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Abstract.

LiDAR scanning technology is an established method for
capturing landscapes, buildings, or roads in order to cre-
ate a so-called spatial digital twin of the reality, stored as a
large collection of 3D coordinates called 3D point cloud.
This spatial data offers high density and precision at the
cost of hard to extract shape or object information. One
popular application of LIDAR 3D point clouds is road con-
dition quality exams. This task is challenging due to a lack
of dedicated algorithms to extract and evaluate road point
cloud features and due to the large variety of road dam-
ages. Deep learning approaches are very promising, but
require extensive training data. The data and damage char-
acteristics make data labeling a very difficult and tedious
task that often results in mislabeled data, even when per-
formed by trained human operators.

We propose a semi supervised generative adversarial net-
work (GAN) based approach for labeling 2D images ren-
dered from LiDAR point cloud data captured by mo-
bile mapping vehicles, named Competitive Reconstruc-
tion Networks (CRN). Our solution trains multiple net-
works with the same architecture in an “all vs all” fash-
ion. Our method achieves reliable and robust results on
two road image datasets as well as the MVTecAD dataset,
and surpass comparable anomaly detection approaches in
anomaly detection performance. We also implemented a
data generation pipeline to render training images from
3D point cloud of roads and remap anomaly scores back
to those 3D point clouds to use the full potential of the 3D
data for further analysis.

Keywords. Mobile mapping, anomaly detection, neural
networks, generative adversarial networks, LiDAR, 3D
point clouds

1 Introduction

Light detection and ranging (LiDAR) systems are widely
regarded as the most advanced technology for capturing
three-dimensional (3D) spatial data. LiDAR scanners uti-
lize laser beams to scan surfaces and generate 3D point
clouds from the reflections. These point clouds are char-
acterized by a high density of points and a large volume
of unstructured data (Richter and Ddéllner (2014)), allow-
ing for the precise measurement of small-scale features on
real-world objects (e.g., millimeter range). LiDAR scan-
ners can be mounted on unmanned aerial vehicles (UAVs)
or mobile mapping vehicles (MMVs) for various applica-
tions, including the analysis of indoor objects and struc-
tures, infrastructure networks (e.g., roads, railways), and
entire cities and countries (Wolf et al. (2019)).

Evaluating road quality is a crucial task for cities and road
construction authorities in order to maintain functioning
roads and to have enough data to place road construction
sites where there are most needed. Automating and opti-
mizing this task makes road damage repairs cheaper, since
damages can be repaired before they get serious, and the
negative impacts of road works on traffic flow can be min-
imized due to smarter planning.

Proper evaluation is very challenging due to the large va-
riety of different damages and missing labeled data. There
are different techniques to capture road data in order to
identify need of repairs, taking 2D images or videos be-
ing the most used one according to a review by Ragnoli
et al. (2018). The aforementioned LiDAR scans are only
recently being adapted in that area. Most existing road as-
sessment approaches are optimized for the use of 2D data.
The incorporation of the third dimension of surface data
has the potential to enhance the results of 2D assessment
algorithms. In this work, we implement a data preparation
pipeline to extract 2D images from 3D road scans, and in-
troduce an anomaly detection approach based on gener-
ative adversarial networks. This approach is used to de-
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Figure 1. The training of Competitive Reconstruction Networks, including the loss computation for each training pair. A, A\ and \g

are tunable hyperparameters.

termine which of these 2D images contains faulty road
segments and which are healthy. We do this in a semi su-
pervised manner in order to circumvent the issues of la-
beling the training data by hand. Note that to assess road
damages, we only work with 2D images enriched/rendered
from by 3D data sources, not with the 3D point clouds
themselves.

Generative adversarial network (GAN) based anomaly de-
tection algorithms have seen a rise in recent years after the
first approach called AnoGAN (short for Anomaly GAN)
was introduced by Schlegl et al. (2017). GAN networks
first proposed by Goodfellow et al. (2020) consist of a gen-
erator and discriminator network that are competing with
each other. The generator creates images, and the discrim-
inator tries to differentiate between real images and im-
ages created by the generator. The generator then learns
to create images that fool the discriminator, and the dis-
criminator learns to better differentiate between real sam-
ples and the generated images. That way, after some time,
the generator learns to generate very real looking images.
To use these networks in anomaly detection, the gener-
ator is trained to reconstruct real images instead of cre-
ating new ones from random noise. The discriminator is
trained to distinguish the reconstructed from the real ver-
sion of the image. When the generator is fed only healthy
images, then its reconstruction abilities will be focused
on features found on images without anomalies. When
confronted with anomalies, the generator fails to recon-
struct the anomalies and thus the reconstruction error is
increased when compared to non-anomalous examples.

The initial AnoGAN architecture suffered from learn-
ing instabilities and mode collapses, which is why many
improvements have been proposed, e.g., in GANomaly
(Akcay et al. (2018)), Skip-GANomaly (Akcay et al.
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(2019)) and DAGAN (Tang et al. (2020)). Other works
like the one from Han et al. (2021) focus on adapting
the training procedure by training multiple generator and
discriminator networks concurrently. Our work builds on
the architecture proposed in the DAGAN paper and on
the ensemble methods proposed by Han et al. (2021). We
introduce a novel ensemble way of training multiple U-
Nets of the same architecture in a competitive way. As
these networks are trained to reconstruct healthy examples
very well while performing worse on unhealthy examples,
we call our method Competitive Reconstruction Networks
(CRN). Our method surpasses the other approaches and
delivers state-of-the-art results on common anomaly de-
tection datasets. We also show that our approach produces
superior results on the dataset of generated road images
generated from 3D point clouds and on a separate dataset
of panorama images taken from roads in the city of Essen,
Germany.

2 Related Work

In this section, we present a comparison of various road
quality evaluation techniques, including those that utilize
algorithmic approaches and those that utilize neural net-
works or other machine learning procedures. We also com-
pare anomaly detection techniques that utilize GAN archi-
tectures.

2.1 Road Quality Evaluation

The diverse range of damages found on roads, such as road
rutting, cracks, and potholes, necessitates the use of mul-
tiple sensors to accurately monitor road condition. 2D im-
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agery alone is not capable of capturing all possible defor-
mations found on roads. Ragnoli et al. (2018) argue that
2D imagery is often influenced by weather and lightning
conditions, shadow casts and camera quality, which makes
it hard to find an evaluation method that suits all differ-
ent capture methods. However, cracks or other damages
that are visually easily detectable, can be detected and an-
alyzed by modern object detection approaches very well.
3D LiDAR data, captured by UAVs or MM Vs, is less in-
fluenced by these conditions. However, environment con-
ditions like puddle formation after heavy rain can still re-
flect the laser beams sent out by LiDAR systems and thus
alter the captured 3D points. Damages like road rutting,
basically invisible to 2D images, leave an easily detectable
bump in the 3D point surface that is captured in the LiDAR
data.

Some evaluation methods use 3D LiDAR data to detect
pavement distress. Gézero and Antunes (2019) use an al-
gorithmic approach to measure road rutting depth using
LiDAR data, but they used a low precision LiDAR scan,
scanning one point every 5 mm. Their results were also
fine-tuned on the road segment they examined. Li et al.
(2019) also use LiDAR generated 3D point clouds col-
lected with UAVs. They train a random forest classifier
on the road points to identify patches with road distress.
They select 48 characteristics from their data and achieve
an overall accuracy of 95.86% on their validation subset.

Seichter et al. (2018) focus on utilizing 2D imagery and
introduce an improved method for image labeling by hu-
mans, specifically for road images. They propose using
an uncertainty measure to select subregions of images the
model is the least familiar with and would most benefit
from human labeling. They achieve better model perfor-
mance while only annotating a fraction of their road image
data.

Wu et al. (2019) try to combine 2D and 3D data to ex-
ploit the advantages of 2D and 3D data sources for pot-
hole detection and analysis on roads. They use 2D images
to detect candidate pothole instances and 3D data to ex-
tract pothole points and analyze their features like depth
or diameter. However, they still use hand labeled data for
their training of networks to find candidate potholes.

All these methods need some sort of human labeled data,
which makes applying these approaches on a large scale
a difficult task due to changing road and data capturing
conditions.

2.2 Anomaly Detection Using GANs

Anomaly detection is a task of great importance in many
areas, e.g., in the biomedical (Schlegl et al. (2017)), the
financial (Ahmed et al. (2016)) or the fraud detection (Ab-
dallah et al. (2016)) sector. Many approaches rely on re-
construction based anomaly detection, the techniques uti-
lizing GANS fall in this category.
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Using Generative Adversarial Networks (Goodfellow et al.
(2020)) for detecting anomalous images was initially in-
troduced by Schlegl et al. (2017) with their AnoGAN ar-
chitecture. They use a generator network to create realis-
tic looking medical scan images of the human eye from a
random latent vector z. The discriminator learns to distin-
guish these generated images from real ones. The authors
train their anomaly detection framework on healthy scan
images. To find anomalous images, they find the latent rep-
resentation z’ that creates an image closest to the unseen
image 7 by using an optimization algorithm. The anomaly
score is then computed using the difference between the
generated and the real image and using the discriminator
loss on the real image.

As this approach of finding the matching latent represen-
tation for each unseen image is rather inefficient, Akc¢ay
et al. (2018) introduced GANomaly, using an auto encoder
based image generator which no longer generates realisti-
cally looking images from a random input instead of re-
constructing input images. This way, the reconstruction er-
ror can be directly used for anomaly score computation.
They achieve higher AUC scores than the initial AnoGAN
model while reducing the runtime significantly.

GANomaly, however, still suffered from regular mode
collapses and learning instabilities. Akg¢ay et al. (2019)
propose using a U-Net auto encoder as the generator,
adding skip connections bypassing the bottleneck. This
way, the reconstruction abilities of the generator network
can be vastly improved. Their Skip-GANomaly architec-
ture yielded better AUC scores on the CIFAR-10 dataset.

Tang et al. (2020) proposed the DAGAN architecture,
using the Skip-GANomaly architecture and added ideas
from the BEGAN architecture and learning method pro-
posed by Berthelot et al. (2017). For BEGAN, an auto en-
coder replaces the discriminator network. The discrimina-
tor no longer tries to produce a single output value, instead
it reconstructs the real images precisely as possible and the
generated ones imprecisely. This approach emerges from
interpreting the discriminator part of the GAN architecture
as an energy based model, which was initially proposed by
Zhao et al. (2017). The authors of BEGAN show that this
auto encoder discriminator network enables the GAN to be
much more stable during training. They also introduce a
special balancing technique for the two competing targets
of the discriminator (reconstructing real images vs. recon-
structing generated ones imprecisely) which further boosts
its performance. The DAGAN architecture combines the
advantages of an auto encoder generator with skip con-
nections and an auto encoder discriminator. They, how-
ever, did not make use of the target balancing technique
proposed for BEGAN.

Multiple works consider using more than one network for
the generator or discriminator networks (Durugkar et al.
(2017); Chavdarova and Fleuret (2018); Choi and Han
(2021)). Especially, Hoang et al. (2018) and Arora et al.
(2017) show that GAN ensembles can generally outper-
form single networks in generation tasks. Han et al. (2021)

30f13



introduced the idea to train multiple generators with mul-
tiple discriminators for anomaly detection. They use mul-
tiple different base models, namely f-Anogan (Schlegl
et al. (2019)), EGBAD (Zenati et al. (2018)), GANomaly
(Akgay et al. (2018)) and Skip-GANomaly (Akgay et al.
(2019)) and train ensembles of multiple generators and
discriminators. Their results surpass the single base mod-
els in several anomaly detection tasks. From the DAGAN
architecture (Tang et al. (2020)) and the training procedure
of GAN ensembles we derive the concept of Competitive
Reconstruction Networks (CRNs) which are described in
Chapter 3.

3 Competitive Reconstruction Networks

In this section, we introduce Competitive Reconstruction
Networks. An overview is given in Fig. 1. CRNs combine
the principles of DAGAN introduced by Tang et al. (2020),
where similar architectures were used for both the gener-
ator (a U-Net proposed by Ronneberger et al. (2015)) and
the discriminator networks (convolutional autoencoder),
and of GAN ensembles for anomaly detection proposed by
Han et al. (2021). As the generator and the discriminator
train to capture the same target distribution (the generator
to draw samples from it, the discriminator to distinguish
between real and generated samples) they both learn simi-
lar information.

The DAGAN (Tang et al. (2020)) architecture consists of
a U-Net generator and a convolutional autoencoder as dis-
criminator. Early experiments have shown that replacing
the discriminator with a U-net leads to an improvement
in its reconstruction capabilities and better discrimination
abilities. The reason for this is that the discriminator can
focus more on discriminating between real and generated
samples and less on the reconstruction part of its loss cal-
culation. This results in better feedback for the generator
and an overall improved anomaly detection performance.

These results indicate that even better results could be
achieved by further blurring the differences between gen-
erator and discriminator. With Competitive Reconstruction
Networks (CRN) we propose an approach which com-
pletely removes this difference and trains multiple mod-
els in a competitive fashion. Competitive training means
the models are trained in a "all vs all” fashion, as opposed
to the traditional “generator vs discriminator” setting in
GANSs (Goodfellow et al. (2020)).

3.1 CRN Architecture

CRNSs consist of a pool of Competitive Units (CUs). Each
unit has the same architecture, which is depicted in Fig. 2.
The architecture of the CUs is a U-Net (Ronneberger et al.
(2015)) like the one used in the Skip-GANomaly archi-
tecture (Akgay et al. (2019)). Using a U-Net improves
the reconstruction ability of the generator network by
adding skip connections, which boosted the detection per-
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formance of Skip-GANomaly and was thus adapted by the
authors of DAGAN (Tang et al. (2020)).

competitive unit (CU)
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Figure 2. The architecture of a single competitive unit. We use
a U-Net architecture with different upscaling than used in Skip-
GANomaly from Akcay et al. (2019).

The original U-Net implementation uses transposed con-
volutional layers for the upsampling part of the network.
However, we replaced these with simple upscaling layers
using nearest neighbor interpolation followed by a con-
volution layer with kernel size 3. This approach was pro-
posed by Odena et al. (2016) to avoid checkerboard like
artifacts in the upsampled images and further enhance the
model’s reconstruction abilities.

3.2 Training Procedure

The CRNs are trained in a semi supervised fashion, i.e., the
training data contains only examples without anomalies.
The validation and test data then contains samples with
and without anomalies. During the training the CUs learn
to reconstruct healthy images very precisely and when
confronted with anomalous examples from the validation
split the reconstruction should be significantly worse.

At each training step, two CUs are picked randomly from
the pool, following the training procedure of the GAN en-
sembles from Han et al. (2021) where for each iteration
the generator and discriminator are also chosen randomly.
One of these units will act as a generator (G) and the other
one will act as a discriminator (D). Updating the units uni-
formly at random follows the principle of stochastic opti-
mization (Han et al. (2021)) and does not influence the
training process negatively. Let n be the number of CUs
used in the CRN. Then after n training steps, each unit is
expected to be updated two times, one time as a generator,
one time as a discriminator.

Let = be an input batch from the train dataset containing
only non-anomalous images. The loss computation is very
similar to the training of DAGAN (Tang et al. (2020)). Let
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L, be the reconstruction loss of the competitive unit G
acting as generator, which is computed as follows:

Ly, (2) =z = G(2)|l (1
We use ||-]|1 to denote the use of L1 norm, which is defined
as ||z||1 = > |xi|- Let La,, , be the adversarial loss of two
units G and D, with G acting as generator and D acting as
discriminator. The generator tries to minimize this loss by
creating precise reconstructions of the input image, while
the discriminator tries to maximize it. It is computed as
follows:

Lo, , (@) =|G(z) = D(G(2))|lx )

Equation 3 shows the final loss computation for the gener-
ator L and for the discriminator £p.

La(x)=Ar* Ly (T)+ Af = La, , (z) 3)
Lp(z)= _)\d*ﬁac,D (2) )

Ay is the weight for the reconstruction loss, Ay the weight
of the adversarial loss applied to the generator and A, the
weight of the adversarial loss applied to the discrimina-
tor. These values are hyperparameters and have to be op-
timized manually or with the help of dedicated hyperpa-
rameter optimization frameworks.

We also tried including the discriminator reconstruction
loss L, into the discriminator loss computation as it
is implemented in DAGAN (i.e., Lp(z) = ALy (2) —
)‘aﬁ%,n (x)). However, our experiments showed that this
actually decreases the overall anomaly detection perfor-
mance, as the reconstruction loss is then over-represented
during training. Since the discriminator will also at some
point be trained as a generator, it still learns to reconstruct
input images as precise as possible.

In summary, during training, each competitive unit CU
tries to minimize the following term:

Lcoy(x) = ALr ()

+avg{AsLa,, ,(x) VD € CP}
—avg{raLa, ., (¥) VD € CP}

With x being the input batch and C'P being the entire pop-
ulation of competitive units. Currently, this also includes
the CU itself, i.e., during training it also learns to produce
images that itself cannot distinguish from the input dataset
distribution. How this affects the overall learning process
has yet to be researched and is left for future work.

3.3 Anomaly Score Calculation

For computing the anomaly score, the input images are
reconstructed, and the reconstruction error is measured.
The GAN ensembles proposed by Han et al. (2021) relied

AGILE: GlIScience Series, 4, 7, 2023 | https://doi.org/10.5194/agile-giss-4-7-2023

on averaging the anomaly scores from all used generators
and discriminators to even out the influence of eventual
under performing networks. For CRNs, we also observed
that combining the output of multiple units improved the
prediction performance.

However, we observed that some units are trapped in local
minima early on in the training process and thus produce
very unreliable results for the anomaly detection, which
would negatively affect an averaged anomaly score com-
putation. Thus, we select the two most promising units
from the population and once again assign the roles of
generator GG and discriminator D to them. The unit with
the smallest reconstruction error is chosen as the genera-
tor and the unit with the largest difference between its re-
construction and discrimination loss as the discriminator.
That way we make sure, the generator is the most special-
ized unit to reconstruct non-anomalous samples the most
precise and the discriminator is the most specialized unit
in identifying samples that are not part of the original sam-
ple distribution. This combination of two units proved to
consistently outperform other randomly selected pairs of
units.

When the input image z is anomalous, then the recon-
struction error of G(z) will be higher than if it was non-
anomalous. This higher reconstruction error is then am-
plified by applying the discriminator, which results in an
overall better detection performance. The anomaly score
A for an input image z is then computed as follows:

A(z) = [|G(x) = D(G(2))]h (5)

In our experiments we also tried chaining more units, feed-
ing the output of the discriminator to another unit and so
on, so that the reconstruction error amplification if further
increased. However, the best results were achieved by just
using two units.

The detection performance is measured by computing the
AUC ROC score of the anomaly detection on the vali-
dation subset. The AUC ROC score is not influenced by
highly imbalanced data, which is why it is commonly used
as a measure of binary classification quality. As we can not
make any assumption about the distribution of anomalous
and non-anomalous data in the validation dataset, the AUC
ROC offers the best measure to identify the currently best
performing units in the pool.

4 Road Quality Evaluation Datasets

We evaluate the performance of CRNs on two datasets re-
lated to road quality assurance. Both were supplied by the
Department for Geoinformation, Surveying and Cadastre
of Essen. The first dataset consists of 2D camera imagery
of roads, the second one consists of 2D image renderings
of a 3D LIDAR scan from multiple roads.
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4.1 Panorama Images

The dataset consists of 1756 images captured by a
panorama 360° camera. As these images include a lot of
additional information about road surroundings and vehi-
cles, the images were cropped to only include the roads.
The final images have a resolution of 1610x954 pixels.
Some examples of damaged and undamaged images are
shown in Fig. 3.

The images were annotated by experts from the Depart-
ment for Geoinformation, Surveying and Cadastre of Es-
sen. The annotations include bounding boxes around all
damages found in the image. However, for the task of
anomaly detection, the only relevant information is if the
image contains any damages whatsoever. The dataset in-
cluded 386 images without damages and 1370 with at least
one road damage. The train split consists of 270 images
without damages. The validation dataset consists of the re-
maining images, i.e., 1370 images with damages and 116
without.

The dataset has a mean of (0.3546,0.3349,0.3145) and a
standard deviation of (0.1782,0.1729,0.1490) for the r,b
and g channels, respectively.

4.2 TImages Generated from 3D Point Clouds

The 2D road image dataset generation from 3D point
clouds is divided into four sub steps: Road extraction,
tiling, rasterization and data labeling. These steps will
be briefly explained in the following sections. We used
thirteen 3D point clouds supplied by the Department for
Geoinformation, Surveying and Cadastre of Essen. They
include intensity data as well as x, y and z coordinate in-
formation for each point.

4.2.1 Road Extraction

To extract the roads points from 3D point clouds, sev-
eral approaches are possible, e.g., via region growing al-
gorithms (Liu et al. (2018)) or segment analysis (Boyko
and Funkhouser). We use a very simple road approxima-
tion by using the trajectory of the MMV which scanned
the road segment. We then decide if a point p belongs to
the road if it fulfills the following criteria:

[tay = Payllz < 6)

t is the closest point of the trajectory to p. For the distance
calculation, only the Euclidean distance on the XY-Plane
is considered. « is a hand tuned hyperparameter defin-
ing the desired road width. To compute these closest point
pairs efficiently, the trajectory and point cloud points are
structured as a KD tree (Ooi (1987)). Then a ground de-
tection algorithm (Yadav et al. (2017)) is run on the initial
point cloud, which generates an approximate ground el-
evation model. With this model, we compute a distance
measure for each point to this approximate ground level.
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An additional hyperparameter [ is chosen to filter out the
road points which are too far from the ground.

4.2.2 Road Tiling

The resulting 3D point clouds containing only road points
are divided into tiles along the initial MMV trajectory.
For this, a tile width £,, and a tile length £; have to be
specified. We choose two trajectory points ¢; and ¢ with
[t1t2] 22 I;. Let v be defined as follows:

tty
v = orth <% * ;) 7

orth(a) returns the orthogonal vector of a vector a.

Then we determine the bounding box for each tile by
adding and subtracting v from ¢; and ¢, respectively.

The road points within this rectangle are extracted, trans-
lated to the origin and rotated so that all points of this tile
lie between (0,0) and (,,,1;).

4.2.3 Tile Rasterization

We compute values for each pixel using the extracted tiles.
For this, we use a grid with r,, x r; cells. We then split
the tile into mini tiles, one for each pixel of the grid. If
there are multiple points in a mini tile, we compute the
average of the point values (height and intensity). If there
are empty cells, we first apply trilinear interpolation to fill
these cells. Since this method might leave some cells with-
out values, we additionally use nearest-neighbor interpo-
lation. After this, grid cell values are converted into two
PNG images, one containing the height and one contain-
ing the intensity values.

4.2.4 Data Labeling

From the thirteen 3D point clouds, we extracted roads of 4
meters width. From these, we generated 17,906 2D images
of 3x3 meter road segments with an overlap of 0.667 on
the X axis (orthogonal to MMV trajectory) and 0.8 on the
Y axis (parallel to MMV trajectory). The images have a
resolution of 256 x 256 pixels.

To test CRNs and other methods on this dataset, we labeled
996 road images, yielding 390 images without damages
and 579 images with at least one damage. The training
dataset contains 273 images without damages, and the val-
idation contains 579 images with and 117 images without
damages. Fig. 4 shows some examples from the healthy
and damaged road image portions.

The dataset has a mean of (0.6124,0.4959) and a standard
deviation of (0.2744,0.2284) for the height and intensity
channels, respectively.
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healthy images

Figure 3. Some examples of the road images obtained from cropped panorama images. These images were annotated by experts at the

Department for Geoinformation, Surveying and Cadastre of Essen

healthy images

damaged images

Figure 4. Some examples of the generated ortho-projected images from 3D LiDAR point clouds using our data preparation pipeline.

5 MVTec Anomaly Detection Dataset

To compare our CRNs with other approaches, we test
them on a more commonly used benchmark dataset. The
MVTec Anomaly Detection Dataset (MVTecAD) intro-
duced by Bergmann et al. (2021) contains 5354 anoma-
lous and non-anomalous high resolution images from ten
categories of industrial products, such as cables, bottles
or transistors, and from five categories of textures, such
as tiles, carpets, or wood. The number of provided train-
ing examples is relatively small, ranging from 60 to 391
non-anomalous images in the train split. As the products
vary in shape, degree of details and color, the dataset is of-
ten used to demonstrate the robustness and performance of
anomaly detection methods (Tang et al. (2020); Liang et al.
(2022); Zavrtanik et al. (2021); Li et al. (2021); Rudolph
et al. (2021)). Fig. 5 shows some examples.

6 Evaluation

In this chapter, we compare the performances of relevant
prior works with the current state of the art unsupervised
and semi supervised methods with our CRNs.
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6.1 Compared Models

We compare the anomaly detection performance of CRN's
for MVTecAD with the previous works we are build-
ing upon, namely AnoGAN (Schlegl et al. (2017)),
GANomaly (Akcay et al. (2018)), Skip-GANomaly
(Akgay et al. (2019)), DAGAN (Tang et al. (2020)) and the
GAN ensembles (Han et al. (2021)). For the GAN ensem-
bles we had to compute the performance scores ourselves
as the authors did not test their approach on MVTecAD.
Also, we include the performances of Puzzle-ae (Salehi
et al. (2020)) and DGAD (Xia et al. (2021)), two differ-
ent reconstruction based anomaly detection methods pub-
lished in 2021. Puzzle-ae, proposed by Salehi et al. (2020),
tries to detect anomalies by de- and reconstructing the in-
put images as jigsaw puzzles. DGAD, proposed by Xia
et al. (2021), introduces a self supervised framework to
train a generator and discriminator jointly using a pretext
task to further enhance anomaly detection abilities.

For comparing these approaches, we use the ROC AUC
score because this metric is robust against unbalanced
datasets and is thus often used as a benchmark for anomaly
detection approaches.

70f13



Textures Objects
anomalous normal anomalous normal

] fos]
] =%
o =
5‘_D_ @

0
e g
a @

=)
- ]
— w
@ &

5]

N
g 3
g e

Figure 5. Some examples from different categories of the
MVTecAD dataset. In the top row some object categories are
displayed, in the bottom row some texture categories. Each cate-
gory comes with a few hundred examples of anomalous and non-
anomalous images.

6.2 Data and Software Availability

The implementation of CRNs and the code

for reproducing our results is available in
the following repository: https://github.com/
Snagnar/CompetitiveReconstructionNetworks and

is accessible under  the following DOI
https://doi.org/10.5281/zenodo.7682032. The provided
code base also includes download links to the three
datasets we used: MVTecAD (Bergmann et al. (2021))
and subsets of the panorama and rendered road image
datasets. We decided to curate subsets to eliminate any
private information contained in these datasets.

To find the set of hyperparameters described in Sec-
tion 6.3, we used the hyperparameter sweeps of the online
logging platform Weights & Biases (Biewald (2020)), ap-
plying a Bayes optimization algorithm for roughly a hun-
dred iterations. The sweep configuration files are provided
in the repository mentioned above. We also used Weights
& Biases to log all metrics taken during training and eval-
uation.

The networks were trained on a machine equipped of 8
CPU cores and an NVIDIA A100 GPU.
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6.3 Hyperparameters

We trained the CRNs using 12 competitive units. The
tradeoff to be considered when choosing an appropriate
number of competitive units is discussed in Section 6.7.
RAdam, proposed by Liu et al., was used as an optimizer
with a learning rate of 0.0001 and a batch size of 64. We
chose A\, =0.5,lambdas = 1.0 and Ay = 2.0 as parame-
ters for the loss equation 3. The CRNs train for 20,000
training steps for each category.

64 MVTecAD

The results we obtained from training our CRNs on the
MVTecAD dataset are shown in Table 1. As there were
no numbers reported for the GAN ensembles (Han et al.
(2021)) trained on MVTecAD, we adapted their code
and trained an ensemble of five Skip-GANomaly (Akg¢ay
et al. (2019)) generators and five discriminators on the
MVTecAD images.

To demonstrate the superiority of our competitive training
approach, we also trained a CRN with only two competi-
tive units on the MVTecAD dataset. This way, we use the
same number of networks as other standard GAN-based
methods (like DAGAN (Tang et al. (2020))) with the only
major difference, that the two networks frequently change
the roles of generator and discriminator. The results are
shown in the 2-CRN column of Table 1.

The ROC AUC scores obtained from training CRN on
the different anomaly detection categories is the highest
among all compared models in most cases. In the cases
where other models performed better, our score is always
very close to the best result, leading to an overall superior
average performance across the texture and object cate-
gories.

Our approach far outperforms DAGAN and the GAN en-
sembles, the two main works from which we derived the
CRN architecture. The reported average ROC AUC score
for the texture categories are significantly worse than the
proposed CRN model.

The 2-CRN average scores are also better than any other
compared approach, using the same amount of networks
as a traditional GAN procedure. This indicates that, in
fact, the competitive training paradigm is superior to ad-
versarial training of two networks with fixed roles. With
more units, we can further leverage the benefits of com-
petitive training and achieve state-of-the-art results on the
MVTecAD benchmarking dataset.

6.5 Panorama Images

We trained our CRN on the road panorama image dataset.
We used the same hyperparameters as used for the MVTec
dataset. Better results might be achievable by running a
dedicated hyperparameter search for this dataset.
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Table 1. ROC AUC scores of various anomaly detection approaches on the MVTec anomaly detection dataset. We report two sets of
scores for our proposed CRN approach: the CRN column reports the results obtained with the hyperparameters specified in Section 6.3
and the 2-CRN column reports the results from experiments using only two competitive units. The best scores in the specific categories
are shown in bold font.

Previous Work Reconstruction Based
odels GAN
Ano- Skip-
GAN  GANomaly GANOIr)naly DAGAN ~Dnsemble |y le-ae  DGAD | ZCRN CRN
Year of R R R R (Skip) R s (Ours)  (Ours)
.. 17 18 19 20 ) 21 21
Publication 20
Carpet 49.0 82.1 79.5 90.3 53.1 65.7 52.0 87.0 97.5
3 Grid 51.0 74.3 65.7 86.7 72.9 75.4 67.0 98.9 100.0
5 Leather 52.0 80.8 90.8 94.4 76.8 72.9 94.0 96.6 97.5
& Tile 51.0 72.0 85.0 96.1 90.3 65.5 83.0 79.9 98.6
Wood 68.0 92.0 91.9 97.9 85.0 89.5 72.0 99.6 100.0
Average 54.2 80.24 82.6 93.1 75.6 73.8 73.6 92.4 98.7
Bottle 69.0 79.4 93.7 98.3 41.3 94.2 97.0 85.6 97.1
Cable 53.0 71.1 67.4 66.5 59.9 87.9 90.0 79.8 87.5
Capsule 58.0 72.1 71.8 68.7 59.7 66.9 60.0 76.9 92.8
- Hazelnut 50.0 87.4 90.6 100.0 98.0 91.2 80.0 94.4 98.1
g Metal Nut 50.0 69.4 79.0 81.5 42.8 66.3 95.0 86.0 93.2
g Pill 62.0 67.1 75.8 76.8 37.6 71.6 76.0 81.7 89.1
Screw 35.0 100.0 100.0 100.0 100.0 57.8 67.0 100.0 100.0
Toothbrush 57.0 70.0 68.9 95.0 53.3 97.8 93.0 91.9 100.0
Transistor 67.0 80.8 81.4 79.4 45.8 86.0 88.0 84.3 92.8
Zipper 59.0 74.4 66.3 78.1 334 75.7 82.0 80.1 86.4
Average 56.0 77.17 79.5 84.4 57.2 79.5 82.8 86.1 94.5
Overall 55.0 78.19 80.5 87.3 63.3 77.6 80.0 88.2 95.9

We also trained DAGAN (Tang et al. (2020)), Skip-
GANomaly (Akgay et al. (2019)) and the GAN ensem-
bles using Skip-GANomaly (Han et al. (2021)) models on
this dataset to compare the different model performances.
In case of Skip-GANomaly and the GAN ensembles, we
used the publicly available reference implementations. As
there is no public implementation of DAGAN we reimple-
mented their model from the paper and used the results of
the MVTecAD dataset to assure the correctness of our im-
plementation. For the GAN ensembles, we used 5 genera-
tors and 5 discriminators, as this comes closest to our ap-
proach using 10 competitive units. The results are shown
in Table 2.

Table 2. The ROC AUC scores of Skip-GANomaly, DAGAN,
GAN Ensembles and our CRNs on the road panorama image
dataset.

image dataset contains a lot of skewing information like
shadows, cars or vegetation, that have no influence on the
road condition and have to be correctly identified as such
by the models.

6.6 Images Generated from 3D Point Clouds

We also trained our CRN on the labeled road images
rendered from 3D point clouds. We used the same hy-
perparameters as for the MVTecAD dataset as well. For
comparison, we also trained the DAGAN model (Tang
et al. (2020)), Skip-GANomaly (Akcay et al. (2019))
and a GAN ensemble (Han et al. (2021)) with 5 Skip-
GANomaly generators and discriminators each. The re-
sults are depicted in Table 3.

Table 3. The ROC AUC scores of Skip-GANomaly, DAGAN,

Model | ROC AUC GAN ensembles and our CRNs on the road image dataset ren-
Skip-GANomaly 87.4 dered from 3D LIDAR point clouds.
DAGAN 90.5
GAN Ensembles (Skip) | 67.6 Model | ROC AUC
CRN (Ours) 93.0 Skip-GANomaly 60.4
DAGAN 77.1
Our CRN model achieves significantly better results than GAN Ensembles (Skip) 57.3
CRN (Ours) 89.6

the other models from previous works by a significant mar-
gin. Interestingly, the ensembles using Skip-GANomaly
perform much worse than using a single Skip-GANomaly
generator and discriminator. This indicates that the train-
ing procedure used by the GAN ensembles is less capable
of capturing more complex image contexts. The panorama
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Our approach once again outperforms the previous ap-
proaches now with a way larger gap in ROC AUC score.

One explanation could be the different upscaling technique
used in the U-Net architecture. When training DAGAN,
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GAN ensembles or Skip-GANomaly on the road image
dataset, the variance of the discrimination image often col-
lapses to 0, producing gray output images with the same
value for each pixel. One reason for this could be the very
monotonous appearance of healthy road images, which of-
ten just display a mostly gray image with very fine details
(see Fig. 4). The CRNs, however, are able to maintaining a
non-zero variance in the reconstruction images throughout
the training process due to the improved U-Net architec-
ture which was described in Section 3.1. An algorithmic
upscaling layer without learned parameters seems to help
to preserve fine details in the reconstructing image, and
thus prevents total feature collapse in the discriminating
unit.

6.6.1 Anomaly Score Remap

In order to assess the efficacy of our CRNs in detecting
anomalies in unseen 3D point clouds, we select the pair
of CUs that demonstrated the highest performance on the
dataset containing rendered road images from 3D point
clouds. These CUs were used to generate anomaly scores
for all 3D road point clouds. The results are depicted in
Fig. 6.

In order to facilitate the qualitative assessment, we col-
ored the 3D point clouds yellow where the anomaly score
assigned to a point exceeded a threshold of 0.5. As de-
picted in Subfig. 6a), our CRNs were able to accurately
identify anomalous road parts (i.e., road damages) in 3D
point clouds that were not included in the initial training
data. In addition, our models demonstrate accuracy even
in heavily damaged areas. Subfig. 6¢) illustrates that the
models did not confuse road markings for anomalies, even
in cases of complex shapes (such as the large arrow on the
road). This demonstrates the robustness of our approach.

However, the anomaly scores in close vicinity around the
large arrow are very high, while the road seems not to con-
tain any damages in that area. This shows that in some
cases, especially around complex forms of road markings,
the CRNs fail to reconstruct the surroundings meaning-
fully. This can be seen in many examples throughout the
data we processed in our experiments. One possible ex-
planation could be, that the models learned during training
that reconstructing the complex shape of road markings is
more important in these particular cases than reconstruct-
ing the other parts of the image, since errors in reconstruct-
ing (e.g., the borders of road markings) lead to a large in-
crease in reconstruction loss.

The 3D point cloud visualization in Subfig. 6d) appears to
lack any visible damage. However, the height landscape
reveals the presence of heavy rutting. The corresponding
anomaly score visualization correctly identifies the rutting
lanes as anomalous, demonstrating the ability of our CRNs
to robustly identify damages that are limited to only one
channel of information.
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Processing all generated 17,906 images (Section 4.2.4)
took approximately 11 minutes on the machine used to
train the CRNs (described in Section 6.2). The 13 point
clouds we extracted the road image dataset from covered a
length of approximately 5.4 kilometers, which results in a
total processing speed of ~ 30 kilometers per hour. Right
now, this number excludes the process of rendering the im-
ages and remapping the anomaly scores.

6.7 Number of Units vs ROC AUC

We tested how adding more competitive units affects the
overall detection performance. For this, we trained CRNs
with a varying number of units on the cable, leather, metal
nut, pill, and tile categories of the MVTecAD anomaly de-
tection dataset. Fig. 7 shows the ROC AUC score aver-
aged over the five categories of the MVTecAD dataset for
the specified number of units. This assures, that the find-
ings are consistent across different training data distribu-
tions. It can be observed that more units indeed improve
the anomaly detection performance of CRNs. This is con-
sistent with other ensemble methods (not only the men-
tioned GAN ensembles by Han et al. (2021)) where larger
ensembles often yield better results than ensembles with
lesser units, as shown in Section 2.2.

Fig. 7 shows, that up until nine units, the performance in-
creased approximately linearly with each added unit. We
trained each run with the same number of training steps,
which lead to fewer training steps per unit the more units
were used in the CRN. This explains the increasing value
variance in the runs with more units, since the single units
inside the pool are trained far less than in the runs with
fewer units. It also explains the eventual average decline
in performance of CRNs with more than 16 units. As de-
scribed in Section 6.3, for training on the benchmarking
datasets, we decided for 12 competitive units, as there
seems no further improvement achievable by adding more
units after this point.

7 Conclusion

In this study, we propose a novel method called Com-
petitive Reconstruction Network (CRN) for the task of
anomaly detection. CRN involves training multiple net-
works in a competitive “all-vs-all” manner, with the aim
of correctly reconstructing non-anomalous samples while
producing larger reconstruction errors for samples con-
taining anomalies. We evaluate the performance of CRNs
on the MVTecAD (Bergmann et al. (2021)) dataset, a
widely used benchmark for anomaly detection. Our re-
sults demonstrate that CRN outperforms other ensemble
and reconstruction-based methods, achieving state-of-the-
art performance. We also show that in many cases the
competitive training paradigm is superior to the traditional
adversarial training of GANs, even when using only two
units.
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Figure 6. Different examples of anomaly scores remapped into the original 3D point clouds. The images on the left of each subfigure
are the visualization of the intensity values of the 3D road point clouds. The images on the right are the visualization of the anomaly
scores assigned to each point. Road parts that are classified as an anomaly are colored yellow, non-anomalous parts are colored gray.
The division into anomalous and non-anomalous is done via a threshold.

Number of Competitive Units vs ROC AUC
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Figure 7. The influence of a different number of units affects the ROC AUC score, with an approximating graph added for better

readability. All data points are the average of five runs with three different categories of the MVTecAD dataset: cable, leather, metal
nut, pill, and tile. This assures, that the findings are consistent across different training data distributions.
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Additionally, we introduce two datasets consisting of road
imagery for the purpose of anomaly detection. One dataset
includes camera images of both damaged and undamaged
road sections, while the other consists of images rendered
from 3D point clouds of roads. Using CRNs, we demon-
strate their ability to reliably identify damaged road sec-
tions. An interactive visualization of the results provides a
qualitative assessment of the method’s effectiveness.

8 Future Work

In order to further evaluate the performance of our CRN
architecture, additional testing on various anomaly detec-
tion benchmark datasets is necessary. For example, previ-
ous research has used datasets such as Cifar10 and MNIST
to evaluate the effectiveness of various approaches, includ-
ing GAN ensembles. In a clinical setting, the OCT dataset
(Kermany et al. (2018)) has often been utilized to assess
model performance using high resolution biomedical im-
ages. Also, a direct comparison between the anomaly de-
tection performed by the CRNs and images annotated by
experts would give further insight into the quality of the
obtained results. Section 6.6.1 refers to some cases of false
positives, however a detailed evaluation of when these
false positives occur remains to be done.

In the current setup, we have trained two competitive units
against each other at each step. However, it is possible that
a different training method, such as a “’classroom” setting
where a single unit receives feedback from multiple or all
other units, may yield improved results. This approach in-
volves one unit reconstructing the input and the one or all
other units computing a discriminative loss for this recon-
struction, which may lead to a faster and more stable con-
version. However, due to the potential increase in compu-
tational complexity, we did not test this method, and it is
left for future work.

Additionally, a comprehensive theoretical analysis of the
competitive training paradigm has yet to be conducted.
The “all-vs-all” training introduces significant modifica-
tions to the originally proposed adversarial learning strat-
egy, and the game theory behind a group of autonomous
models competing with one another is a complex topic that
requires further investigation. This is also an area for fu-
ture research.

Acknowledgements. We thank the anonymous reviewers for their
valuable feedback and the Department for Geoinformation, Sur-
veying and Cadastre of Essen, Germany for providing mobile
mapping data. This work was partially funded by the Fed-
eral Ministry of Education and Research, Germany through
grant 011S22062 "Al research group FFS-AI" and the Fed-
eral Ministry for Digital and Transport through grant 19F2210
"TWIN4ROAD".

AGILE: GlIScience Series, 4, 7, 2023 | https://doi.org/10.5194/agile-giss-4-7-2023

References

Abdallah, A., Maarof, M. A., and Zainal, A.: Fraud detection
system: A survey, Journal of Network and Computer Applica-
tions, 68, 90-113, https://doi.org/10.1016/j.jnca.2016.04.007,
2016.

Ahmed, M., Mahmood, A. N., and Islam, M. R.: A sur-
vey of anomaly detection techniques in financial do-
main, Future Generation Computer Systems, 55, 278-288,
https://doi.org/10.1016/j.future.2015.01.001, 2016.

Akgay, S., Atapour-Abarghouei, A., and Breckon, T. P.: Skip-
ganomaly: Skip connected and adversarially trained encoder-
decoder anomaly detection, in: International Joint Con-
ference on Neural Networks (IJCNN), pp. 1-8, IEEE,
https://doi.org/10.1109/1JCNN.2019.8851808, 2019.

Akcay, S., Atapour-Abarghouei, A., and Breckon, T. P:
Ganomaly: Semi-supervised anomaly detection via adversar-
ial training, in: Asian conference on computer vision, pp.
622637, Springer, https://doi.org/10.1007/978-3-030-20893-
6_39, 2018.

Arora, S., Ge, R,, Liang, Y., Ma, T., and Zhang, Y.: Generaliza-
tion and equilibrium in generative adversarial nets (gans), in:
International Conference on Machine Learning, pp. 224-232,
PMLR, https://doi.org/10.1145/3188745.3232194, 2017.

Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., and Ste-
ger, C.: The MVTec anomaly detection dataset: a comprehen-
sive real-world dataset for unsupervised anomaly detection,
International Journal of Computer Vision, 129, 1038-1059,
https://doi.org/10.1007/s11263-020-01400-4, 2021.

Berthelot, D., Schumm, T., and Metz, L.: BEGAN: Bound-
ary Equilibrium Generative Adversarial Networks, CoRR,
abs/1703.10717, http://arxiv.org/abs/1703.10717, 2017.

Biewald, L.: Experiment Tracking with Weights and Bi-
ases, https://www.wandb.com/, software available from
wandb.com, 2020.

Boyko, A. and Funkhouser, T.: Extracting roads from dense
point clouds in large scale urban environment, ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 66, 6, 2-12,
https://doi.org/10.1016/j.isprsjprs.2011.09.009.

Chavdarova, T. and Fleuret, F.: Sgan: An alternative training
of generative adversarial networks, in: IEEE conference on
computer vision and pattern recognition, pp. 9407-9415,
https://doi.org/10.1109/CVPR.2018.00980, 2018.

Choi, J. and Han, B.: MCL-GAN: Generative Adversarial
Networks with Multiple Specialized Discriminators, CoRR,
abs/2107.07260, https://arxiv.org/abs/2107.07260, 2021.

Durugkar, I. P., Gemp, 1., and Mahadevan, S.: Generative
Multi-Adversarial Networks, in: Sth International Confer-
ence on Learning Representations, ICLR, OpenReview.net,
https://doi.org/10.48550/arXiv.1611.01673, 2017.

Gézero, L. and Antunes, C.: Road Rutting Measure-
ment Using Mobile LiDAR Systems Point Cloud, IS-
PRS International Journal of Geo-Information, 8, 404,
https://doi.org/10.3390/1jg18090404, 2019.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Genera-
tive adversarial networks, Communications of the ACM, 63,
139144, https://doi.org/10.1145/3422622, 2020.

12 of 13


https://doi.org/10.1016/j.jnca.2016.04.007
https://doi.org/10.1016/j.future.2015.01.001
https://doi.org/10.1109/IJCNN.2019.8851808
https://doi.org/10.1007/978-3-030-20893-6_39
https://doi.org/10.1007/978-3-030-20893-6_39
https://doi.org/10.1145/3188745.3232194
https://doi.org/10.1007/s11263-020-01400-4
http://arxiv.org/abs/1703.10717
https://www.wandb.com/
https://doi.org/10.1016/j.isprsjprs.2011.09.009
https://doi.org/10.1109/CVPR.2018.00980
https://arxiv.org/abs/2107.07260
https://doi.org/10.48550/arXiv.1611.01673
https://doi.org/10.3390/ijgi8090404
https://doi.org/10.1145/3422622

Han, X., Chen, X., and Liu, L.-P.. Gan ensemble for
anomaly detection, in: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 35, pp. 4090-4097,
https://doi.org/10.1609/aaai.v35i5.16530, 2021.

Hoang, Q., Nguyen, T. D., Le, T., and Phung, D.: MGAN: Train-
ing generative adversarial nets with multiple generators, in:
International conference on learning representations, 2018.

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang,
H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan,
E., et al.: Identifying medical diagnoses and treatable dis-
eases by image-based deep learning, Cell, 172, 1122-1131,
https://doi.org/10.1016/j.cell.2018.02.010, 2018.

Li, C-L., Sohn, K., Yoon, J., and Pfister, T.:. Cutpaste:
Self-supervised learning for anomaly detection and local-
ization, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9664-9674,
https://doi.org/10.1109/CVPR46437.2021.00954, 2021.

Li, Z., Cheng, C., Kwan, M.-P, Tong, X., and Tian,
S.: Identifying asphalt pavement distress using UAV Li-
DAR point cloud data and random forest classification,
ISPRS International Journal of Geo-Information, 8, 39,
https://doi.org/10.3390/ijgi8010039, 2019.

Liang, Y., Zhang, J., Zhao, S., Wu, R., Liu, Y., and Pan,
S.: Omni-frequency Channel-selection Representations for
Unsupervised Anomaly Detection, CoRR, abs/2203.00259,
https://doi.org/10.48550/arXiv.2203.00259, 2022.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J.:
On the Variance of the Adaptive Learning Rate and Beyond,
in: 8th International Conference on Learning Representations,
ICLR 2020.

Liu, Y., Ma, C,, Li, L., Xing, X., Zhang, Y., Wang, Z., and
Xu, J.: A Road Extraction Method Based on Region Grow-
ing and Mathematical Morphology from Remote Sensing Im-
ages, Journal of Computer and Communications, 6, 91-97,
https://doi.org/10.4236/jcc.2018.611008, 2018.

Odena, A., Dumoulin, V., and Olah, C.: Deconvo-
lution and checkerboard artifacts, Distill, 1, 3,
https://doi.org/10.23915/distill.00003, 2016.

Ooi, B. C.: Spatial kd-tree: A data structure for geographic
database, pp. 247-258, https://doi.org/10.1007/978-3-642-
72617-0_17, 1987.

Ragnoli, A., De Blasiis, M. R., and Di Benedetto, A.: Pavement
distress detection methods: A review, Infrastructures, 3, 58,
https://doi.org/10.3390/infrastructures3040058, 2018.

Richter, R. and Déllner, J.: Concepts and techniques for integra-
tion, analysis and visualization of massive 3D point clouds,
Computers, Environment and Urban Systems, 45, 114-124,
https://doi.org/10.1016/j.compenvurbsys.2013.07.004, 2014.

Ronneberger, O., Fischer, P, and Brox, T.. U-net: Con-
volutional networks for biomedical image segmentation,
in: International Conference on Medical image computing
and computer-assisted intervention, pp. 234-241, Springer,
https://doi.org/10.1007/978-3-319-24574-4_28, 2015.

Rudolph, M., Wandt, B., and Rosenhahn, B.: Same same but
differnet: Semi-supervised defect detection with normaliz-
ing flows, in: Proceedings of the IEEE/CVF winter confer-
ence on applications of computer vision, pp. 1907-1916,
https://doi.org/10.1109/WACV48630.2021.00195, 2021.

AGILE: GlIScience Series, 4, 7, 2023 | https://doi.org/10.5194/agile-giss-4-7-2023

Salehi, M., Eftekhar, A., Sadjadi, N., Rohban, M. H., and Ra-
biee, H. R.: Puzzle-AE: Novelty Detection in Images through
Solving Puzzles, CoRR, abs/2008.12959, https://arxiv.org/
abs/2008.12959, 2020.

Schlegl, T., Seebock, P., Waldstein, S. M., Schmidt-Erfurth, U.,
and Langs, G.: Unsupervised anomaly detection with gener-
ative adversarial networks to guide marker discovery, in: In-
ternational conference on information processing in medical
imaging, pp. 146—157, Springer, https://doi.org/10.1007/978-
3-319-59050-9_12, 2017.

Schlegl, T., Seebock, P., Waldstein, S. M., Langs, G.,
and Schmidt-Erfurth, U.: f-AnoGAN: Fast unsuper-
vised anomaly detection with generative adversar-
ial networks, Medical image analysis, 54, 30-44,
https://doi.org/10.1016/j.media.2019.01.010, 2019.

Seichter, D., Eisenbach, M., Stricker, R., and Gross, H.-
M.: How to improve deep learning based pavement
distress detection while minimizing human effort, in:
2018 IEEE 14th International Conference on Automa-
tion Science and Engineering (CASE), pp. 63-70, IEEE,
https://doi.org/10.1109/COASE.2018.8560372, 2018.

Tang, T.-W., Kuo, W.-H., Lan, J.-H., Ding, C.-F., Hsu, H., and
Young, H.-T.: Anomaly detection neural network with dual
auto-encoders GAN and its industrial inspection applications,
Sensors, 20, 3336, https://doi.org/10.3390/520123336, 2020.

Wolf, J., Richter, R., and Déllner, J.: Techniques for Auto-
mated Classification and Segregation of Mobile Mapping 3D
Point Clouds, in: 14th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and
Applications - GRAPP, pp. 201-208, INSTICC, SciTePress,
https://doi.org/10.5220/0007308802010208, 2019.

Wu, H,, Yao, L., Xu, Z., Li, Y., Ao, X., Chen, Q., Li, Z., and
Meng, B.: Road pothole extraction and safety evaluation by in-
tegration of point cloud and images derived from mobile map-
ping sensors, Advanced Engineering Informatics, 42, 100 936,
https://doi.org/10.1016/j.2e1.2019.100936, 2019.

Xia, X., Pan, X., He, X., Zhang, J., Ding, N., and Ma, L.
Discriminative-Generative Representation Learning for One-
Class Anomaly Detection, CoRR, abs/2107.12753, https://
arxiv.org/abs/2107.12753, 2021.

Yadav, M., Singh, A. K., and Lohani, B.: Extraction of road
surface from mobile LiDAR data of complex road environ-
ment, International Journal of Remote Sensing, 38, 4655—
4682, https://doi.org/10.1080/01431161.2017.1320451, 2017.

Zavrtanik, V., Kristan, M., and Skocaj, D.: Draem — a dis-
criminatively trained reconstruction embedding for surface
anomaly detection, in: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 8330-8339,
https://doi.org/10.1109/ICCV48922.2021.00822, 2021.

Zenati, H., Foo, C. S., Lecouat, B., Manek, G., and Chan-
drasekhar, V. R.: Efficient GAN-Based Anomaly Detec-
tion, CoRR, abs/1802.06222, http://arxiv.org/abs/1802.06222,
2018.

Zhao, J. J., Mathieu, M., and LeCun, Y.: Energy-based Genera-
tive Adversarial Networks, in: 5th International Conference
on Learning Representations, ICLR 2017, OpenReview.net,
2017.

13 0f 13


https://doi.org/10.1609/aaai.v35i5.16530
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1109/CVPR46437.2021.00954
https://doi.org/10.3390/ijgi8010039
https://doi.org/10.48550/arXiv.2203.00259
https://doi.org/10.4236/jcc.2018.611008
https://doi.org/10.23915/distill.00003
https://doi.org/10.1007/978-3-642-72617-0_17
https://doi.org/10.1007/978-3-642-72617-0_17
https://doi.org/10.3390/infrastructures3040058
https://doi.org/10.1016/j.compenvurbsys.2013.07.004
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/WACV48630.2021.00195
https://arxiv.org/abs/2008.12959
https://arxiv.org/abs/2008.12959
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1109/COASE.2018.8560372
https://doi.org/10.3390/s20123336
https://doi.org/10.5220/0007308802010208
https://doi.org/10.1016/j.aei.2019.100936
https://arxiv.org/abs/2107.12753
https://arxiv.org/abs/2107.12753
https://doi.org/10.1080/01431161.2017.1320451
https://doi.org/10.1109/ICCV48922.2021.00822
http://arxiv.org/abs/1802.06222



