
A Scalable AI Training Platform for Remote Sensing Data
Hendrik M. Würz�1,2, Kevin Kocon�1,2, Barbara Pedretscher�3, Eva Klien1, and
Eva Eggeling�4

1Fraunhofer Institute for Computer Graphics Research IGD, Fraunhoferstraße 5, Darmstadt, Germany
2Technical University of Darmstadt, Karolinenplatz 5, Darmstadt, Germany
3Fraunhofer Austria Research GmbH, KI4LIFE, Lakeside B13a, 9020 Klagenfurt, Austria
4Fraunhofer Austria Research GmbH, Visual Computing, Inffeldgasse 16c, 8010 Graz, Austria

Correspondence: Hendrik M. Würz (hendrik.martin.wuerz@igd.fraunhofer.de)

Abstract.
We present a platform to support the AI development life-
cycle with focus on large data like remote sensing. We tar-
get developers who are not allowed to use existing com-
mercial cloud platforms for legal reasons or data com-
pliance. The flexible implementation of our platform en-
ables a deployment on classic server infrastructures as
well as on internal clouds. Our goals of scalable and
resource-efficient execution, independence from specific
AI frameworks and programming languages, as well as re-
producibility of results are met through a workflow-based
calculation combined with the tool Data Version Control.
The capabilities of the platform are demonstrated by train-
ing an AI-based forest type classification.

Keywords. Artificial Intelligence, Workflow Manage-
ment, On-Premises Calculation, Cloud computing, Re-
mote Sensing

1 Introduction

Artificial intelligence systems have become more visible
in remote sensing in the last years. For example, AI helps
to predict yields (Jung et al. (2021)) or to detect deforesta-
tion (John and Zhang (2022)).

However, before an AI can be used, it must be trained. Es-
pecially in the field of remote sensing, this requires large
amounts of storage. At the same time, ground truth data is
rarely available and data policies demand for special pro-
tection. Sometimes, this excludes the use of commercial
clouds. We present a platform that supports earth scien-
tists in training AI models. Our platform is based on open
software, can easily be installed on internal hardware, and
still exploits the capabilities of (internal) clouds. The en-
tire process from data preparation to the trained AI model
is structured as a workflow. This ensures reproducibility

and enables resource-efficient computation. In this paper,
we present our architecture, demonstrate an example as
proof of concept and give an outlook on future work.

2 Related Work

There are commercial as well as open source products
to support AI development. The most prominent training
platforms include Google AI Platform (Google (2023a))
or its successor Vertex AI (Google (2023c)), the Azure
AI Platform from Microsoft (Microsoft (2023)) and Ama-
zon’s SageMaker (Amazon Web Services (2023)). They
are all tightly coupled with their cloud computing plat-
forms. This enables massive scaling but might prevent
the usage for applications with data policy issues. Fur-
ther, to cover the complete pipeline from raw data to
AI, additional systems are needed. The Google Earth En-
gine GEE (Google (2023b)) for example is a powerful
platform for manipulating and pre-processing data. Ad-
ditionally, analysis ready data can be ingested from ex-
ternal sources, which can significantly reduce the effort
before training an AI. For Earth Observation (EO) ap-
plications, there are several EO data providers and plat-
forms that also offer pre-processed datasets for training
(e.g. (Planet Labs (2023b, c))). Having worked with the
aforementioned tools, we see a clear benefit for an inte-
grated solution for pre-processing and training as proposed
in this paper. Besides the large cloud providers, smaller
solutions for AI development can be found. Especially
in medicine, systems with a focus on data security have
been developed. Cohen and Kovacheva (2021) presented
MERLIN, a platform that supports physicians in data anal-
ysis. Many of their ideas, such as the construction of a
modular system, can also be applied to remote sensing.
Kadri et al. (2022) for example emphasizes the importance
of containerization in data processing - ideas we take up
and combine with a scientific workflow management sys-
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tem. Other projects like Kubeflow Pipelines follow a sim-
ilar idea (Kubeflow Authors (2023)). However, they are
closely linked to respective AI frameworks such as Tensor-
Flow (Google (2023d)). This achieves a great integration,
but it limits the flexibility with respect to other frameworks
like PyTorch (Linux Foundation (2023)).

3 Architecture

In the field of remote sensing, data processing developers
often have to handle large data and follow tight data poli-
cies. In addition, they also want to work productively. This
leads to the following requirements:

R1) On-Premises. For data compliance reasons, cal-
culations often must take place on-premises. The
platform should be installable on internal infrastruc-
ture and be based on open technology.

R2) Flexibility. Different calculation steps require
different hardware such as large disks or GPU ac-
celeration. The platform should allocate appropriate
resources in each step and release them afterwards to
ensure a cost-efficient execution.

R3) Reproducibility and versioning. In academic
context, many experiments are often repeated with
different parameters. The platform should document,
which configuration led to which result to support re-
producibility.

R4) Language agnostic. Developers should be able
to use their favorite programming language or frame-
work. The platform should not make any restrictions.

Our architecture has to address all these requirements. For
requirement (R2), scientific workflow management sys-
tems (WMS) are beneficial (Juve and Deelman (2010);
Lin et al. (2009); Liu et al. (2016)). They model tasks as
a workflow in which multiple services are invoked. Re-
source requirements can be defined for each service and
the WMS provides them at run time. This way, the devel-
oper retains control over the service implementation. At
the same time, the WMS can control the execution.

There are many open source WMS like Pegasus (Deelman
et al. (2015)), Apache Airflow (Apache Software Founda-
tion (2023)) or Argo (Argo Project Authors (2023)). For
our platform, we use the open source WMS Steep because
it scales well (Krämer (2021)), offers a powerful workflow
definition language (Krämer et al. (2021)) and is easy to
set up. Furthermore, it can be deployed in a cloud environ-
ment as well as on individual servers. This way, require-
ment (R1) is fulfilled. When Steep is running in a cloud,
it can start and stop VMs on demand, depending on the
service to be executed. This leads to a cost-efficient exe-
cution and provides flexibility regarding various hardware
requirements.

For requirement (R4), we implement container-based pro-
cessing and use Docker images for the services in our
workflows. (R3) is ensured by documenting both the work-
flows and the data used (see Section 3.2).

All components of our platform are summarized in Fig. 1.
There are five scenarios in which people interact with the
platform: New services can be added to the platform, an
AI model can be trained or used, a final workflow can be
published, and customers can use AI models. In the fol-
lowing sections, we describe each of these situations and
how the platform supports the process.

3.1 Service Deployment

New services can be added to the platform to extend its
functionality. Examples include access to external APIs,
format conversion, data processing or additional AI frame-
works.

Any service is managed in a Git repository as shown in
step 1 in Fig. 1. We distinguish between three types of
services: static data processing services (orange), services
to train neural networks (blue) and services to use pre-
trained networks (green). However, from a technical point
of view, all services are treated identically. Each service is
a repository containing a Dockerfile. When the repository
changes, a new Docker image is automatically built by a
Gitlab runner and pushed to the Docker registry 2 . By
using Docker images, the WMS starts a container without
having to deal with different runtime environments. The
service developer maintains dependencies inside the im-
age and changes have no side effects on other services.

When the Docker images are available, the service is reg-
istered in the WMS 3 . This is not limited to self-built
images, public ones can be referenced as well. The regis-
tration specifies the service interfaces such as parameters,
input and output files, as well as the resource requirements.

3.2 Model Training

Once all required services are deployed, they can be as-
sembled into a workflow 4 . To train an AI model, in-
put data needs to be prepared first. The platform itself
does not impose any requirements on the data. It can be
raw files in an object storage, APIs to third party systems,
databases, or anything else. Only the developed services
have to comply with the data. Data preparation may in-
clude steps like download, filter or conversion, illustrated
in orange in Fig. 1. After these static processing steps, the
actual training follows (blue). For each AI framework such
as PyTorch or TensorFlow, there is a corresponding train-
ing service. If other frameworks are needed, new services
can be added as described in Section 3.1.

For training, the developer specifies the AI model struc-
ture within a separate file 5 . It is not part of the training
service to keep it reusable. Instead, it is referenced by a
parameter and loaded at run time.
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Figure 1. Architecture of the platform. There are five scenarios in which a user interacts with the platform. This figure illustrates what
happens in each of them.

The complete workflow is sent to the WMS 6 , which ex-
ecutes it on suitable hardware using the service specifica-
tion from Section 3.1. The WMS also takes care of data
exchange between individual services, parallelizes execu-
tion, cleans up temporary files, displays error logs and can
initiate retries. The latter is particularly helpful when ac-
cessing external data sources that might be unavailable
temporarily or in situations where access limits have been
reached.

For the training, our platform ensures requirement (R3)
“reproducibility and versioning” on two levels. First, the
WMS documents the input and output paths of each ser-
vice along with its version number. However, when per-
forming AI training, the model structure file is just a pa-
rameter to the service and might be modified between ex-
ecutions. In this case, the second versioning mechanism
applies: The tool Data Version Control (DVC) links data
and model of experiments (iterative.ai (2023)). Even if the
model structure changes, DVC tracks what a network was
trained with. DVC can be used via a command line pro-
gram, making it easy to integrate into the training work-
flow. It stores its data in a Git repository so that it can be
retrieved from there later. Finally, the training results are
pushed in a model database 7 .

3.3 Model Usage

To use an AI model, some service invocations can be
copied from the training workflow. Steps like downloads
and format conversions of input data remain, but no

ground truth data need to be prepared. Additionally, the
training service (blue) is replaced by an execution service
(green) 8 . Similar to training, this service only contains
libraries to run a framework like TensorFlow. The actual
AI model is referenced by a parameter 9 and loaded from
the model database at run time.

The user submits the workflow to the WMS 10 , which
manages the execution as described above. The AI exe-
cution service performs a forward propagation of the pre-
pared input data through the referenced model and writes
the outputs on a separate file system 11 .

3.4 Exploitation

When a workflow is ready for delivery, it is published in
a workflow database 12 . This defines the used services,
their order and the version of AI models. However, the
paths to input data and configurations are still parameter-
ized so that they can be defined by the customer later.

To do this, the customer accesses the workflow database
via a user interface 13 , selects a workflow and speci-

fies the missing values 14 . The data on which the model
should be executed can either be uploaded or made avail-
able via an API depending on what the services in the
workflow expect. The final workflow is sent to the WMS
15 . When the calculation is complete 16 , the results can

be downloaded 17 .
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Figure 3. Execution Workflow. The steps to prepare the input data are nearly the same as in Fig. 2. Large parts can be reused. However,
the AI model is now used instead of trained.

4 Evaluation

We used the platform to determine forest types based on
Sentinel 2 data. For details on the used CNN models, the
hyper-parameters and the final results, we refer to Kocon
et al. (2022). In this section, we summarize the devel-
oped services and our experience with the platform. Fig. 2
shows the workflow to train the model. It should be noted
that we used this workflow to train different CNN models
with almost no overhead. For more details we refer again
to Kocon et al. (2022). We started by searching for rel-
evant Sentinel 2 images in the Copernicus Open Access
Hub (ESA (2023)). Criteria were the cloud coverage and
a bounding box of the relevant area. The information were
passed as parameters to the workflow. This way, they can
be changed easily to train on another region. The iden-
tified satellite images were downloaded and processed in
parallel. Instead of Sentinel 2, other data sources could be
accessed, such as Landsat data (Williams et al. (2006)),
or the high-resolution images from Planet (Planet Labs
(2023a)) by replacing the download service. For each im-
age, its extent was extracted, corresponding ground truth
data was fetched from an external API and rasterized.

The following Split service split the generated ground truth
image into tiles, ensuring the resolution required by the AI
model.

Additionally, every downloaded image was filtered to re-
move unneeded frequency bands, converted to PNG and
cropped into tiles like the ground truth image. The service
Combine copies the pairs of ground truth and satellite im-
ages into a common directory. The final TensorFlow ser-
vice took this directory together with a model definition
and learned how different forest types look in satellite im-
ages. During the development of our AI model, we exe-

cuted the pipeline several times with slight modifications.
For example, we tested which frequency bands are impor-
tant, or what influence seasons have on the classification.
All of these tests were managed by the platform and we
could directly compare the accuracy of the trained net-
works.

As explained in Section 3.2, we stored the trained model
in a model database. Afterwards, we could use it with an-
other workflow (see Fig. 3). As before, we downloaded
Sentinel 2 images for a desired region, extracted the nec-
essary frequency bands, and split the images into small
tiles. However, instead of using the output tiles for train-
ing, they were now passed to an AI execution service. The
final results with the forest type classification were written
to the file system and are ready for download.

5 Discussion

In this section, we discuss some decisions in platform de-
sign. We address partial execution of workflows and op-
tions for access rights.

Mapping the entire pre-processing and training pipeline in
one workflow sounds tempting. All steps from raw data, to
a final trained AI model are formalized and reproducible.
However, practice shows that often only parts of the work-
flow are executed. Service developers test their service in
an isolated workflow, AI developers create necessary train-
ing data once and then just run the training service. Conse-
quently, the entire workflow is started only in the exploita-
tion phase by the customer. An extended platform design
could take this into account. Here, developers would al-
ways send the entire workflow, but the platform checks if
each service really needs to be executed or if data from a
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previous execution can be reused. If this is the case, the
corresponding services are skipped. Otherwise, a service
or parameter has changed and the calculations are needed.
However, during the design phase we explicitly decided
not to do this, because we wanted to keep the platform
simple. Currently, everything in the workflow is executed.
The more intelligence we add, the more complicated it be-
comes. Nevertheless, there may be development teams that
would like to have such a feature. In these cases, an appro-
priate plugin could be written for our workflow manage-
ment system Steep.

No user or rights management is implemented within our
platform. Instead, the network in which the platform is
running has to be secured. Everybody who has access to
the network is allowed to run any service and access all
data. In situations where more restrictions were needed,
another instance of the platform was deployed with only
the allowed services included. This keeps the maintenance
effort low as no user registrations, nor granting of rights
are needed. Since the platform addresses individual com-
panies and not large, public cloud providers, this approach
can also be practical for others. However, there are also sit-
uations in which increased security requirements prevent
such a solution.

6 Conclusion & Future Work

In this paper, we presented a platform to support the
development of AI models based on large data like re-
mote sensing. For this purpose, we used a workflow
management system (WMS) with automated deployment
pipelines for services and introduced versioning. Addi-
tionally, we demonstrated the usability of the platform for
forest type classification.

The platform fulfills the requirements from Section 3. All
components of the platform can be executed on premises
since we are only using open source technology (R1). We
model all computations as a workflow with multiple ser-
vices. Each service has individual hardware requirements,
ensuring that only the necessary resources are allocated.
For this, the WMS Steep starts and stops appropriate VMs
and monitors the execution of tasks (R2). The services are
encapsulated in Docker images and thus are independent
towards the used programming language (R4). The plat-
form supports versioning of all calculations (R3) by docu-
menting all inputs and outputs of a service, while changing
data is versioned by DVC. In this way, calculations remain
reproducible and can be analyzed later.

In the future, we plan to support AI training even more.
The underlying WMS enables us to scale the resources
easily. Especially for hyperparameter tuning (Feurer and
Hutter (2019)) this can be an advantage. A workflow can
test several parameters simultaneously and then further op-
timize the most promising ones.

Another interesting feature is user steering (Mattoso et al.
(2013)). The term comes from the scientific workflow re-
search and describes the intervention of humans in a run-
ning workflow. In combination with human-in-loop train-
ing (Mosqueira-Rey et al. (2022)), new exciting fields of
research questions arise. How can versioning be ensured
in this case? How does the user interact with a distributed
running training? In the future we want to address these
questions and extend the platform accordingly.

7 Data and Sorftware Availability

Scripts to set up the platform initially are avail-
able at https://github.com/igd-geo/ai-training-platform/
releases/tag/v1.0.0. The used workflow management sys-
tem Steep is an open source project https://steep-wms.
github.io/.
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