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Abstract. Fast and reliable geographic information is vital
in disaster management. In the late 2000s, crowdsourcing
emerged as a powerful method to provide this information.
Base mapping through crowdsourcing is already well-
established in relief workflows. However, crowdsourced
post-disaster damage assessment is researched but not yet
institutionalized. Based on MapSwipe, an established mo-
bile application for crowdsourced base mapping, a damage
assessment approach was developed and tested for a case
study after the 2021 Haiti earthquake. First, MapSwipe’s
damage mapping results are assessed for quality by us-
ing a reference dataset in regard to different aggregation
methods. Then, the MapSwipe data was compared to an
already established rapid damage assessment method by
the Copernicus Emergency Management Service (CEMS).
Crowdsourced building damage mapping achieved a max-
imum F1-score of 0.63 in comparison to the reference data
set. MapSwipe and CEMS data showed only slight agree-
ment with Cohen’s Kappa values reaching a maximum of
0.16. The results highlight the potential of crowdsourcing
damage assessment as well as the importance for a scien-
tific evaluation of the quality of CEMS data. Next steps for
further integrating the presented workflow into MapSwipe
are discussed.

Keywords. Volunteered Geographic Information, Crowd-
sourcing, Disaster and Risk Management, Open Geo Data,
Building Damage Mapping

1 Introduction

To support disaster preparedness and response activities,
volunteered geographic information (VGI) or data ob-
tained through crowdsourcing is already used in many sit-
uations and since 2012 humanitarian mapping efforts such
as post-disaster mapping campaigns improved the spatial
coverage of OpenStreetMap (OSM) considerably (de Al-

buquerque et al., 2016; Scholz et al., 2018; Herfort et al.,
2021).

However, most of the current research about humanitarian
mapping has focused on general base mapping (e.g. build-
ing, roads and land cover). In the following we will pro-
vide a more detailed perspective on crowdsourced damage
mapping approaches.

1.1 Crowdsourced Damage Assessment

The European Macroseismic Scale issued in 1998 by
Grunthal (1998) (EMS-98 scale), which rates the dam-
age degree (as in how strongly a single building is dam-
aged) in five categories from slight damage to complete
destruction, is commonly used in post-disaster damage as-
sessment. However, as pointed out by Huynh et al. (2014)
this scale is highly limited when using remote sensing
for damage assessment, since damage degree is often not
sufficiently distinguishable from a bird’s-eye perspective.
Studies regarding crowdsourced damage assessment there-
fore moved to focus on mapping damage extent (e.g. num-
ber of damaged or destroyed buildings) instead. First at-
tempts regarding crowdsourced damage assessment were
analysed by Kerle (2011), calling for universal standards
since damage assessment was performed with different ag-
gregation methods and damage scales.

In the aftermath of 2013 Taifun Haiyan, Westrope et al.
(2014) analysed satellite based building damage mapping
in OSM with respect to three classes (no damage, major
damage, destroyed). Further case studies acknowledged
the difficulty of mapping damage degree, for example in
regard to the 2010 Yushu Earthquake in China (Xie et al.,
2016). Several authors acknowledged that mapping dam-
age is a fundamentally more difficult task for volunteers
than base mapping, where only buildings themselves are
mapped (Kerle, 2011; de Albuquerque et al., 2016; We-
strope et al., 2014).
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In contrast to approaches solely powered by satellite data,
Khajwal and Noshadravan (2021) combined ground and
aerial pictures with crowdsourced information gathered
through surveys attached to the pictures for the case of
2017 Hurricane Harvey. In their work the authors could
go beyond the limited damage scale and collected infor-
mation on the condition of walls, roof structures and win-
dows. The limits of the approaches based on satellite im-
agery point towards the potential of using higher reso-
lution imagery for damage mapping, e.g. obtained from
drones or ground level pictures, which are albeit their
strongly improved availability not yet sufficiently utilized
for crowdsourcing applications.

Using crowdsourcing as a means to create baseline map
data in OSM for disaster response is nowadays an estab-
lished approach and a community of practice has formed
(Soden and Palen, 2016; Herfort et al., 2021). The open-
source mobile application MapSwipe has proven to be a
valuable crowdsourcing tool to derive data on human set-
tlements (Scholz et al., 2018; Herfort, 2018). Besides base-
line mapping, MapSwipe shows great potential to support
(rapid) building damage assessment. However, a scientific
evaluation of the crowdsourced damage information with
respect to data quality is missing so far.

1.2 Institutionalized Damage Assessment

Institutionalizing crowdsourced damage assessment sys-
tematically began in 2008 after the Wenchuan Earthquake
in China. Experts from different kinds of backgrounds co-
ordinated a joint effort and formed the Global Earth Ob-
servation Catastrophe Assessment Network (GEO-CAN),
which helped coordinate efforts during the next major
earthquake (Barrington et al., 2012).

The GEO-CAN initiative helped coordinate a widespread
damage assessment effort, where more than 600 volun-
teers from different stakeholders (governments, compa-
nies, universities, NGOs) were notified and instructed via
email (Barrington et al., 2012).

As of 2022, the GEO-CAN initiative to our knowledge
does not operate and Tomnod, a crowdsourcing coordi-
nation platform, retired their operations in August 2019
(Maxar Technologies, 2019). Crowdsourcing approaches
have still been used after 2011 (Kuzin et al., 2021; Xie
et al., 2016; Khajwal and Noshadravan, 2021), but these
efforts where not institutionally connected to each other
and data was collected independently in these cases. Ef-
forts were also made in 2017 when the Humanitarian
OpenStreetMap Team (HOT) conducted research on a
rapid damage assessment approach on their crowdsourcing
platform (Giovando, 2017). But as of today, crowdsourced
damage assessment is not sufficiently institutionalized.

Institutionalized but not crowdsourced is the European
Union’s Copernicus Emergency Management Service
(CEMS) (Copernicus Emergency Management Service,
2022a). CEMS operates since 2012 and produces reports,

maps and (geographic) data sets, which are publicly avail-
able on their website for download. These include rapid
mapping and damage assessment as well as data for risk
and recovery. Havas et al. (2017) studied the possible inte-
gration of VGI into the CEMS workflow.

As CEMS maps are expected to be available within a few
hours after the event, image acquisition primarily relies on
satellite data and the mapping itself continues to be car-
ried out manually (Kerle et al., 2019). Furthermore, ser-
vices such as CEMS which provide rapid mapping prod-
ucts are not always available or activated, especially when
the events are too small to be considered relevant (Notti
et al., 2018).

1.3 Automated Damage Assessment

Whereas automated damage assessment based on satellite
imagery has been proven to be rather difficult, the grow-
ing availability of unmanned areal vehicles (UAVs) and
drones has opened up new potential for automated and de-
tailed damage assessment (Kerle et al., 2019). When im-
agery is captured using UAVs damage detection is not lim-
ited to a two-dimensional representation of the ground, but
can further exploit the potential of three-dimensional point
clouds derived through structure from motion approaches
(de Gélis et al., 2021). This also leads to a declining need
to rely on formal damage mapping products such as the
one produced by CEMS, and facilitates on-site mapping
(Kerle et al., 2019).

However, automated approaches for building mapping in
general and damage mapping in particular face challenges
in regard to the transfer learning capacity and are relying
on accurate and sufficient amount of training data (de Gélis
et al., 2021; Li et al., 2022; Kerle et al., 2019). To over-
come the constraints of UAV flight planning Kerle et al.
(2019) imagine a two-step approach where first hotspot
and damage candidates are identified. In a second step, a
more detailed and multi-perspective survey is conducted.

To facilitate the initial rapid damage mapping Zahs et al.
(2021) designed a tool which produces data which can ei-
ther functions as training or validation data for the ma-
chine learning powered point cloud-based damage classifi-
cation. The authors propose an interdisciplinary approach
for timely and reliable assessment of building-specific
damage grades (0-5) from UAV images (and point clouds)
with high resolution (centimetre pixel size). The approach
further relies on the combination of expert knowledge of
earthquake engineers with fully automatic damage classi-
fication and human visual interpretation from crowdsourc-
ing.

For the case of building mapping, it has been shown that
this combination of human visual interpretation skills and
automated mapping approaches can boost quality and ef-
ficiency at the same time (Herfort et al., 2019). Nevther-
less, the potential of crowdsourced data collection for au-
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tomated building damage detection from UAV imagery is
yet to be explored.

1.4 Research Questions

Whereas there is a plethora of research about crowdsourc-
ing as a method for damage assessment from satellite im-
agery, these approaches are not yet institutionalized, which
prevents open data to be forwarded to relief organizations
quickly and efficiently. Hence, in this paper we want to in-
vestigate to what extent the MapSwipe app could be used
as a tool to engage volunteers in that envisioned workflow
by examining the following specific research question.

• How well does MapSwipe perform as a tool for
crowdsourced building damage classification? (RQ1)

• How does crowdsourced building damage informa-
tion from MapSwipe compare to institutionalized in-
formation obtained through CEMS? (RQ2)

The remainder of this paper is organised as follows. The
next section presents the basis for this research, explain-
ing the case setting and used data sets. Section 3 shows
the methodology used for analysing MapSwipe data for a
building damage mapping project and how it is compared
to CEMS data. Section 4 presents the results achieved
from this analysis, whilst Section 5 provides a discussion
of the results and Section 6 concludes this paper by making
recommendations for practitioners and future research.

2 Case Study

2.1 Haiti Earthquake, 2021

On the 14th of August 2021 at 08:29 local time a 7.2
magnitude earthquake hit Haiti with a depth of approxi-
mately 10 km. The epicentre was located in the depart-
ment Nippes, central on Haiti’s southern peninsula. Ap-
proximately 2.3 Million people were exposed within a
100 km radius, 800,000 people were directly affected,
650,000 were in need of humanitarian assistance, more
than 137,000 homes were damaged or destroyed includ-
ing critical infrastructure, more than 12,200 people were
injured and at least 2,248 people were killed. Economic
damage is estimated to be at least 1.5 billion USD, ap-
proximately 10 percent of Haiti’s GDP (GDACS, 2021;
OCHA, 2022).

This study focuses on the city of Les Cayes, which is lo-
cated approximately 40 km south west from the epicentre
(Figure 1).

Figure 1. Overview on Haiti, the earthquake epicentre and sur-
rounding major cities. Background layer provided by Stamen
Maps (2022), terrain style.

2.2 Datasets

2.2.1 MapSwipe

MapSwipe’s default change detection project type, which
was used here to assess damage, is based on the tile level.
For this project type, instead of only looking at six tiles at
once (see MapSwipe’s original project type Figure 2 left),
users now compare a pair of satellite or aerial imagery
tiles (Figure 2 right). Both tiles depict the same area, the
upper tile shows the situation before the earthquake and
the second tile shows the situation after the earthquake. In
our case, the before image is an orthophoto from Haiti’s
open data portal (HaitiData, 2021) with an unknown reso-
lution and the after image can be found on OpenAerialMap
(Gastaminza, 2021) with an original resolution of 2 cm.
The volunteers can then decide if buildings inside the re-
spective tile have been damaged. For this study, a tile cor-
responded to the definition applied by tile map services
(TMS) at zoom level 20 (Maso et al., 2010). The respec-
tive edge lengths for the tiles are ˜ 40 Meters, that gives
the pictures a maximum resolution of 15.6 cm in the app
(initial resolution of the drone imagery was 2 cm). In to-
tal, the entire project area was covered by 1,806 mapping
tasks.

The MapSwipe data was directly obtained from the
projects page (MapSwipe, 2022b), where the results for
all finished mapping projects can be found. For this study
we selected the project named "Earthquake - Experimen-
tal Damage Assessment - Haiti (2) HOT", which was re-
quested by the Humanitarian OpenSteetMap Team. It saw
contributions from 116 volunteers and was completely as-
sessed within 7 days.

Data concerning these projects can be downloaded in dif-
ferent formats and aggregations, here we selected "Aggre-
gated Results (with Geometry)". The aggregated results
are the individual tiles in geojson format with different at-
tributes shown in Table 1. Each tile has been classified by
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at least 7 volunteers into one of the following categories:
"no damage" (class 0), "damaged" (class 1), "maybe dam-
aged" (class 2), "bad imagery" (class 3).

Figure 2. Different MapSwipe interfaces. Left: Original base
mapping interface for MapSwipe with six tiles, green for "build-
ing", yellow for "maybe", red for "bad imagery" and no color for
"no building". Right: Damage assessment interface with before
picture on the top and after picture on the bottom. The single
tile can be marked with the same colors, except that "building"
means "damaged".

2.2.2 CEMS Damage Mapping

CEMS provided multiple damage assessment layers for
different regions in Haiti. In this study the product
"[EMSR536] Les Cayes: Grading Product, version 1"
was used (Copernicus Emergency Management Service,
2022b). CEMS was activated less than 4 hours after the
earthquake and the data regarding Les Cayes was pub-
lished about 35 hours after the event. For this study, we
utilized a layer with points, placed approximately in the
middle of the damaged building. Each point contains three
different damage grading possibilities "destroyed", "dam-
aged" and "possibly damaged". The first two were consid-
ered together, since a MapSwipe task does not differenti-
ate between damaged or destroyed. Since a point can only
be inside one MapSwipe tile even if the damaged building
extends over multiple tiles, we used OSM building foot-
prints to join the points with their nearest building (Open-
StreetMap and contributors, 2017).

It is important to note that this dataset does not represent a
ground truth. According to the overview map, the Coper-
nicus analysis is based on an Airbuses Pléiades 1 A/B
satellite picture, which has an approximate resolution of
around 50 cm (Copernicus Emergency Management Ser-
vice, 2021). This, albeit being considered "very high reso-
lution" for satellite imagery, is magnitudes lower than the

2 cm (or 16 cm in MapSwipe) drone imagery utilized in
the MapSwipe project.

Hence, CEMS data is used to compare the MapSwipe
damage assessment approach to already established meth-
ods, but is not a sufficient data set to assess MapSwipe’s
performance and data quality.

2.2.3 Reference Data

In order to analyze MapSwipe’s data quality, the authors
of this study re-mapped the entire MapSwipe project us-
ing the private development instance of MapSwipe. Each
task was carefully processed by two persons and disagree-
ments between the raters were eliminated by discussing
the respective tiles and using the best available resolution
(2 cm instead of 16 cm) and visual assessment in QGIS.

3 Methodology

3.1 MapSwipe Data Quality Assessment

In crowdsourcing approaches which rely on redundant
classification there is a particular importance to define the
"correct" threshold when aggregating the contributions of
individual users into a consensus answer (de Albuquerque
et al., 2016). To account for this, different thresholds and
their effect on data quality have been explored in this
study. A threshold describes the share of volunteers that
tag a tile as damaged. So if 5, 10, ..., 95 percent of the
users tagged a tile as damaged it will be classified as dam-
aged. By choosing a threshold-based approach we aim at
a good balance between precision and sensitivity. Based
on these aggregated MapSwipe results and the reference
dataset (see 2.2.3), we used the scikit-learn library for
Python to create a confusion matrix. This returns the True
Positives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN) and calculates the True Posi-
tive Rate (TPR) and False Positive Rate (FPR), further de-
scribed in Table 2. These values are then used to calculate
different data quality measures: accuracy, precision, sen-
sitivity (same as TPR) and the F1-score, also described in
Table 2. The detailed workflow is depicted in Figure 3.

3.2 MapSwipe Copernicus Comparison

Agreement analyses conducted between MapSwipe and
Copernicus data were accomplished using confusion ma-
trices based on the MapSwipe tiles and Copernicus build-
ings footprints. Again, the whole workflow is depicted in
Figure 4.

The comparison is then first shown in a confusion ma-
trix, where one column/row shows the number of damaged
tiles and the other one non-damaged cells. The number
of agreed tiles is therefore the diagonal sum from top-left
to bottom-right. For further agreement analysis, Cohen’s
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Table 1. Excerpt from the aggregated MapSwipe data. Some columns were excluded or shortened (MapSwipe, 2022a). "0_count" refers
to the number of users who labelled a task as no damage. "1_count" refers to the number of users who labelled a task that contained a
damaged building.

idx task_id 0_count 1_count 2_count 3_count total_count shares agreement geometry

644 19-154739-235159 1 2 4 0 7 ... 0.333 MULTIPOLYG...
746 19-154718-235162 0 7 0 0 7 ... 1 MULTIPOLYG...
1140 19-154744-235166 1 3 3 0 7 ... 0.286 MULTIPOLYG...
1779 19-154738-235181 5 2 1 0 8 ... 0.393 MULTIPOLYG...
1811 19-154748-235183 7 1 0 0 8 ... 0.75 MULTIPOLYG...

Table 2. Different quality parameters and their explanations.

Measure Formular Description

False Positive Rate (FPR) FP
FP+TN

How many of all not
damaged tiles were
incorrectly classified as damaged?

True Positive Rate (TPR) or Sensitivity TP
TP+FN

How many of all damaged
tiles were correctly identified?

Precision TP
TP+FP

How many of all damaged
tiles were correctly labeled?

Accuracy TP+TN
TP+FP+TN+FN

How many tiles of all tiles
were correctly classified?

F1-Score 2∗Sensitivity∗Precision
Sensitivity+Precicion

The harmonic mean
between sensitivity and precision

Kappa was used (Cohen, 1960). This measure is used
to compare two different labelling methods for the same
problem. The formula is as follows (Watson and Petrie,
2010):

κ=
ObservedAgreement−ChanceAgreement

MaximumAgreement−ChanceAgreement
(1)

κ=
p0 − pE
1− pE

(2)

Cohen’s Kappa accounts for consensus that occurs ran-
domly. Values range from −1< κ < 1. 1 represents full
consensus, κ > 0 agreement, κ= 0 no better than chance
agreement and κ < 0 disagreement. Arbitrary levels are
proposed by Landis and Koch (1977) where the values
0.00 – 0.2, 0.21 – 0.4, 0.41 – 0.6, 0.61 – 0.8 and 0.81
– 1 correspond to slight, fair, moderate, substantial, and
almost perfect agreement. Ranganathan et al. (2017) also
provide an interpretation for κ < 0.6 as “significant level
of disagreement”. Using this metric, agreement scores
between different damaged definitions of MapSwipe are
compared with either all Copernicus buildings or exclud-
ing the ”possibly damaged” buildings. It must be noted
that Cohen’s Kappa and its variants are also criticized
in the context of remote sensing because they are com-
plicated to compute, difficult to understand and interpret
(Pontius and Millones, 2011).

3.3 Data and Software Availability

All code and data that has been produced for this
manuscript can be examined on the following GitHub
page: https://github.com/simsi44/mapswipe_rapid_
damage_assessment.

4 Results

4.1 MapSwipe Quality Assessment

Figure 5 shows the aggregated MapSwipe results and the
spatial distribution of tasks for which MapSwipe users
identified damaged buildings. The map provides a first vi-
sual impression that damage buildings in Les Cayes were
primarily located in the eastern part of the study area.

Figure 6 shows the MapSwipe threshold definitions plot-
ted against the four different quality measures. Precision
rises with a higher threshold since it is more likely for
damaged labels to be correct with a higher threshold, and
sensitivity falls since more and more damaged tiles are
overlooked. Accuracy rises until a threshold of 45 percent
(0.83) and then, after a slight fall, stays about the same
until the end. This illustrates the weakness for accuracy
as a quality measure, since with high thresholds the high
amount of TNs overshadow the FNs. Therefore, the F1-
score is the better indicator here. It peaks at a threshold
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Figure 3. Workflow diagram for quality assessment (RQ1): 1.
Define step granularity 2. Create collection for each step 3. Cre-
ate binary vectors for the collections and the reference dataset 4.
Calculate confusion matrices for each collection 5. Derive qual-
ity measures 6. Visualization.

of 35 percent (0.63) but only differs slightly at 30 or 40
percent (both 0.62). Based on this, simply relying on ma-
jority voting is not enough for this use case, since better
results can be achieved setting the threshold lower than 50
percent. For the case of Les Cayes our results show that
the aggregated result should be classified as "damage" if
at least 35 percent of the individual raters identified dam-
age in the aerial imagery.

Figure 7 shows the confusion matrix in a spatial context.

Figure 4. Workflow diagram for comparison with Copernicus
data (RQ2): 1. Define step granularity 2. Create collections for
each step and for Copernicus buildings 3. Create binary vectors
for each collection 4. Calculate confusion matrices for each col-
lection 5. Calculate Kappa and Visialization.

4.2 MapSwipe Copernicus Comparison

After exploring how MapSwipe data performs, it can be
compared to CEMS data. Figure 8 provides an overview
for which tasks both approaches detected damage (54 tasks
in total). Furthermore there were 34 tasks for which only
CEMS detected damaged buildings, whereas there were
586 tasks for which damage was detected by MapSwipe
users, but not CEMS. This might already suggest, that mi-
nor damage that was overlooked by CEMS, could be iden-
tified on the MapSwipe pictures due to the increased im-
agery resolution.

Examples of this confusion matrix’ cells are depicted in
Figure 9 with the respective MapSwipe answers. In the
first picture, both MapSwipe and CEMS found a destroyed
building. It is however still unclear if all MapSwipe users
tagged the picture because of the destroyed building at the
bottom or because of the debris on the top-right. The sec-
ond picture is almost unanimously tagged without damage
in MapSwipe, Copernicus may have found damaged here
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Figure 5. MapSwipe aggregated results for damage assessment.
Percentages correspond the the share of volunteers that tagged
the respective tile as damaged.

Figure 6. Quality parameters for different damage definition
thresholds for MS-small. F1 peaks with sensitivity above pre-
cision. The accuracy high level for greater thresholds indicates
its weaknesses in this context.

on the day after the event that is not recognizable anymore
after ten days, when the MapSwipe image was taken, or it
was a false positive tag. The third picture shows an exam-
ple where there is clearly damage visible and it is tagged
by the volunteers. However, CEMS could not find this one,
maybe due to the worse resolution. On the fourth picture
in both cases no damage could be found.

Cohen’s Kappa was plotted with different thresholds for a
positive definition in MapSwipe compared to the damaged
buildings tagged by CEMS (Figure 10). The dashed line
represents all CEMS tagged buildings, the solid line only
the CEMS buildings tagged as "damaged" or "destroyed"
(excluding "possibly damaged" buildings"). In both cases
Kappa is almost monotonically increasing until 65 percent

Figure 7. Spatial distribution of false positives, true positives,
false negatives and true negatives considering a threshold >= 35
%.

Figure 8. Spatial distribution of agreement between MapSwipe
results and CEMS results, considering a threshold >= 35 %.

and then decreasing. That means that in order to reach
maximum agreement with Copernicus data, 65 percent of
users have to declare a tile damaged. Compared with the
results from the quality assessment, the MapSwipe thresh-
old has to be defined much stricter.

Kappa itself is astoundingly low, with only slight agree-
ment in all relevant cases. That suggests, that generally
CEMS data, and MapSwipe data do not compare well.
When ignoring possibly damaged buildings in CEMS
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Figure 9. Example tiles to assess agreement between Copernicus
and MapSwipe. The white box gives information about the Map-
Swipe answers. Top-left: Tagged as damaged by MapSwipe and
Copernicus. Top-right: Only tagged by Copernicus. Bottom-
left: Only tagged by MapSwipe. Bottom-right: Not tagged by
both.

agreement was even lower. This indicates that possibly
damaged Copernicus buildings are often not tagged as
damaged be MapSwipe users.

Figure 10. Cohen’s Kappas between MapSwipe and CEMS la-
bels by damage definition threshold. In both cases Kappa peaks at
a threshold value of 65 %. Agreement is very low, which could be
explained by different picture acquisition times and resolutions.
For the MapSwipe threshold with maximum F1-score (35 %)
Kappa values are 0.075 and 0.052 for all and damaged/destroyed
buildings.

5 Discussion

First of all, it is to note that the results from damage as-
sessment have to be discussed under different premises
compared to previous MapSwipe projects. It is well known
that damage assessment or change detection generally is
a harder task for volunteers than base mapping, which is
the original intent of MapSwipe (de Albuquerque et al.,
2016; Kerle, 2011). Even though F1 scores using the ref-
erence data set of more than 0.60 pale in comparison to the
classic MapSwipe approach (F1 >= 0.90; (Herfort, 2018)),
reaching these numbers was neither the claim nor the ex-
pectation. Generally, the achieved F1 scores of up to 0.63
provide a positive outlook for this method being used in
the future and hint at potential of this approach.

Arguably the most important factor influencing data qual-
ity is the underlying imagery. A lot of damage tagged in
the MapSwipe project is simply only visible because of
the picture’s astounding quality. Kerle (2011) already ar-
gued that improving picture resolution from 50 to 15 cm,
increases crowdsourced damage tags up to ten times.

The results of the CEMS data comparison also provide
interesting implications. The first idea during the begin-
ning of this study was to use CEMS data more as a ver-
ification dataset instead of a comparison. Unfortunately,
CEMS data turned out not to be of sufficient quality. Some
reasons can be theorized, for example, the quick creation
of the datasets or the comparatively lower resolution of the
satellite imagery utilized. Information about quality con-
trol protocol defined by CEMS can be found on their web-
site Copernicus Emergency Management Service (2022c).
After working with this data during this study, it can be
assumed that CEMS did not reflect the actual extent of
the damage on the ground correctly. However, analysing
CEMS data quality in detail is beyond the scope of this
study, but should be addressed in future research.

This has been highlighted by Elia et al. (2018) as well,
who identify the strong necessity for (on-the-ground) data
verification of professional and crowdsourced damage as-
sessment products. The work of Mulder et al. (2016) in
regard to the Haiti 2010 and the Nepal 2015 earthquakes
also reminds us of the importance of incorporating local
knowledge into data creation and the need to discuss so-
cial factors and their implication for disaster relief.

Another future research domain should investigate the po-
tential of automatized damage detection. For example,
Resch et al. (2018) are enhancing georeferenced Twitter
data through semantic information extraction with spatial
and temporal analysis for hot spot detection to assess the
footprint of and the damage caused by the 2014 Napa, Cal-
ifornia Earthquake. Kuzin et al. (2021) take rapidly ac-
quired and weighted crowdsourced labels and use them
to train a neural network to identify approximate areas of
damage for the case of 2017 hurricanes Irma and Maria,
which impacted multiple islands in the Caribbean. Recent
work highlights the potential of convolutional neural net-
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works in comparison to traditional approaches especially
when considering the wide variety of sensors and spatial
resolution of imagery, e.g. captured from space, aerial and
UAV platforms (Nex et al., 2019). Novel methods, which
do not only rely on two-dimensional images, but exploit
the rich geometric characteristics which can be derived
from dense 3D point clouds, broaden the practical use of
automated damage detection (Vetrivel et al., 2018).

The potential that lies in the combination of crowdsourc-
ing and deep learning approaches to improve data quality
and mapping performance is highlighted by Herfort et al.
(2019), however they apply their method to crowdsourced
settlement mapping. Future work should explore whether
this potential is also met for more complex tasks, such as
damage mapping.

6 Conclusion

In this study, a new use case for MapSwipe was explored.
It was theorized that an app that was built for crowdsourc-
ing settlement detection could also be used to assess dam-
age after a natural disaster. This was framed by two re-
search questions: (1) How well is the resulting dataset
suited for building damage classification and (2) how does
this approach perform compared to CEMS data?

The quality measures derived for MapSwipe show a clear
potential for this new use case. However, it is dependent
on two factors: aggregation method and underlying pic-
tures. The research shows that moving the threshold for
a damage definition can substantially influence the data’s
quality measures. Thresholds should therefore be defined,
depending on the use case. Typical mistakes of MapSwipe
users could be identified, which could be incorporated into
tutorial before a user starts mapping. Furthermore, Map-
Swipe does not harness the full potential of the aerial or
satellite pictures due to the download resolution, which
leads to a reduction in potential data quality from 2 cm
to 16 cm.

Apart from the quality perspective, the question remains
if this use case will work in real conditions. The work
by Zahs et al. (2021) and Kerle et al. (2019) clearly out-
line the trend towards on-site UAV based damage map-
ping. Whether MapSwipe will function as a tool for such
damage assessment approaches depends on many more
factors than just data quality, including how quickly im-
agery can acquired and made available for crowdsourcing.
However, MapSwipe already provides two critical assets:
an established community and infrastructure. Up to this
point, MapSwipe projects were not very time sensitive,
but if urgency can be communicated correctly (for exam-
ple through notifications on the smartphone), processing
times could potentially be sped up further. Whereas Map-
Swipe has proved that it works ’in production’ for large
scale base mapping from satellite imagery, it has to be ex-
plored further for damage mapping using drone imagery.
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