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Abstract. Localisation and navigation technologies have 
vastly evolved during the last years, facilitating users’ 
guidance in various environments. Unlike outdoor 
environments where GNSS comprises a universal 
solution, in indoor environments various localisation 
techniques have been used, each one with its drawbacks. 
Thus, this research investigates the reliability of the 
ceilings towards indoor localisation, by using components 
that are included in a simple mobile device. The choice of 
ceilings lies in their advantages, which include the 
incorporation of various characteristic components, as 
well as the absence of obstacles between them and the 
sensor. Indoor localisation is achieved based on LiDAR 
point clouds and images from RGB sensors of mobile 
devices. Additionally, this research involves location 
tracking of different users, to discover different 
movement patterns in an indoor facility. The proposed 
methodology revealed the robustness of the Coloured ICP 
algorithm for in-door localisation based on point clouds, 
both in terms of time efficiency and quality, while the 
combination of the SURF feature detector and SIFT 
descriptor provides the optimal indoor localisation results 
with image data. The proposed pipeline revealed 
encouraging results for use in emergencies, based on 
static data acquisition of a user, while it is also suitable for 
dynamic applications, in case a sensor is mounted on an 
automated device for indoor mapping operations. The 
captured point clouds of the ceilings can also be used as a 
reference to CAD and BIM models, to help the modelling 
of the existing utilities and their components in an indoor 
facility. 

Keywords. indoor localisation; location tracking; 
LiDAR; iPad 12 pro; point cloud registration; feature 
matching 
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1. Introduction

1.1 Problem statement 

Nowadays, the evolution of localisation and navigation 
technologies is vast, aiding towards facilitating users’ 
guidance in various environments. Outdoor positioning 
can be easily achieved, with the widely used GNSS 
(Global Navigation Satellite Systems), which are included 
in every person’s mobile device. However, the presence 
of high-rise structures in dense urban environments where 
there is no line-of-sight be-tween the satellites and the 
receiver leads to signal attenuation. Additionally, there is 
poor reception in indoor environments, significantly 
degrading the performance of GNSS. Therefore, 
alternative ways of positioning and localisation 
respectively, need to be explored. 

Position refers to the exact coordinates of a person or an 
object in a reference coordinate system. The position of 
individuals or objects in an indoor environment can be 
specified as a pin-point placement according to a global 
reference system of Cartesian coordinates that are 
specified for a building. Position can be also considered 
relative when it is relative to a local reference frame (Fig. 
1). 

Concerning indoor environments, GNSS signals are 
typically between 15 and 40 dB weaker compared to 
outdoors. A combination of different factors, such as the 
material of the building and the multipath interference can 
lead to signal blockage (Groves, 2013), creating the need 
for alternative solutions in indoor environments. The term 
location comes into life to bridge the gap between outdoor 
and indoor environments. In contrast to position, location 
does not refer to exact coordinates related to a global or  

AGILE: GIScience Series, 4, 4, 2023. https://doi.org/10.5194/agile-giss-4-4-2023 
Proceedings of the 26th AGILE Conference on Geographic Information Science, 2023. 
Editors: P. van Oosterom, H. Ploeger, A. Mansourian, S. Scheider, R. Lemmens, and B. van Loenen. 
This contribution underwent peer review based on a full paper submission. 
© Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

1 of 15Reproducibility review available at: https://doi.org/10.17605/osf.io/8t3bh

mailto:jdardave@hotmail.com


(a) 

 

 (b) 

 

Figure 1. Absolute and relative position according to (Sithole & 
Zlatanova, 2016) (a) Absolute position according to a global 
reference frame (b) Relative position according to a local 
reference frame 

local reference system but defines a general placement 
relative to the smallest defined physical space in an indoor 
facility, which could be a room, stairs or a corridor (Fig. 
2). The uncertainty in the position of an individual is 
determined by the extent of the room (Sithole & 
Zlatanova, 2016). In that manner, localisation operations 
provide contextual information about a person’s location 
in space, meaning the room or section of an indoor 
facility. In this research, an indoor map of the 
corresponding facility is required to acquire a location. 

 

Figure 2. Location according to the smallest physically defined 
space in a building (Sithole & Zlatanova, 2016) 

In indoor environments, there is lower landmark density 
and an absence of out-standing elements that can 
frequently result in easier loss of orientation compared to 
outdoors (Michon & Denis, 2001). As (Wadden & Scheff, 
1983) mentioned, people spend around 80 % of their time 
indoors, thus localisation comprises an important 
problem, in public buildings, such as airports or train 
stations, that usually consist of chaotic spaces. Therefore, 
the necessity of an interactive indoor localisation system 
is apparent, so that a person can navigate in an indoor 
facility, especially if that person is exploring it for the first 
time. In that scenario, a location provider tool with 
adequate precision could be a significant aid. This tool 
could be applied in various indoor spaces, such as 
museums and art galleries (Gupta, et al., 2016). 

Indoor localisation could also be applied during 
emergencies in complex indoor spaces. Persons in need 
could access the name of their current location, based on 
an indoor localisation application and transmit this 
information to the first-aid responders. The latter need 
guidance, related to the location of the person in need, as 
well as a way to reach that location (Yang & Worboys, 
2011). Additionally, other applications of indoor 
localisation include the use of mobile autonomous units, 
to establish an indoor intelligent environment. Mobile 
service robots can be exploited for assisted living, setting 
up a smart living environment for elderly people and 
performing transportation and human interaction tasks. 

Indoor localization has become increasingly important in 
recent years, with various technologies used for precise 
positioning. However, unlike outdoor environments 
where GNSS is a universal standard for positioning, 
indoor environments lack a universal solution 
(Lymberopoulos, et al., 2015). The most widely used 
technology for indoor positioning, Wi-Fi fingerprinting, 
is based on comparing Received Signal Strength (RSS) 
values with a reference radio map that translates signal 
values (Pérez-Navarro, et al., 2019). However, creating 
and maintaining an up-to-date radio map of signals in an 
indoor facility is a heavy and time-consuming task. 
Additionally, changes in the Wi-Fi infrastructure require 
the map to be created again, making it less practical. Poor 
WLAN planning in the facility can also result in irregular 
Wi-Fi signal availability. Similarly, alternatives such as 
Bluetooth-based positioning require costly installation of 
Bluetooth hotspots and suffer from similar issues (Pérez-
Navarro, et al., 2019) 

This has led to the development of new techniques that 
utilize camera and LiDAR sensors, which are increasingly 
available in mobile devices (Willems, 2017). While 
camera sensors exist in every mobile device, the use of 
LiDAR sensors has increased exponentially since their 
inclusion in the latest iPhone and iPad devices, making 
them a major part of mobile devices in the future. 
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Therefore, the challenge for achieving indoor localization 
in different environments is to find a technique that does 
not depend on costly and hard-to-access indoor sensor 
networks but uses features accessible to everyone on their 
mobile device. 

Recent innovations include the use of Augmented Reality 
(AR) combined with the Simultaneous Localization and 
Mapping (SLAM) algorithm, which scans an indoor 
environment to find its position. These applications use 
various sensors such as RGB and depth cameras, with 
some requiring additional devices for a deeper 
understanding of the indoor environment (Oostwegel, 
2020).  

Overall, there is a need for reliable and accessible indoor 
localization techniques that do not depend on costly 
infrastructure (Willems, 2017). Thus, this research 
investigates the reliability of ceilings with characteristic 
details for indoor localisation purposes, by providing an 
accessible solution that makes use of components that are 
available in a mobile device. The focus includes indoor 
localisation, as well as near real-time location tracking of 
different users to discover different movement patterns in 
an indoor facility. 

1.2 Research questions 

Defining the main and secondary research questions is a 
crucial part of the re-search, aiming to address indoor 
localisation and ensure the concreteness of this project. 
Therefore, the primary research question is formed as 
follows: 

To what extent can ceilings with characteristic details be 
used for indoor localisation purposes? 

To obtain a better understanding of the concept and be 
able to answer the main research question robustly, some 
complementary research questions are formed. 

• Which parameters (measuring angle, height, part 
of the room) should the user consider while 
acquiring point clouds and images of ceilings? 

• Which is the optimal point cloud registration 
algorithm to achieve indoor localisation from 
ceiling data? 

• Which is the optimal image-matching algorithm 
to achieve indoor localisation from ceiling data? 

• Are LiDAR point clouds acquired by an iPhone 
device an accurate and accessible solution 
towards indoor localisation? 

• Can the proposed pipeline aid towards 
facilitating localisation in emergencies?" 

• How accurate is location tracking and does it 
respect user privacy?" 

1.3 Contribution 

This research demonstrates the versatility of using point 
clouds for indoor localisation and tracking, providing a 
dynamic aspect to indoor localization, especially with the 
use of ceilings, which are usually not altered over time. 
Ceiling data was used as an alternative way of performing 
indoor localization and tracking of users, with the 
implemented pipeline including two different localization 
techniques based on LiDAR and camera sensors available 
on recently released Apple mobile devices. The 
methodology can substitute the various localization 
methods that mostly involve Wi-Fi fingerprinting and 
Bluetooth sensors. The importance of this research lies in 
the fact that it offers a real-time indoor localization 
pipeline, available to a variety of users without the need 
for additional equipment, only requiring the existence of 
point clouds or images of ceilings as a reference for every 
room of the indoor facility. The point of cloud-based 
localization could be applied in buildings with large 
rooms, such as airports and train stations, where people 
can easily lose their orientation. The dynamic acquisition 
of point clouds allows users to perform data acquisition 
while moving between different rooms, setting the basis 
for navigation. Additionally, point clouds of ceilings can 
also be used as reference to CAD and BIM models, aiding 
in the modelling of existing utilities and their components 
in an indoor facility. In emergencies, the point cloud-
based localisation can be used to transmit a user's location 
to first-aid responders. The LiDAR device could also be 
mounted on an automated device to map an indoor facility 
based on point cloud acquisition. The implementation of 
location tracking can provide daily to monthly statistics 
on the most used paths to a facility manager, helping to 
optimize the distribution of people inside the indoor 
facility. 

2. Methods 

2.1 Overview 

The overview of the methodology (Fig. 4) and the design 
of the experiments that were implemented to validate it 
will now be discussed. 

The pipeline involves capturing ceilings, which include 
various protruding characteristics, to serve as reference 
points. Images of the rooms are acquired using camera 
sensors and point clouds are obtained from the LiDAR 
sensor of an iPad. Indoor localisation is achieved by 
comparing user data to reference data uploaded to a 
database. The LiDAR sensor gives the coordinates of the 
points in space, providing a 3D perspective of the ceiling, 
while the images from the camera sensor add colour.  

 Non-commercial software that combines the LiDAR and 
camera sensors is used for point cloud processing. 
Regarding image acquisition, their features were matched 
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using various matching techniques. Pre-processing and 
co-registration of point clouds were performed to achieve 
localisation. Results were  stored in a database and 
visualised in a web application. An indoor model and 
network graph of the facility were combined with 
localisation results to provide information on users' 
current and previous locations. Movement patterns and 
paths are revealed through visualisation in the form of a 
heat map, which includes user paths at different times of 
the day. A dashboard with statistics on path usage is also 
created. This pipeline was applied to some rooms of the 
Faculty of Architecture and the Built Environment of TU 
Delft, the Netherlands, which are shown in Fig. 3. 

 
Figure 3. Selected rooms from the Faculty of Architecture and 
the Built Environment 

2.2 Data acquisition 

2.2.1 Reference data 

Reference data were created both in the case of point 
clouds and images, for each of the rooms that are shown 
in Fig. 3. Regarding point clouds, the LiDAR sensor of an 
iPad 12 pro and Pix4D Catch were used to acquire point 
clouds of ceilings that act-ed as reference. Each ceiling 
was captured with high detail, while walking inside a 
room at a steady pace, avoiding sudden changes in the 
measuring angle and height of the sensor. In rooms where 
the distance between the sensor and the ceiling is higher 
than 5 meters, an extensible accessory can be used, such 
as a monopod or a tripod. The reference point clouds were 
first pre-processed, as explained in the next section so that 
outliers and some wall parts are omitted.  

The same rules regarding measuring height and angle 
apply to image reference data. However, there are some 
rooms such as long corridors where the whole ceiling 
cannot be captured by a single image. In this case, the 
camera sensor was placed al-most perpendicularly to the 
ceiling, to capture the largest possible area of the ceiling.  

The reference data were then attached to the respective 
rooms in the created in-door model. Specifically, each 
room was represented by a polygon in the indoor map and 
the reference point clouds and images were its attributes. 

2.2.2 Point clouds 

Regarding point cloud acquisition, two types of point 
clouds were acquired, from LiDAR sensors. There are 
point clouds that act as a reference and were stored in a 
database, as well as point clouds that are acquired by a 
user. The latter will be compared to these reference point 
clouds, so that indoor localisation is achieved, based on 
the best match. User point clouds were acquired with two 
different downscaling factors of 10 and 30 cm distance 
between each point. The point cloud acquisition was 
implemented in two ways: while a person is walking into 
a room, giving a dynamic perspective to the acquisition 
and while staying still, so that it is investigated if the final 
product of the research can be used during emergencies, 
in cases where an individual might be unable to move. 

2.2.3 Images 

Single images of the tested rooms were acquired from the 
camera sensors. As in the case of point clouds, some 
images were used as reference to represent the room’s 
ceiling in two dimensions. Images of a ceiling acquired by 
a user were then compared to the reference images of the 
rooms to reveal the user’s location based on the optimal 
match. 

2.2 Point cloud pre-processing 

Pre-processing of the point clouds included voxel down 
sampling to reduce the processing time by manipulating a 
point cloud of smaller size (Miknis, Ware, Davies, & 
Plassmann, 2016). It must be mentioned that the reference 
point clouds were not downscaled, to preserve high 
details. However, this operation must be implemented 
carefully and until a certain threshold, because further 
down sampling might result in an important loss of 
information. Furthermore, when acquiring ceiling data, 
the point cloud may include adjacent wall parts that need 
to be excluded from the upcoming operations. To achieve 
their removal, a smaller part of the acquired point cloud 
was used, to discard parts that might exist in the corners 
of the point clouds. Additionally, some points were 
located and removed based on the number of their 
neighbours, to further improve the point cloud’s quality 
and reduce processing time. These parts can be considered 
outliers (Han, et al., 2017). Finally, plane segmentation 
based on the RANSAC (Random Sample Consensus) 
algorithm was performed, to differentiate the flat surface 
of the ceiling with its protruding objects, such as lamps 
and other installations, which comprise the characteristic 
details of each room’s ceiling.  
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These steps are visualised in Fig. 5, while the pseudo 
algorithm that was used, in Fig. 6. 

 

 
Figure 5. Pre-processing steps 

 
Figure 6. Algorithm for point cloud pre-processing 

2.4 Point cloud registration 

After acquiring and pre-processing reference and user 
point clouds, the next step was to create an algorithm that 
would aid towards comparing them. The main idea behind 
this is, that each point cloud taken by a user, would be 
compared with all the point clouds in the database and the 
best match will reveal the room where the user is located. 
This procedure works as follows for both types of point 
clouds. The comparison first included a global 

registration, so that the user and the reference point clouds 
obtain an initial alignment and afterwards a local 
registration algorithm to refine the point cloud 
registration. 

2.4.1 Global registration 

First, the normal vectors of all the points were computed. 
Furthermore, points with a unique and descriptive 
neighbourhood were detected. The detection and 
description of these unique points for each point cloud 
were implemented based on FPFH (Fast Point Feature 
Histogram) feature calculation. The technique includes 
the afore-mentioned steps and then RANSAC, to select 
some random points from the reference point cloud and 
then find the corresponding points in the user point cloud, 
using a nearest neighbour query in the 33-dimensional 
FPFH feature space (Li, Hu, & Ai, 2021). Aside from the 
distance of the corresponding points in the compared 
point clouds, the similarity between two edges between 
the compared point clouds and the vertex normal affinity 
of the correspondences are also checked. In case the 
points satisfy the selected thresholds, the transformation 
of the user point clouds towards the reference point clouds 
is implemented. 

2.4.2 Local refinement 

Based on the results of the global registration, an attempt 
of improving the quality and time efficiency of the 
algorithm includes different variations of the ICP 
(Iterative Closest Point) algorithm. The further 
minimisation of the point cloud differences was 
performed by keeping one point cloud fixed, while the 
other is transformed towards it. Specifically, each point of 
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the user point cloud was matched to the closest point of 
each reference point cloud. Then, rotation and translation 
were estimated, and this process is iterated until the results 
converge (Li, Hu, & Ai, 2021). The user point cloud was 
compared to all the reference point clouds, based on the 
fitness value (1) and the RMSE (Root Mean Squared 
Error) value of the inlier correspondences which will 
result in the indoor localisation (2). Different variations of 
ICP were implemented and compared and more 
specifically Generalised, Point-to-Point, Point-to-Plane 
and Coloured ICP. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  
# 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

# 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (1) 
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𝑁𝑁
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𝑁𝑁

𝑘𝑘=1

‖𝑅𝑅𝑓𝑓𝑝𝑝𝑘𝑘 + 𝑇𝑇𝑓𝑓 − 𝑞𝑞𝑘𝑘‖22 (2) 

 

Where pk and qk are the points of the reference and user 
point clouds respectively, while Rf and Tf are the rotation 
matrix and translation vector in the transformation matrix. 

 
Figure 7. ICP registration. (a) Initial pose of two datasets (b) 
Result after ICP registration (Wan, et al., 2019) 

The complete point cloud registration process, leading to 
indoor localisation is presented in Fig. 9. 

2.5 Feature matching 

In this section feature matching based on the comparison 
of single images to examine the suitability of various 
feature detectors, descriptors and matching techniques. 

2.5.1 Feature matching between single images 

For each of the selected rooms, one image of a ceiling was 
acquired and acted as reference. For testing purposes, 
different user images were additionally acquired from 
different viewpoints and were compared with the 
reference images. This comparison included the use of 
different feature descriptors and detectors, such as ORB 
(Oriented FAST and Rotated BRIEF) (Rublee, Rabaud, 
Konolige, & Bradski, 2011), SIFT (Scale Invariant 
Feature Transform) (Lowe, 2004), and also two different 
feature matching techniques, brute- force and FLANN 
(Fast Library for Approximate Nearest Neighbours) 

(Muja & Lowe, 2009). The number of matches between 
the user and the reference images was used to reveal the 
location of the user. The indoor localisation process that 
was based on the feature matching of images is presented 
in Fig. 8. 

 

 
Figure 8. Indoor localisation based on feature matching 

2.6 Storage 

The setup of the whole system was organised in an online 
database, part of the ArcGIS Online Server. This database 
includes the indoor model of the case study and a network 
graph that connects all the rooms of the tested area. Except 
for the geometry of the rooms in the indoor model, each 
of them includes one pre-processed point cloud and an 
image that acts as a reference for the point cloud 
registration and feature matching operations respectively. 
Moreover, this indoor model serves as an embedded map 
in a web application that was created, allowing the users 
to have a visual insight into their location. 

2.7 Location tracking 

Each time the web application is used, the users’ current 
and previous locations are stored in the ArcGIS Online 
Server, under an encrypted id. When users move be-tween 
different rooms, it means that they used a certain path to 
achieve that. Based on the network graph of the indoor 
space that reveals all the connections between adjacent 
rooms, the current and previous locations of the users 
were translated to a line in the network graph, 
representing a specific route. The availability of this 
information is near-real time as the results appear in the 
online server after a few seconds. Based on the unique id 
of each user, a heat map that is based on the network graph 
was used to visualise the used routes. 

Additionally, this information was used to reveal different 
movement patterns, during different times of the day. The 
visualisation is accomplished in the form of a heat map, 
where based on the usage of each path, different colours 
and widths were applied to the corresponding line of the 
network graph. Consequently, this information can reveal 
how much a path is used during a daily, weekly or even 
monthly period. Acquiring this knowledge is valuable, 
especially during the COVID-19 era, because it can be 
exploited by a building manager, who can achieve the 
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optimal distribution of people in an indoor facility 
(Spinoza Andreo, et al., 2021). 

 

 
Figure 10. Location tracking algorithm 

2.8 Data and Software Availability 

Input data, point clouds and images were acquired by the 
author and are available as open data in  
https://github.com/jdardave/Indoor_Localisation_Dardav
esis.git. Under the same link the code that was 
implemented for this research can be found. Aside from 
that, additional data, such as the CAD files of the 
floorplans of the Faculty of Architecture and the Built 
Environment were specifically requested from TU Delft 
Real Estate, therefore are not open to the public. 

Different programming languages (Python, HTML, 
JavaScript) and open-source tools were used. Most of the 
software that was used were open source (CloudCompare, 
PhotoMatch), but the creation of the indoor model and 
network graph of the case study were implemented in 
ArcGIS pro. 

Concerning results, some of them are available in the 
corresponding section, however due to their number and 
size, they are not available online. 

3. Results 

3.1 Indoor localisation for point clouds 

In this section, the indoor localisation results that were 
produced based on point cloud acquisition with the 
aforementioned downscaling factors will be presented and 
compared. 

The first results emerge from point clouds with a 10 and 
30 cm distance between each point. These results, based 
on different combinations of global and local registration 
algorithms are presented in Fig. 11. The point clouds with 
the blue colour represent the reference point clouds, while 
the ones with yellow, are the point clouds that were 
acquired by a user. 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

 

Figure 9. Indoor localisation based on point clouds 
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(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 11. Global and Local registration from point clouds 
acquired with the 10 and 30 cm distance between each point for 
room 08.02.00.560 (a): RANSAC & Coloured ICP 
(fitness=0.974, RMSE=0.01 (b) RANSAC & Point-to-Plane 
ICP(fitness=0.955, RMSE=0.03) (c) RANSAC & Generalised 
ICP (fitness=0.953, RMSE=0.03) (d) RANSAC & Point-to-
Point ICP (fitness=0.943, RMSE=0.06) (e) RANSAC & 
Coloured ICP (fitness=0.963, RMSE=0.01) (f) RANSAC & 
Point-to-Plane ICP (fitness=0.958, RMSE=0.02) (g) RANSAC 
& Point-to-Point ICP (fitness=0.954, RMSE=0.15) (h) 
RANSAC & Generalised ICP (fitness=0.954, RMSE=0.15)   

The results for room 08.02.00.560 are promising, as in 
most cases all the point cloud registration methods match 
the tested room to its reference equivalent. The most 
accurate results are achieved when Coloured ICP was 
involved, producing accurate results when it was 
combined with global registration algorithms, as Fig. 11a 
and Fig. 11d indicate. It has to be noted, that the number 
of fitness is not important by itself, but it has to be higher 
compared to the reference point clouds of the remaining 
rooms. 

 
Table 1. Number of correct matches per point cloud registration 
algorithm 

10 cm RANSAC global 
registration   

 Point-
to-Point 

Point-
to-

Plane 

Colou
red 
ICP 

Generali
sed ICP 

Dynamic acquisition 9/10 9/10 10/10 9/10 
Static acquisition 7/10 8/10 10/10 8/10 

 
30 cm 

 
    

Dynamic acquisition 9/10 7/10 9/10 7/10 
Static acquisition 8/10 7/10 9/10 7/10 

     

 

Tab. 1 shows the number of correct matches for each 
combination of global and local registration algorithms 
that were applied. The testing includes twenty point 
clouds per method and specifically ten for the ceilings that 
a user acquired while walking, and ten more while the user 
remained static. RANSAC is a non-deterministic 
algorithm, however, the high number of iterations that 
was selected, increases the probability that the result is 
reasonable.  

The results are better when users are walking inside a 
room during data acquisition, in contrast to when they 
remain static. This is a reasonable outcome, as while a 
user is walking, the entire ceiling of a room can be 
captured. On the contrary, while users remain static, they 
can only capture a specific part of a room’s ceiling, in case 
the room is considerably large since the range of the 
LiDAR sensor is approximately five meters. Therefore, in 
cases where users are unable to move, there are higher 
chances that the localisation is correct when they capture 
a part of a ceiling that has characteristic details. The 
quality of the point clouds that were acquired with a 30 
cm distance between each point is slightly worse 
compared to the previous results. The result is reasonable, 
due to the lower density of point clouds that was chosen 
for the acquisition. However, regarding the Coloured ICP, 
its results are at a similar level as before, showing the 
importance of adding colour information that the other 
algorithms do not include. The worst results are presented 
for Point-to-Plane and Generalised ICP when they are 
combined with global registration algorithms, with 7/10 
correct indoor localisation results. 

The wrong point cloud matches for some registration 
techniques appear between rooms 08.02.00.430 and 
08.02.00.470. This confusion arises from the fact that 
these rooms have an almost identical size in squared 
meters and similar characteristic de-tails in their ceilings, 
as they are both lecture rooms. Additionally, the second 
wrong set is mostly between rooms 08.02.00.808 and 
08.02.00.807. This happens, because they are both 
corridors and room 08.02.00.808 is significantly smaller 
than room 08.02.00.807. Thus, this room may be wrongly 
matched as a part of 08.02.00.807. Some rooms, such as 
08.02.00.807, which is a long corridor, have a 
significantly different shape than the common rectangular 
rooms, hence the possibility that the localisation is wrong 
is significantly reduced. 

Concerning wall parts that were acquired along with 
ceilings, small areas did not affect the results, as some 
minor wall parts remained in the tested point clouds even 
after the pre-processing operations. However, in cases 
where a significant part of a wall is captured, the plane 
segmentation could be implemented in the wrong way, as  
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the main plane that is computed, might be the wall instead 
of the ceiling’s upper flat part. 

3.1.1 Performance parameters 

This section presents some performance parameters that 
were calculated to test the robustness of the results.  

Fig. 12a and Fig. 12b show the centres of the respective 
reference point cloud with blue colour, as well as the 
centres of different user point clouds after the 
implementation of the point cloud registration algorithms 
and specifically RANSAC based global registration and 
Coloured ICP local refinement. 

(a)

(b) 
Figure 12. Scatter plot with centres of reference and user point 
clouds after point cloud matching. (a) Room 08.02.00.808 (b) 
Room 08.02.00.807 

The results concerning room 08.02.00.808 reveal good 
accuracy, as most of the centres of the user point clouds 
are a few centimetres away from the centre of the 
reference point cloud, while at the same time the precision 
is adequate, as most of the centres of the user point clouds 
are close to each other. On the contrary, the same results 
for room 08.02.00.807 are worse concerning the accuracy 
and precision, since the centres of the user point clouds 
are further away from the centre of the reference point 
cloud and at the same time far from each other. This has 
to do with the size and length of room 08.02.00.807, 
which is a corridor with similar and lengthy protruding 

installations on the ceilings, therefore the user point 
clouds may be matched to the reference point cloud on a 
different part of those installations further away from the 
centre of the point cloud. However, in both cases, there is 
good accuracy and precision regarding the height 
dimension, which shows that the flat part of the ceilings 
of the user and reference point clouds is in most cases 
correctly matched. The developed point cloud-based 
localisation method is possible, in buildings that include a 
database of reference point clouds of ceilings for each 
room of the indoor facility. Satisfactory solutions for 
ceilings with characteristic details are shown, such as the 
ones in the Faculty of Architecture and the Built 
Environment. However, the quality of the solution, might 
not be the same when applied to primarily flat ceilings, 
with fewer characteristic details, or ceilings that include 
glass, whose reflective abilities might affect the indoor 
localisation result. 

The creation of a database with reference point clouds and 
images for every ceiling of an indoor facility requires 
some devices. Regarding point cloud acquisition, an 
Apple device such as an iPhone 12 pro or an iPad 12 pro 
is required, as well as some non-commercial software. 
The cost for these devices is approximately 1000 euros. 
Alternatively, a laser scanner could be rented to perform 
the acquisition. Concerning image acquisition, camera 
sensors are included in each mobile device, so no further 
devices are required. 

3.1.2 Time processing 

Fig. 13 shows the processing time of different 
combinations of global and local registration algorithms, 
based on point clouds acquired with 10 and 30 cm point 
distance. It is noticeable that when point clouds with 30 
cm of minimum point distance are used, indoor 
localisation is computed within 3-6 seconds depending on 
the algorithm. However, concerning the point clouds with 
smaller point distance, the time complexity augments 
exponentially and reveals the time efficiency of Coloured 
ICP, which produces indoor localisation in approximately 
18 seconds. In this case, there is a significant difference 
in processing time, as other algorithms such as 
Generalised ICP take approximately 60 seconds to result 
in indoor localisation. This difference will be even greater 
when a database with a higher number of point clouds is 
used to perform indoor localisation. 
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Figure 13. Processing time of different registration algorithms 

 

3.2 Indoor localisation from images 

This subsection includes techniques that were 
implemented based on image acquisition. The indoor 
localisation result is based on the number of matches 
between the user and the reference images. Additionally, 
different combinations of feature detection, description 
and matching techniques are analysed. 
Table 2. Number of correct matches per feature detection, 
description and matching techniques 

5 MP Camera 
 ORB-ORB SIFT-SIFT 

Brute-force 9/10 9/10 
FLANN 7/10 8/10 

8 MP Camera 
Brute-force 9/10 7/10 

FLANN 8/10 7/10 

 

The results are based on images that were taken from two 
different cameras with 5 and 8 MP resolutions 
respectively. Both cameras perform similarly resulting in 
18/20 correct room matches. Additionally, the two 
feature-matching techniques have similar efficiency when 
they are combined with the two different detectors and 
descriptors, while brute-force performs slightly faster 
than FLANN. However, the latter can be more efficient 
than brute-force, when large datasets are involved. 
FLANN results in a higher number of matches between 
the user image and the reference image of the correct 
room in most cases. 

The same can be mentioned about SIFT, which results in 
more matches between the images compared to ORB 
however the indoor localisation is calculated with worse 
time efficiency. In terms of quality, the suitability of SIFT 
lies in the fact that it is scale and rotation invariant, 

whereas ORB is only rotation invariant and robust to 
noise. As a result, in case SIFT is used, the height and 
angle of the device do not affect the result. The time 
efficiency of SIFT could be improved, by implementing 
the SURF (Speed-ed-Up Robust Features) detector and 
descriptor. The ratio test that was applied in each 
experiment was strict, to avoid false correspondences, due 
to the common installations between the different rooms. 
The clearest results were noticed concerning a test image 
of room 08.02.00.470, where approximately 400 matches 
were observed between the user and reference image, a 
number which is significantly higher compared to the 
other reference images. This is an outcome of the 
similarity of the user and reference im-ages, as they were 
acquired from a similar angle and cover approximately the 
same part of the ceiling. In other cases where the 
viewpoints of the user and reference images were 
different, the indoor localisation results were correct, as 
the user image had the most matches with its 
corresponding reference image, however, the number of 
matches was significantly lower, between 50 and 100. 

The wrong localisation results were related to room 
08.02.00.807, which cannot be entirely captured from a 
single image, due to its length. Therefore, in terms of size, 
it appears to be similar to the different rooms of the case 
study. However, this result can be partially solved, in case 
the data acquisition is performed, by holding the sensor 
al-most perpendicular to the ceiling, so that a bigger part 
of the ceiling is captured. 

In this testing, there are no differences between the two 
different cameras regarding the quality of the results. 
However, certain illumination changes that create blurry 
areas, may significantly affect the intensity of each pixel 
of the tested images, due to the ceiling lights that are on, 
during most of the day in the Faculty of Architecture and 
the Built environment. In this situation, a high-resolution 
camera could better capture reality and avoid these blurry 
parts in the images. However, a drawback of using 
cameras with high resolution, is that they tend to produce 
bigger image files that are not suitable for real-time 
applications, due to the necessity of a time-efficient 
solution. The intensity values of these areas might appear 
similar to the windows, resulting in wrong matches 
between the windows and the lights, when two images are 
compared. Hence, during the acquisition, windows should 
be avoided as much as possible, due to their reflective 
ability. 

Overall, indoor localisation based on the comparison of 
the features of an image seems promising, however 
additional testing regarding lighting conditions and 
viewpoints, has to be implemented to produce safe 
conclusions about this method. 
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3.2.1 Time processing 

Fig. 14 shows the processing time while using different 
combinations of feature detection, description and 
matching algorithms with two different cameras of 5 and 
8 MP resolution respectively. It is clear that the resolution 
of the camera affects the time efficiency of the 
calculation. Moreover, the ORB detector and descriptor is 
faster than SIFT, while Brute force performs faster than 
FLANN, as the dataset is small. 

Additionally, some images were chosen, so that additional 
combinations of feature detectors, descriptors and feature 
matching techniques could be tested. The testing that was 
performed in an open-source software called Photomatch 
(González-Aguilera, et al., 2020), showed that the 
combination of SURF (Bay, Tuytelaars, & Gool, 2006) as 
a detector and descriptor detects the maximum number of 
key points (5000) with both brute force and FLANN 
matching techniques. The opposite is observed for the 
combination of SIFT and BRIEF (Binary Robust 
Independent Elementary Features) (Calonder, et al., 2011) 
are combined with almost 3500 thousand key points. The 
latter happens due to the simplicity of the BRIEF 
descriptor which targets in the fast description from 
simple intensity difference tests. Regarding the 
percentage of key points that are used for matching, the 
SURF detector with SIFT descriptor and FLANN 
matching take into advantage approximately 13 % of the 
detected points, while the combination of SIFT detector, 
SURF descriptor and FLANN uses less than 1 % of the 
detected key-points for feature matching. This is a result 
of the size of the vectors of SIFT and SURF descriptors, 
which have a size of 128 and 64 elements, showing that 
SIFT entails more details concerning the description of 
the sub-region of the tested key points. In most cases, 
FLANN uses a higher percentage of key points for 
matching, compared to brute force except when the SIFT 
detector and SURF descriptor are combined, however, the 
difference is minor. This information is presented in detail 
in Tab. 3. 

 
Figure 14. Processing time of different feature matching 
combinations 

Table 3. Number of key points and their percentage used for 
matching per combination. 

Detector Descriptor Matcher 
Average 

Number of 
Key-points 

Percentage 
of key 

points used 
for 

matching 
(%) 

SURF SURF 
Brute-
force 5000 10.60 

FLANN 5000 9.82 

SURF SIFT 
Brute-
force 5000 12.06 

FLANN 5000 12.72 

SIFT BRIEF 
Brute-
force 3495 4.46 

FLANN 3495 6.67 

SIFT SURF 
Brute-
force 2896 1.04 

FLANN 3671 0.68 

Fig. 15 and Fig. 16 show the feature extraction and 
matching for the best and worst combinations 
respectively, where the diameter of the circles, indicates 
the meaningful key-point neighbourhood. 

 

(a) (b) 
Figure 15. Feature extraction from images. (a) SURF detector 
and SIFT descriptor (b) SIFT detector and SURF descriptor 
 

(a) (b) 

Figure 16. Feature matching between images. SURF detector 
and SIFT descriptor (b) SIFT detector and SURF descriptor. 

Figure 17a and Fig. 17b show the ROC (Receiver 
Operating Characteristics) curves for an image set when 
brute-force matching and FLANN are used respectively. 
Overall, both feature-matching techniques perform 
similarly, with a recall between 50 - 70%, revealing the 
percentage of matches that were true and not mistakenly 
matched by the algorithms. If the information of these 
graphs is combined with Table 5.5, the finer results can 
be noticed when the SURF detector and SIFT descriptors 
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are combined, with approximately 71 % of true to false 
positive ratio. On the other hand, the worst performance 
is observed when SIFT detector is combined with BRIEF 
and BRISK (Binary Robust Invariant Scalable Key 
points) (Leutenegger, Chli, & Siegwart, 2011) 
descriptors. 

(a)

 

 

(b) 

(b) 

Figure 17. ROC curves between 2 images with (a) Brute-
force matching (b) FLANN 
 

3.3 Web-app 

The indoor localisation results were visualised in a 
web application, as shown in Fig. 18. The app works 
by requesting the reference point clouds from the 
database, so that they can be compared based on the 
discussed algorithms to the user data in near real-time. 
Users can post their data in the application and after a 
few seconds, the room they are located in is revealed. 
Additionally, the app includes the indoor model of the 
case study, so aside from the name of the room, the 
app also highlights the polygon that represents the 

 

room in the indoor model of the indoor facility and 
zooms in on it. 
 

 
 
 
 
 
 
 
 

Figure 18. Web-app interface 

 

 

 

3.3 Location tracking 

The location tracking results are based on the different 
indoor locations of different users at different times of the 
day. Therefore, the quality of the followed paths is a direct 
outcome of the indoor localisation quality. The results are 
available in the ArcGIS online Server and can be seen in 
near real-time on a map, that is updated every 30 seconds. 
To test the accuracy of the location tracking algorithm, 
ground truth was set, based on the path that the user 
originally followed and was compared to the path, as it is 
visualised in the final product. This is shown in Fig. 19. 

 
Figure 19. Estimated vs Traversed path between rooms 
08.02.00.430, 08.02.00.807 and 08.02.00.470 
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Fig. 19 shows the path of a user that moved between 
rooms 08.02.00.430, 08.02.00.807 and 08.02.00.470. The 
indoor localisation was performed correctly for these 
three rooms; therefore, the ground truth is similar to the 
path as it is visualised in ArcGIS Pro. Some differences 
exist due to the indoor network that is used to visualise the 
paths, as the centre of each room is the representative node 
and the fact that the rooms are connected with lines, 
therefore small deviations when the user is not moving 
completely straight cannot be detected. 

Finally, a dashboard was created (Fig. 20) to visualise 
daily, weekly and monthly statistics about the use of each 
path, to discover different movement patterns during 
different times of a day. 

 
Figure 20. ArcGIS Dashboard 

4. Conclusion 

This research aimed to investigate the reliability of 
ceilings as indoor landmarks, examining an alternative 
way of achieving indoor localisation and in extent 
location tracking of users. It focuses on LiDAR and 
camera sensors, which are incorporated in up-to-date 
mobile devices, to substitute the varied used localisation 
methods that mostly involve Wi-Fi fingerprinting and 
Bluetooth sensors. In that manner, indoor localisation 
becomes possible for a variety of users, without the need 
for additional equipment. The only requirement of this 
pipeline is the existence of point clouds of ceilings that 
will act as reference for every room of the indoor facility.  

The indoor localisation pipeline showed promising 
results, both in terms of quality as well as time efficiency, 
as the scope of the research was to be able to perform real-
time localisation of large indoor environments, focusing 
on ceilings with characteristic details. Based on the 
results, a point cloud acquisition of a few seconds is 
enough to indicate the room that users are in, especially 
when the whole ceiling can be captured. In case a ceiling 
is partly acquired, the indoor localisation result depends 
on the uniqueness of the captured part.  

 Regarding data acquisition, the user should not perform 
any sudden movements and changes in the measuring 
angle and height. Additionally, small wall parts do not 

affect the localisation results, while larger parts should be 
avoided. Due to the range of the current LiDAR sensors 
which is approximately 5 meters, some rooms ‘ceilings 
cannot be captured; thus, the mobile device should be 
mounted on an extensible monopod or tripod. However, 
this unavailability in the acquisition can be also translated 
into information that a person is in a room with a high 
ceiling. During image acquisition, the sensor should be 
placed almost perpendicularly to the ceiling to capture a 
larger part of it. 

The Coloured variation of the ICP, proved to be the 
optimal solution. In contrast to the other implemented 
local refinement algorithms, Coloured ICP adds colour in-
formation to the geometry as its name indicates, hence this 
additional information is the reason behind the suitability 
of the algorithm. The multi-registration scheme of 
Coloured ICP significantly improves the time efficiency 
of the algorithm, making it a concrete choice for real-time 
applications that use point clouds of ceilings for indoor 
localisation. 

Concerning the image-based indoor localisation 
techniques, the combination of the SURF feature detector 
with the SIFT descriptor provides the most optimal 
results, when combined with brute-force and FLANN. 
The scale and rotation invariant char-acter of SIFT makes 
it adaptable and robust to different types of distortion, 
illumination and noise.  However, the combination of the 
ORB feature detector and descriptor proved to be the most 
time efficient, making it suitable for real-time 
applications. Brute force performs slightly faster than 
FLANN, due to the small size of the dataset that was used. 
FLANN resulted in a higher number of matches between 
the user and reference images, compared to brute force, 
with a higher match difference between the correct and 
wrong reference images, ensuring the quality of indoor 
localisation. 

Promising results were also shown regarding 
emergencies, however, some improvements especially 
concerning time efficiency must be implemented. 
Concerning location tracking, the resulting quality is 
based on the succession of the indoor localisation results. 
The accuracy of location tracking is at room level as the 
centre of each room was chosen as a representing point. 

4.1 Recommendations and future research 

Some additional experiments could be applied to enhance 
the current pipeline. Image acquisition during different 
times of the day could be performed to further investigate 
the influence of lighting conditions. Furthermore, point 
clouds and images should be combined with a Wi-Fi 
fingerprinting approach, to reduce the search area during 
the first localisation of a user.  
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Additional research could involve the use of machine 
learning algorithms, which could automatically detect the 
large wall planes that negatively affect the indoor 
localisation results based on ceilings. Additionally, 
feature matching based on monocular depth estimation 
could be tested, as an alternative way of image-based 
indoor localisation. The protruding installations of the 
ceilings could be used in combination with an AR 
platform to recognise the different utilities to develop a 
landmark-based localisation approach. Furthermore, 
important research could be implemented on navigation, 
after incorporating a robust solution for its basis, indoor 
localisation, focusing on closing the gap between the 
planned towards the estimated trajectory of a followed 
path. Additional research could include the establishment 
of navigational instructions for humans and also robots, 
as well as navigation for specific user groups, such as 
people with partial or severe blindness, by incorporating 
the braille language in a real-time application, or 
navigational applications that focus on people with 
movement disorders, who need to follow specific paths as 
they navigate to their desired destination. 
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