDF data cube

RDF Resource Description Framework

SDC Swiss Data Cube

SDMX Statistical Data and Metadata eXchange
SDW Spatial Data on the Web

SKOS Simple Knowledge Organisation System
SOSA Sensor, Observation, Sampler, and Actuator
SSN Semantic Sensor Network

ST Surface Temperature

Sw Semantic Web

TSN Territorial Statistical Nomenclature Ontology
VAR Visible Atmospherically Resistant Index
W3C World Wide Web Consortium

**http://steamerlod.imag.fr/

AGILE: GlIScience Series, 5, 11, 2024 | https://doi.org/10.5194/agile-giss-5-11-2024

References

Elevation-dependent warming in mountain regions of the world,
Nature climate change, 5, 424-430, 2015.

Appel, M. and Pebesma, E.: On-demand processing of data cubes
from satellite image collections with the gdalcubes library,
Data, 4, 92, 2019.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R.,
and Ives, Z.: DBpedia: A Nucleus for a Web of Open Data, in:
The Semantic Web, edited by Aberer, K., Choi, K.-S., Noy,
N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika,
P, Maynard, D., Mizoguchi, R., Schreiber, G., and Cudré-
Mauroux, P., pp. 722-735, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

Augustin, H., Sudmanns, M., Tiede, D., Lang, S., and Baraldi,
A.: Semantic Earth observation data cubes, Data, 4, 102, 2019.

Ayadi, N. Y., Faron, C., Michel, F., Gandon, F., and Corby, O.: A
Model for Meteorological Knowledge Graphs: Application to
Météo-France Data, in: ICWE 2022-22nd International Con-
ference on Web Engineering, 2022.

Baumann, P.: The Datacube Manifesto, available at earthserver.
eu/tech/datacube-manifesto, 2017.

Bayerl, S. and Granitzer, M.: Data-transformation on historical
data using the RDF data cube vocabulary, in: Proceedings of
the 15th International Conference on Knowledge Technolo-
gies and Data-driven Business, pp. 1-8, 2015.

Bernard, C., Villanova-Oliver, M., Gensel, J., and Dao, H.: Mod-
eling Changes in Territorial Partitions Over Time: Ontologies
TSN and TSN-change, in: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, SAC ’18, pp. 866—
875, ACM, https://doi.org/10.1145/3167132.3167227, 2018.

Brizhinev, D., Toyer, S., Taylor, K., and Zhang, Z.: Publishing
and using Earth observation data with the RDF data cube and
the discrete global grid system, W3C Working Group Note
and OGC Discussion Paper W3C, 20170928, 16125, 2017.

Casey, S., Doody, P, and Shields, A.: An Ontology-
Based System for Cancer Registry Data, in: 2022 33rd
Irish Signals and Systems Conference (ISSC), pp. 1-6,
https://doi.org/10.1109/ISSC55427.2022.9826197, 2022.

Cyganiak, R., Wood, D., and Lanthaler, M.: RDF 1.1
Concepts and Abstract Syntax, https://www.w3.org/TR/
rdf11-concepts/, 2014.

Datcu, M., Daschiel, H., Pelizzari, A., Quartulli, M., Ga-
loppo, A., Colapicchioni, A., Pastori, M., Seidel, K.,
Marchetti, P, and D’Elia, S.: Information mining in remote
sensing image archives: system concepts, 41, 2923-2936,
https://doi.org/10.1109/TGRS.2003.817197, 2003.

de Sousa, L. M.: Spatial Linked Data Infrastructures, Zenodo,
https://doi.org/10.5281/zenodo.10113504, 2023.

Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.-
P., Allenbach, K., Dao, H., and Peduzzi, P.: Building an earth
observations data cube: lessons learned from the swiss data
cube (sdc) on generating analysis ready data (ard), Big Earth
Data, 1, 100-117, 2017.

Giuliani, G., Masé, J., Mazzetti, P., Nativi, S., and Za-
bala, A.: Paving the Way to Increased Interoper-
ability of Earth Observations Data Cubes, Data, 4,
https://doi.org/10.3390/data4030113, 2019.

11 0f 12


github.com/DanielaFe7-personal/Traces-EO-RDF-data-cubes
github.com/DanielaFe7-personal/Traces-EO-RDF-data-cubes
steamerlod.imag.fr/repositories/TRACES
http://steamerlod.imag.fr/
earthserver.eu/tech/datacube-manifesto
earthserver.eu/tech/datacube-manifesto
https://doi.org/10.1145/3167132.3167227
https://doi.org/10.1109/ISSC55427.2022.9826197
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1109/TGRS.2003.817197
https://doi.org/10.5281/zenodo.10113504
https://doi.org/10.3390/data4030113

Hogan, A.: The Semantic Web: Two decades on, Semantic Web,
11, 169-185, https://doi.org/10.3233/SW-190387, 2020.

Koubarakis, M. and Kyzirakos, K.: Modeling and querying meta-
data in the semantic sensor web: The model stRDF and the
query language stSPARQL, in: Extended Semantic Web Con-
ference, pp. 425-439, Springer, 2010.

Koubarakis, M., Kyzirakos, K., Nikolaou, C., Garbis, G., Bereta,
K., Smeros, P., Gianakopoulou, S., Dogani, K., Karpathiotaki,
M., and Vlachopoulos, I.: Linked Earth Observation Data: The
Projects TELEIOS and LEO, in: Proceedings of the Linking
Geospatial Data Conference, 2014.

Koubarakis, M., Kyzirakos, K., Nikolaou, C., Garbis, G., Bereta,
K., Dogani, R., Giannakopoulou, S., Smeros, P., Savva, D.,
Stamoulis, G., et al.: Managing big, linked, and open earth-
observation data: Using the teleios\/leo software stack, IEEE
Geoscience and Remote Sensing Magazine, 4, 23-37, 2016.

Kyzirakos, K., Savva, D., Vlachopoulos, 1., Vasileiou, A., Kar-
alis, N., Koubarakis, M., and Manegold, S.: GeoTriples:
Transforming geospatial data into RDF graphs using RZRML
and RML mappings, Journal of Web Semantics, 52, 16-32,
2018.

Lefort, L., Bobruk, J., Haller, A., Taylor, K., and Woolf, A.: A
Linked Sensor Data Cube for a 100 Year Homogenised Daily
Temperature Dataset., in: SSN, pp. 1-16, 2012.

Leroux, H. and Lefort, L.: Using CDISC ODM and the RDF Data
Cube for the Semantic Enrichment of Longitudinal Clinical
Trial Data., in: SWAT4LS, 2012.

Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L.,
Mueller, N., Raevksi, G., Hooke, J., Woodcock, R., Sixsmith,
J., et al.: The Australian geoscience data cube—foundations
and lessons learned, Remote Sensing of Environment, 202,
276-292, 2017.

Milon-Flores, D. F., Bernard, C., Gensel, J., Giuliani,
G., Chatenoux, B., and Dao, H.: LEODS framework
repository, https://github.com/DanielaFe7-personal/
Traces-EO-RDF-data-cubes, 2024.

Nativi, S., Mazzetti, P., and Craglia, M.: A view-based model of
data-cube to support big earth data systems interoperability,
Big Earth Data, 1, 75-99, 2017.

Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis,
M., Kyzirakos, K., and Koubarakis, M.: Sextant: Visualizing
time-evolving linked geospatial data, Journal of Web Seman-
tics, 35, 35-52, 2015.

Obuchowicz, C., Poussin, C., and Giuliani, G.: Change in ob-
served long-term greening across Switzerland—evidence from
a three decades NDVI time-series and its relationship with cli-
mate and land cover factors, Big Earth Data, pp. 1-32, 2023.

Palma, R., Roussaki, I., Dohmen, T., Atkinson, R., Brahma, S.,
Lange, C., Routis, G., Plociennik, M., and Mueller, S.: Agri-
cultural Information Model, in: Information and Communica-
tion Technologies for Agriculture—Theme III: Decision, pp.
3-36, Springer, 2022.

Patel, A. and Jain, S.: Present and future of seman-
tic web technologies: a research statement, International
Journal of Computers and Applications, 43, 413-422,
https://doi.org/10.1080/1206212X.2019.1570666, 2021.

Poussin, C., Massot, A., Ginzler, C., Weber, D., Chatenoux, B.,
Lacroix, P, Piller, T., Nguyen, L., and Giuliani, G.: Drying

AGILE: GlIScience Series, 5, 11, 2024 | https://doi.org/10.5194/agile-giss-5-11-2024

conditions in Switzerland—indication from a 35-year Landsat
time-series analysis of vegetation water content estimates to
support SDGs, Big Earth Data, 5, 445-475, 2021.

Richard Cyganiak, D. R. and Tennison, J.: The RDF
Data Cube Vocabulary, W3c recommendation, W3C,
https://www.w3.org/TR/vocab-data-cube/, 2014.

Rodriguez, T. N. and Hogan, A.: COVIDCube: An RDF Data
Cube for Exploring Among-Country COVID-19 Correlations,
vol. 2980 of CEUR Workshop Proceedings, CEUR-WS.org,
http://ceur-ws.org/Vol-2980/paper395.pdf, 2021.

Salomén, R. L., Peters, R. L., Zweifel, R., Sass-Klaassen, U. G.,
Stegehuis, A. L., Smiljanic, M., Poyatos, R., Babst, F., Cien-
ciala, E., Fonti, P., et al.: The 2018 European heatwave led to
stem dehydration but not to consistent growth reductions in
forests, Nature communications, 13, 28, 2022.

Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C.,
Damm, A., Gharun, M., Grams, T. E., Hauck, M., Hajek, P,
et al.: A first assessment of the impact of the extreme 2018
summer drought on Central European forests, Basic and Ap-
plied Ecology, 45, 86-103, 2020.

Simoes, R., Camara, G., Queiroz, G., Souza, F., Andrade, P. R.,
Santos, L., Carvalho, A., and Ferreira, K.: Satellite image time
series analysis for big earth observation data, 13, 2428, pub-
lisher: MDPI, 2021.

Sudmanns, M., Augustin, H., van der Meer, L., Baraldi, A., and
Tiede, D.: The Austrian semantic EO data cube infrastructure,
Remote Sensing, 13, 4807, 2021.

Tran, B.-H., Aussenac-Gilles, N., Comparot, C., and Trojahn, C.:
An Approach for Integrating Earth Observation, Change De-
tection and Contextual Data for Semantic Search, pp. 3115—
3118, IEEE, 2020a.

Tran, B.-H., Aussenac-Gilles, N., Comparot, C., and Trojahn,
C.: Semantic integration of raster data for earth observation:
An RDF dataset of territorial unit versions with their land
cover, ISPRS International Journal of Geo-Information, 9,
503, 2020b.

Ubaldi, B.: Open government data: Towards empirical analysis
of open government data initiatives, 2013.

Van Der Meer, L., Sudmanns, M., Augustin, H., Baraldi, A.,
and Tiede, D.: SEMANTIC QUERYING IN EARTH OB-
SERVATION DATA CUBES, XLVIII-4/W1-2022, 503-510,
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-
503-2022, 2022.

Vrandecié, D. and Krotzsch, M.: Wikidata: A Free Collaborative
Knowledgebase, 57, 78-85, https://doi.org/10.1145/2629489,
2014.

12 0f 12


https://doi.org/10.3233/SW-190387
https://github.com/DanielaFe7-personal/Traces-EO-RDF-data-cubes
https://github.com/DanielaFe7-personal/Traces-EO-RDF-data-cubes
https://doi.org/10.1080/1206212X.2019.1570666
http://ceur-ws.org/Vol-2980/paper395.pdf
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-503-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-503-2022
https://doi.org/10.1145/2629489



