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Abstract. In recent years, shared micro-mobility services
(e.g., bikes, e-bikes, and e-scooters) have been popularized
at a rapid pace worldwide, which provide more choices
for people’s short and medium-distance travel. Accurately
modeling the choice of these shared micro-mobility ser-
vices is important for their regulation and management.
However, little attention has been paid to modeling their
choice, especially with machine learning. In this paper,
we explore the potential of the XGBoost model to model
the three types of shared micro-mobility services, includ-
ing docked bike, docked e-bike, and dockless e-scooter, in
Zurich, Switzerland. The model achieves an accuracy of
72.6%. Moreover, the permutation feature importance is
implemented to interpret the model prediction. It is found
that trip duration, trip distance, and difference in elevation
present higher feature importance in the prediction. The
findings are beneficial for urban planners and operators to
further improve the shared micro-mobility services toward
sustainable urban mobility.
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1 Introduction

Shared micro-mobility services have been proliferating
worldwide in the past few years, including dockless e-
scooters, dockless and docked bikes and e-bikes, etc. Due
to their environmentally-friendly and flexible characteris-
tics, shared micro-mobility services have been widely used
to supplement public transport by dealing with first and
last-mile problems (Qin et al., 2018; Romm et al., 2022).
However, there are also many problems that are brought by
them, such as disorderly placement of vehicles, and over-
production of facilities leading to resource wasting. Thus,
it is crucial to understand shared micro-mobility usage and
its influencing factors for better urban planning and man-

agement (Li et al., 2020; Abduljabbar et al., 2021; Man-
gold et al., 2022).

In addition, various shared micro-mobility services are
provided in many cities, which provide more travel mode
choices to users, especially for short and medium-distance
travel. Understanding how users adopt and utilize each
type of service is beneficial for urban planners and pol-
icymakers to develop pertinent regulations on their us-
age. Hence, it is necessary to model the choice of shared
micro-mobility services. The previous studies on shared
micro-mobility usage are mainly concentrated in bike-
sharing (Faghih-Imani et al., 2017; Li et al., 2021), e-
scooter sharing (Huo et al., 2021; Li et al., 2022), compar-
ison between bike-sharing and e-scooter sharing (McKen-
zie, 2019; Zhao et al., 2021; Blazanin et al., 2022), and
integration of bike-sharing / e-scooter sharing and pub-
lic transport (Campbell and Brakewood, 2017; Cao et al.,
2021), etc. However, the usage of various shared micro-
mobility services among users is not yet well investigated.
Reck et al. (2021) firstly examined the mode choice of four
different micro-mobility services (i.e. dockless e-scooters,
dockless e-bikes, docked e-bikes and docked bikes) by de-
veloping a multinomial logit (MNL) model.

Although MNL model and its variants have been demon-
strated to be effective in travel mode choice analysis, it is
still difficult to deal with a high degree of complexity in a
dataset (Kim, 2021). With the advent of the geospatial big
data era, new methods are required to analyze travel be-
havior and travel mode choice based on various sources of
geospatial big data. To fill the above-mentioned research
gaps, this study aims to systematically model the choice of
shared micro-mobility services with interpretable machine
learning. First, the machine learning model XGBoost is
developed to model the choice. Second, the model pre-
diction is interpreted based on permutation feature impor-
tance. Three types of shared micro-mobility services in
Zurich, Switzerland are explored, including docked-bike,
docked e-bike, and dockless e-scooter.

AGILE: GIScience Series, 4, 39, 2023. https://doi.org/10.5194/agile-giss-4-39-2023 
Proceedings of the 26th AGILE Conference on Geographic Information Science, 2023. 
Editors: P. van Oosterom, H. Ploeger, A. Mansourian, S. Scheider, R. Lemmens, and B. van Loenen. 
This contribution underwent peer review based on a full paper submission. 
© Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

1 of 6



2 Literature review

2.1 Travel mode choice

Travel mode choice is roughly categorized as walking, cy-
cling, public transport, and private car. Most studies are
conducted among these mode choices (Hu et al., 2018;
Narayan et al., 2020; Bucher et al., 2020; Liu et al., 2022).
Over the past decades, a number of models have been de-
veloped to conduct transport mode choice analysis based
on the above-mentioned travel models and the related in-
fluencing factors. Traditionally, the logit models such as
the MNL model, the nested logit model, and the mixed
logit model, are probably one of the most commonly-used
travel mode choice models (Zhao et al., 2020). In recent
years, machine learning has been popularized and perva-
sive in many fields, including but not limited to trans-
portation, such as transportation mode recognition (Ja-
hangiri and Rakha, 2015), traffic flow prediction (Pun
et al., 2019), road extraction (Jiao et al., 2022), etc. A se-
ries of recent studies have indicated that machine learning
can outperform logit models in travel mode choice mod-
eling. For instance, Lee et al. (2018) compared four Types
of artificial neural networks (ANN) with an MNL model
for travel mode choice modeling, which showed that the
ANN models are superior to the MNL model. Zhao et al.
(2020) conducted the prediction and behavioral analysis of
travel mode choice by comparing machine learning with
logit models. It was found that the random forest model
achieves much higher predictive accuracy compared to
MNL model and mixed logit model.

2.2 Influence factors of shared micro-mobility

There are plenty of empirical studies that have been con-
ducted for examining the influencing factors of shared
micro-mobility services, including both bike-sharing and
e-scooter sharing. Taking bike-sharing services as an ex-
ample, the influencing factors can be categorized into the
following aspects (Eren and Uz, 2020), namely weather
conditions (e.g., temperature, precipitation, wind speed),
urban built environment (e.g., bicycle infrastructure, ac-
cess to urban facilities, land use), public transportation,
and socio-demographic factors (e.g., age, gender, educa-
tion, income), temporal factors, and safety (e.g., the use
of helmet). For example, Li et al. (2020) conducted an
empirical study on dockless bike-sharing utilization and
its explanatory factors. It is found that factors such as the
proximity to public transport, and population density are
significantly related to the utilization. Some other studies
also explored how various influencing factors impact e-
scooter sharing services. For instance, the study by Huo
et al. (2021) examined the influence of the built environ-
ment on e-scooter sharing ridership in five cities. It was
reported that the e-scooter sharing ridership is positively
correlated with population density, employment density,

intersection density, land use mixed entropy, and bus stop
density.

Overall, machine learning has been widely used for travel
mode choice modeling based on various influencing fac-
tors. However, little attention has been paid to the choice of
multiple shared micro-mobility services, especially with
machine learning techniques. This study will model the
choice of shared micro-mobility services with machine
learning based on the influencing factors.

3 Methodology

3.1 Data and software availability

The data is collected in Zurich, which is the largest city
in Switzerland. The base map and location of the study
area are presented in Figure 1. The main transport modes
in Zurich are comprised of public transportation (46.9%)
and private motorized transport (40.6%) in 2019 (Fed-
eral statistical office, 2021). There are 340 km of cycling
lanes and tracks in Zurich, which provides shared micro-
mobility a large application and development possibility.

The records from three types of shared micro-mobility ser-
vices are collected from open-accessible APIs of a service
provider in Switzerland from Feb 1 to Feb 29, 2020. The
raw dataset includes the vehicle location data which are of-
fered by the shared micro-mobility operator. After the data
preprocessing, the dataset contains 58,048 trip records.
Each record represents a trip, including the information of
id and type of the vehicle, the start/end location and time,
trip length, trip duration, and average speed of the trip. The
sample size of each service for analysis is shown in Table
1.

Table 1. Samples of vehicle availability data records

services sample size percentage
Docked bike 9286 16.0%
Docked e-bike 25808 44.5%
E-scooter 22954 39.5%

In addition, some geographic and climate data are used
to calculate the influencing factors, including DEM, road
network, points of interest (POI), and weather conditions.

The whole study is conducted on a computer with Intel(R)
Core(TM) i7-4930K CPU 3.40GHz and 32.0 GB RAM,
and the program is coded with Python language

3.2 Influencing factors

Due to the privacy protection agreement, the profiles of
user groups are unavailable, such as age, gender, and in-
come, etc. Therefore, the influencing factors mainly con-
sist of trip attributes and the built environment at the origin
and destination of each trip. The built environment factors
include elevation, and point of interest (POI). Some types
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Figure 1. Study area.

of POIs that are closely related to cycling activities are se-
lected, including public transport, education institutions,
tourist attractions, and public facilities (e.g., theater, mu-
seum, post office, etc).

The influencing factors are described as follows: (1) The
trip attributes, such as trip duration, trip distance, and trip
speed. (2) The start time to each hour of the day and
whether the trip happened on a weekday or weekend are
aggregated. (3) Weather-related factors are considered, in-
cluding temperature (°C) and wind speed (km/h). (4) The
differences in elevation at the start and end are calcu-
lated and represented as Elevation_difference. (5) The
number of each type of POIs surrounding the trip end is
counted by defining a 100-meter buffer. The following ta-
ble shows the descriptions of the selected influencing fac-
tors or features.

3.3 Machine learning model

In this study, the machine learning model XGBoost is ap-
plied to model the choice of shared micro-mobility ser-
vices. XGBoost is shorthand for extreme gradient boost-
ing, which is a widely applicable implementation of the
gradient boosting framework Chen and Guestrin (2016).
Gradient boosting is also a boosting algorithm, which like-
wise attempts to build a strong classifier by an ensemble
of weak classifiers Friedman (2001). In the framework of

Table 2. Type and value of each feature.

Feature Type Value

Hour_day Categorical [0, 1, ..., 23]
Day_week Categorical [Weekday, Weekend]
Trip_duration Continuous [0, ∞]
Trip_distance Continuous [0, ∞]
Trip_speed Continuous [0, ∞]
Elevation_difference Continuous [-203,211]
Temperature Continuous [-3, 18]
Wind_speed Continuous [0, 56]
Education Continuous [0, ∞]
Tourist_attraction Continuous [0, ∞]
Transport Continuous [0, ∞]
Public_facility Continuous [0, ∞]

gradient boosting, the decision tree is the most applicable
basis estimator. In contrast to adaptive boosting, the core
of gradient boosting is that each classifier is trained with
the residuals of all previous classifiers. Here, the residual is
a numerical value that can be used to obtain the true value
by adding it to the predicted value. The training process is
iteratively conducted until the residuals approach zero. In
addition, compared with random forest building an ensem-
ble of independent trees, gradient boosting decision trees
construct an ensemble of successive trees, in which each
tree is trained based on the previous one.
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The superiority of XGBoost lies in several important inno-
vations compared to gradient boosting, including a regu-
larized learning objective, shrinkage and column subsam-
pling, optimization in storage and computation, etc. The
tuning hyperparameters in XGBoost contain the number
of trees (n_trees), learning rate, maximum tree depth, the
fraction of observations to be randomly sampled for each
tree, and the fraction of features for each tree.

3.4 Model interpretability

Machine learning models have demonstrated high perfor-
mance in learning complex patterns from massive data
through increased model complexity (e.g., deep learning),
which are often referred to as black boxes (Murdoch et al.,
2019). As a consequence, the rationale behind their pre-
dictions is difficult to understand and interpret. In order for
humans to trust black-box methods, the interpretability of
results is required. Hence, machine learning interpretabil-
ity has attracted an increasing amount of attention in both
academia and industry.

Permutation feature importance is a commonly-used tech-
nique in interpretable machine learning, which can be used
for calculating the importance of each feature in a machine
learning model. It measures the increase in the prediction
error of the model after one feature’s values are permuted
or shuffled since the permutation breaks the relationship
between the feature and the true outcome (Altmann et al.,
2010). The idea behind this method is that if a feature is
important, then permuting its values should have a signifi-
cant impact on the performance of the model.

4 Results

4.1 Prediction evaluation

In this study, the prediction performance of XGBoost
model is evaluated based on the typical evaluation met-
rics, including accuracy, F1 score, precision, and recall.
First, since the numbers of trips for docked bike and e-
scooter are more than that for docked e-bike, we randomly
select 10,000 trips for docked bike and e-scooter respec-
tively to guarantee the data balance. Second, the selected
trips of three types of shared micro-mobility services and
the influencing factors at the trip level are randomly split
into 21,964 training data instances (75%) and 7,322 test
data instances (25%). Finally, the grid search with 5-fold
cross-validation is conducted to tune the hyperparameters
of the XGBoost model using the training data. The best
hyperparameter settings are used to train the model.

Figure 2 shows the confusion matrix from the XGBoost
model. It indicates that the e-scooter trips can be predicted
accurately, while the trips from docked bike and docked
e-bike can not be distinguished very well. The four eval-
uation metrics are calculated based on the confusion ma-
trix, as shown in Table 3. The XGBoost model yields an

accuracy of 72.6%. The F1-score, precision, and recall re-
sults show how the XGBoost model performs on the three
types of micro-mobility services individually. Overall, the
trained XGBoost model can predict the choice of e-scooter
sharing service, while not able to model the choices of
bike-sharing and e-bike sharing services very well.

Figure 2. Confusion matrix from the XGBoost model.

Table 3. Evaluation metrics for the XGBoost model

Accuracy 72.6%

F1 Precision Recall

Docked bike 63.6% 62.7% 64.5%
Docked e-bike 63.9% 64.6% 63.2%
E-scooter 89.8% 90.1% 89.6%

4.2 Feature importance analysis

Next, the permutation feature importance is calculated to
measure the importance of the 12 selected features in the
choice of modeling. In particular, each feature is permuted
50 times in the test data, and the reduction in accuracy
is regarded as the feature importance. Figure 3 presents
the importance of each feature with boxplot. It can be
observed that trip duration and trip distance have higher
feature importance in the XGBoost model. The study by
McKenzie (2020) shows that e-bike sharing services have
a higher average trip duration and distance than those of
e-scooter sharing services, which can be used to distin-
guish the two types of services. The need for e-scooter
is more affected by the long trip duration and distance.
Elevationdifference is displayed as the third important
feature. The difference in elevations at the start and end
delineates whether the trip is flat or hilly. The study by
Li et al. (2021) reports that some areas with a high av-
erage elevation can be 200 m higher than those with a
low elevation, and docked e-bikes are more attractive than
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docked bikes traveling in those hilly regions. The study
by Reck et al. (2021) also shows that e-scooters are more
likely to be used on flat terrain, and e-bikes are prefer-
able on tortuous terrains (both uphill and downhill). In ad-
dition, public facility and transport are followed in terms
of the feature importance, which indicates that trip pur-
pose also has an influence on the choice of shared micro-
mobility services to some extent. For example, previous
studies have confirmed that e-bikes are used for com-
muting, while e-scooters services are more often used for
recreation (Bieliński and Ważna, 2020). Note that the fea-
ture Hour_day also shows the importance in the predic-
tion. Its influence on the choice of shared micro-mobility
services is also confirmed by the study (Reck et al., 2021).
It is found that docked bike and docked e-bike have simi-
lar usage patterns while different from the usage pattern of
shared e-scooters. Compared with the built environment
and trip characteristics, two weather-related features do
not display higher feature importance.

Figure 3. Feature importance in the XGBoost model.

5 Conclusion

The prevalence of shared micro-mobility services provides
more choices for people’s short and medium-distance
travel. Studies on modeling the choice of shared micro-
mobility services, especially at the trip level, are still
scarce. The emergence of GPS-based vehicle availability
data provides the possibility to investigate the research
topic. In this paper, we model the choice of three types of
shared micro-mobility services (i.e. docked bike, docked
e-bike, and dockless e-scooter) with machine learning.
To do this, we first determine the 12 influencing factors
for the choice modeling by literature review, including
trip attributes, the built environment, and weather condi-
tions. Next, the XGBoost model is developed to model the
choice of services based on the selected factors. Last, the
prediction performance of the model is evaluated, and the
interpretability of the model is analyzed in terms of permu-
tation feature importance. The main findings of this study
are summarized as follows.

First, the XGBoost model yields a prediction accuracy of
72.6%. By calculating the evaluation metrics F1, preci-
sion, and recall individually for each type of service, it is
found that the choice of e-scooter sharing service can be
modeled accurately, while docked bike and docked e-bike
usage can not be distinguished very well. Next, the model
prediction is interpreted by calculating permutation fea-
ture importance. The results show that trip duration, trip
distance, and difference in elevation present higher feature
importance in the prediction. This study has important im-
plications with regard to the regulation and management
of shared micro-mobility services.

There are also some limitations in the current study that
call for future work. First, although the trained XGBoost
model is capable of modeling the choice of e-scooter shar-
ing service accurately, the prediction on the choices of
the shared bike and e-bike services can be further im-
proved. One solution could be to include more features
(e.g., the urban built environment surrounding the start
point of the trip) into the model. Second, this study only
attempts the XGBoost model for choice modeling, other
advanced machine learning / deep learning models deserve
to be studied. Third, only the permutation feature impor-
tance analysis is implemented for the interpretability of the
machine learning prediction. Some other interpretable ma-
chine learning techniques, such as partial dependence plots
(PDP), and SHAP (SHapley Additive exPlanations), can
be considered in future work.
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