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Abstract. Spatial autocorrelation is a fundamental statis-
tical property of geographical data. A number of estima-
tors have been introduced, with Moran’s I being one of
the most commonly used methods. The characterisation
of spatial autocorrelation is useful for a number of appli-
cations, including finding clusters, testing model assump-
tions, investigating spatial outliers, and others. Most es-
timators of spatial autocorrelation are based on assessing
the degree of correspondence between structures in an at-
tribute and structures among spatial units, both of which
are operationalised in matrix form. Associated inference
procedures then rely on holding the spatial configuration
fixed, but varying the attribute values over the geometries.
Although fixing the geometries is useful in many scenar-
ios, there are cases where it would be more appropriate to
allow the geometries to vary as well, such as in the analy-
sis of social media feeds or mobile sensor observations. In
this short paper, the case is considered where geometries
are the result of inhomogeneous spatial Poisson processes.
Using diagonal and circular types of spatial structuring, it
is investigated how random geometries affect critical val-
ues used to assess the significance of global Moran’s /
scores. It is shown that the critical values resulting from an
established inference framework often underestimate the
bounds that would result if geometric randomness were
taken into account. This leads to type-I errors and thus po-
tential false positive patterns.

Keywords. spatial autocorrelation, Moran’s I, Poisson
point process, spatial statistics

1 Introduction

Global spatial autocorrelation measures are summary
statistics used to quantify spatial structure in attribute
values. The explicit incorporation of spatial relations is
achieved by using spatial weights that formalise pairwise
associations between discrete units such as points, poly-
gons, and lines. Moran’s I and Geary’s ¢ (Cliff and Ord,

1981) are two very commonly used methods (with im-
plementations available in mainstream software packages
such as ESRI ArcMap, R-based spatial statistics libraries,
and others), but there are a number of other statistics, in-
cluding I' (Hubert and Golledge, 1981), Ripley’s K (Rip-
ley, 1976), and the correlogram associated with a signif-
icance test () (Oden, 1984). Typical use cases for spatial
autocorrelation statistics include testing the geographical
nature of data, testing for model misspecification in re-
gression contexts, and investigating spatial outliers (Getis,
2010, 2008).

The present contribution is concerned with inferences
about global Moran’s [ in the context of random geo-
metric configurations. Drawing inference about Moran’s /
assumes that the underlying geometric units are fixed
(Cressie, 1993). This is reflected in associated inference
procedures based either on the assumption of normality
(repeated sampling from a stationary normal distribution)
or on randomisation of the observed attribute values over
the geometric units present (see Westerholt, 2022b, for
an overview of inference procedures including more spe-
cialised approaches). The assumption of a fixed spatial
configuration simplifies inferences and often also makes
sense from an empirical point of view. For example, ad-
ministrative or census units are not the results of stochastic
processes but predefined. However, there are application
scenarios in which this assumption is not realistic. Exam-
ples include analyses of social media feeds (Steiger et al.,
2016), mobile sensor data (Bucher et al., 2020), wildlife
tracking observations (Demsar et al., 2015), and in scenar-
ios of competition for resources or land (Griffith and Ar-
bia, 2010; Griffith, 2006). Resorting to methods of point
pattern analysis (which is concerned with random geome-
tries) is not a way out since the covariance-based version
of the mark correlation function is technically equivalent
to Moran’s I, with respective inference techniques also be-
ing based on holding geometries fixed (Illian et al., 2008;
Shimatani, 2002).

Analytical solutions for inference about global Moran’s /
applied to random geometries would be complex due to the
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need to include distributions of spatial weights. The latter
depend on the underlying stochastic process generating the
geometries, the types of spatial weights, and possible nor-
malisations. Applying the Pitman-Koopman theorem — the
relevant theorem for deriving the moments of the null dis-
tribution of Moran’s I (Griffith, 2010; Cliff and Ord, 1981)
— is therefore not straightforward and can lead to different
results depending on the nature of the weights.

A recent paper by Westerholt (2022a) has investigated em-
pirically the impact of random geometries on inferences
about global Moran’s I. The focus of that paper is on ho-
mogeneous and inhomogeneous Matérn and Thomas clus-
ter processes, both special cases of the Neyman-Scott pro-
cess modelling offspring points around unobserved Pois-
son parent points (Yau and Loh, 2012). In that paper, more
emphasis is on the homogeneous case as inhomogeneity is
modelled after tweets and thus based on a rather specific
intensity surface. The results show that neglecting the con-
tribution of the geometries to the variability of Moran’s 1
has implications for the application of critical values used
to decide about statistical significance and for the statisti-
cal power of the estimator. The current paper complements
these results by shedding light on the inhomogeneous case
using Poisson processes and thus no offspring points. This
type of modelling can be useful for investigating spa-
tial urban structures without assuming specific punctiform
events as causes for clustering. Using 20,000 simulated in-
homogeneous point patterns with different types of trends
in the point intensity functions, it is shown in what way
the inhomogeneous geometric randomness has an impact
on critical values. Simulated point patterns are used to
eliminate potential confounding factors that might other-
wise be caused by specific geographical contexts. The lat-
ter would make it difficult to interpret the results obtained,
to attribute them to an underlying mechanism, and would
limit the generality of the results. The results obtained are
of both practical and theoretical value. They are useful in
empirical contexts informing how to interpret Moran’s / in
respective application scenarios and contribute to a better
understanding of the interplay between methodology and
random geometry.

2 Methods

The following subsection introduces the methodology as
well as the availability of the data and the software used.

2.1 Moran’s ]

The Moran’s [ statistic estimates spatial autocorrelation
and is given as (Getis, 2010, p. 264)

wij(x; — T)(x; — T)
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with z;,2; € X C R as n attribute values with mean T and
w;; € R>( denoting spatial weights. The spatial weights
are determined based on 10 nearest neighbours and using
inverse distance weighting in the form d;jQ, where d;; de-
notes the Euclidean distance between observations ¢ and
j. Positive and negative I values indicate positive (clus-
tering of similar values) and negative spatial autocorrela-
tion (adjacent contrasting values), respectively. There are
several inference mechanisms associated with I, including
special procedures for small sample situations (Tiefelsdorf
and Boots, 1995; Cliff and Ord, 1972) and to account for
skewness (Tiefelsdorf, 2002). However, the two most im-
portant inferential frameworks (based on large samples)
are those built on either the assumption of normality or
randomisation of observed values, as put forward by Cliff
and Ord (1981, p. 46 ff.). The results presented in Section 3
are based on the normalisation assumption. It was shown
in the article by Westerholt (2022a) that the differences
between the two types of assumptions are negligible with
respect to the objectives of this work, so the second variant
is omitted in the following due to space constraints.

2.2 Sampling from Inhomogeneous Spatial Poisson
Processes

The homogeneous Poisson process is the reference process
that reflects complete spatial randomness and to which
geometric patterns are usually compared in point pattern
analysis. This type of process is determined by an inten-
sity parameter \ that reflects the average number of points
per unit area (Illian et al., 2008, p. 66). In the present work,
two spatially varying intensity parameters are used to sim-
ulate inhomogeneous spatial Poisson processes. These pa-
rameters are based on the geometric coordinates v and v
and are given as

A =175 Ju+wv|, (2a)

Ao =50/\/(u—0.5)2+(v—0.5)2. (2b)

Equation 2a generates point patterns with an increasing
southwest-to-northeast trend. Equation 2b, on the other
hand, yields point patterns with a radial trend starting from
the midpoint (0.5,0.5) of 1 x 1 unit windows in descend-
ing form. The multiplicative factors 175 and 50 control the
average numbers of points and keep them close to 175 to
ensure comparability. For both types of point processes, il-
lustrated in Figure 1, 10,000 random samples were drawn.

2.3 Analysis of critical values

The present study compares critical values for determin-
ing the statistical significance of Moran’s I. These critical
values indicate certain percentiles of the null distribution
of Moran’s I under spatial randomness. Values above the
critical value (or below, in the case of a two-sided test) are
considered significant and denote spatial configurations
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Figure 1. Illustration of realisations of inhomogeneous spatial Poisson point patterns, where the intensity A leads to either (a) a diagonal

trend or (b) a circular pattern.

that are unlikely to occur under random conditions. Criti-
cal values are therefore of high practical relevance as they
form the basis for judgements about potentially interesting
or uninteresting spatial structures in data. Attribute vec-
tors X, assigned to each of the 1 < k£ < 20,000 simulated
point pattern are drawn from a standard normal distribu-
tion, whereby each sample is drawn with the same seed in
order to eliminate distributional fluctuations and to ensure
that the observed differences are due to geometric random-
ness. In this way, each simulated sample is assigned a vec-
tor of standard normal variates from the same distribution
and the same pseudo-random number generation process,
thereby controlling potential mere technical confounders.

The critical values that would be used in the conventional
way (without taking geometric randomness into account)
are determined for each individual simulated pattern and
assuming asymptotic normality of Moran’s I in the null
hypothesis (see Section 2.1). The 90th, 95th, and 99th per-
centiles of respective normal distributions fitted with the
means of [ (which is 4= —1/(n—1)) and the respec-
tive variances of I for each individual pattern (the equa-
tion of the variance would be too bulky to be reproduced
here, see Griffith (2010)) are calculated. The counterparts
for the cases of geometric randomness are obtained em-
pirically from vectors of Moran’s I estimates for the re-
spective 10,000 patterns of both point processes. Due to
space constraints, only positive spatial autocorrelation is
considered, as this is of greater practical importance (since
it represents accumulation in space and thus clustering of
similar values). The critical values are then analysed us-
ing boxplots that allow a visual comparison of the dis-
tributional characteristics assuming common significance
values « € {0.10,0.05,0.01}. Respective lines in the box-
plots allow to look into the possible deviations between the
two types of inference. This visual analysis is supported
numerically by calculating skewness and kurtosis.
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2.4 Data and Software Availability

The data used in this work consists of 20,000 simulated
point patterns that are generated using the spatstat R
package. The code to perform the analysis and to cre-
ate the raw versions of the figures (which were man-
ually post-processed using professional vector graph-
ics editing software) is based on the R libraries sf,
spdep, spatialreqg, foreach, and doParallel.
All code is provided through Zenodo: https://doi.org/10.
5281/zenodo.7824967.

3 Results

The critical values as derived from the established infer-
ence framework often underestimate the critical values
that do account for geometric randomness. Figure 2 shows
boxplots summarising the conventional critical values for
all 20,000 estimated patterns and for the three significance
levels o € {0.10,0.05,0.01}. Sub-figure 2a shows the re-
sults for the patterns with diagonal intensity trend, while
sub-figure 2b presents boxplots for the circular pattern.
Both types of point patterns show similar results but differ
in some details. A general observation is that a large num-
ber of the conventionally determined values (the boxplots)
underestimate the critical values obtained under geometric
randomness (dotted lines in the figure). This is most pro-
nounced for o = 0.01 and thus at a strict significance level.
For both types of point patterns, the boxes containing the
mean 50% of estimated conventional critical values of all
simulated patterns are completely below the empirically
estimated critical value that takes into account geometric
randomness. Underestimation here means that in many sit-
uations we would be confronted with statistical type-I er-
ror inflation (i.e. the null hypothesis of spatial randomness
is falsely rejected too often) because conventional values
below the one accounting for the additional randomness
indicate a too permissive decision criterion. The presence
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Figure 2. Summaries of the distributions of conventional critical values for Moran’s I compared against critical values obtained from
simulated point patterns. Critical values are given for point patterns with (a) a diagonal and (b) a circular pattern in the intensity function.
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of inhomogeneous Poisson point processes thus seems to
lead to a reduction in the decision quality of Moran’s [ as
a test statistic.

The underestimation of the critical values is more consis-
tent for point patterns with circular point intensities. For
the diagonal case, it is noticeable that with decreasing «
the boxes of the boxplots move increasingly below the crit-
ical value estimates that account for point geometry vari-
ation. While the dotted line for the latter threshold cuts
through the middle of the box for a = 0.10, it gradually
moves upwards to eventually no longer hit the box. This
behaviour is not observed for the point patterns with cir-
cular intensities, for which the conventional critical values
already cause type-I errors even at weak significance lev-
els. However, this behaviour seems to be stable and does
not depend on the rigour of the test. Recall that for both
types of samples the attribute values were drawn from the
same normal distributions with the same seeds. The only
difference between them is the spatial structuring of the
intensity function, which affects the spatial weights. One
possible interpretation of the two observations described
above is therefore that the diagonal patterns presumably
exert a greater influence on the tails of the distribution of
Moran’s [ than the circular patterns. The more sensitive
the statistical test is in terms of «, the more emphasis is
placed on the tails of the distribution, and hence we see
the trend in Figure 2a. The fact that both series of patterns
examined come from the same point process, just with dif-
ferently structured intensities, shows how sensitive spatial
statistics are to geometric configurations, especially when
these are attached with randomness.

The somewhat more extreme behaviour at the critical
values caused by the random diagonal patterns is con-
firmed by additional distributional characteristics. Look-
ing at Figure 2, it is noticeable in both cases that there
are more outliers in the right tail than in the left. So in
all cases there is a stronger propensity to underestimate
the empirical critical values, but with a tendency towards
more outliers at the other end of the spectrum. This ob-
servation suggests a right skewness in the distributions
of critical values. The estimation of skewness and kurto-
sis for all six distributions summarised in Figure 2 shows
that the conventional critical values obtained for the di-
agonally structured patterns are more right-skewed (the
skewness lies in the interval (0.3409,0.3436) as opposed
to (0.2728,0.2765)) and are more leptokurtic (the kur-
tosis lies in the interval (3.2405,3.2531) as opposed to
(3.0687,3.0751)) than their counterparts for the radial pat-
terns. On average, therefore, conventional critical values
are more reliable for random Poisson processes with a di-
agonal intensity trend, at least if one accepts less stringent
testing. However, this comes at the expense of a slightly
higher chance of observing extreme patterns that would
effectively lead to an overly stringent assessment. The lat-
ter leads to type-II errors (i.e. the null hypothesis of spatial
randomness is falsely accepted too often) and thus to po-
tentially overlooking interesting spatial structures in the
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data. Thus, while the mean behaviours described in the
previous paragraphs (i.e. the boxes) lead to unwanted pat-
terns being detected, there is also a certain probability that
a very rigid outcome of a spatial Poisson process may have
been observed, leading to spatial effects in attributes being
missed. Randomness in the points thus causes both type-I
and type-II errors, the former being more common but the
latter not unlikely.

4 Conclusions

This short paper investigated critical values associated
with using global Moran’s [ as a test statistic in conjunc-
tion with geometries that are the outcome of inhomoge-
neous spatial Poisson processes. A total of 20,000 patterns
were simulated, half with a diagonal trend in the inten-
sity and the other half with a circular point intensity. All
patterns were simulated in 1 X 1 unit windows, and each
of them includes an average of 175 points, with attributes
from normal distributions. The analysis consisted of two
parts: a characterisation of the distributions of the criti-
cal values for [ resulting from the established inference
framework, and a comparison of these values with the crit-
ical values obtained empirically from the simulated pat-
terns, thereby accounting for their inherent geometric ran-
domness.

The results obtained in the present study indicate a reverse
picture of the results presented by Westerholt (2022a).
Considering only similarly sized point patterns, the ear-
lier results suggest that type-II errors are of more con-
cern and some type-I errors occur in outlier cases. In the
present work, the analysis yields the opposite interpreta-
tion with more type-I errors and fewer type-II errors. The
main difference between the two papers is the nature of the
point processes studied. Westerholt (2022a) has studied
two types of cluster processes based on additional mecha-
nisms for point dispersal around parent points (Matérn and
Thomas cluster processes). These are useful, for example,
for modelling punctiform events that serve as spatial at-
tractors. In contrast, this paper deals with spatially struc-
tured Poisson processes, but without additional dispersal
mechanisms and hence only featuring spatial structure in
what would be called the (unobserved) parent point pro-
cess in Westerholt (2022a). The type of modelling con-
sidered here is suitable when there is (often externally
conditioned) spatial structuring, for example, in the case
of urban data structured by the general urban fabric but
without additional locatable sources of clustering on top.
The additional clustering process in Westerholt (2022a)
seems to result for smaller point patterns in the cluster-
ing being overly pronounced and missing much of the sur-
rounding point matrix that would increasingly occur for
larger patterns. Consequently, relevant patterns are missed.
In the present case, the opposite appears to be the case,
as the data presumably often resembles unstructured (and
thus more or less homogeneous) Poisson processes, which
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means that structures are more quickly flagged significant.
This paper is only a short contribution and further work
is needed to gain a more comprehensive picture of the in-
tersection of spatial autocorrelation statistics and random
geometry.
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