
Exploring the potential to use in-between pixel variability for early 

detection of bark beetle attacked trees 

Per-Ola Olsson1, Hugo Bergman1, and Karl Piltz1 

1 Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden 

Correspondence: Per-Ola Olsson (per-ola.olsson@nateko.lu.se) 

Abstract. The European spruce bark beetle (Ips 

typographus L.) is a major disturbance agent in Norway 

spruce (Picea abies (L.) Karst) forests in Europe and it is 

estimated that a changing climate will result in more 

severe outbreaks in the future. To reduce the risk of large 

outbreaks it is important to have methods that enable early 

detection of bark beetle attacks to help forest managers to 

prevent population build-up, e.g by sanitary cutting. 

Several studies have been devoted to early detection of 

bark beetle attacks with Sentinel-2 data with a focus on 

spectral properties and vegetation indices for early 

detection with pixel-based methods. In this study we 

explore the potential to use changes in variability between 

pixels in windows of different sizes (3×3, 4×4 and 5×5 

pixels). We compute the coefficient of variation for four 

vegetation indices (NDVI, NDWI, CCI and NDRS) in a 

time-series of Sentinel-2 data during a bark beetle 

outbreak in Sweden that was triggered by a drought in 

2018. The results indicate that CCI is the most promising 

index for early detection and that the variability between 

pixels increase in windows with attacked trees from late 

July when the main swarming was the second week of 

May. 
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1 Introduction 

The European spruce bark beetle (Ips typographus L.) is 

a major disturbance agent in Norway spruce (Picea abies 

(L.) Karst) forests in Europe (Jönsson et al. 2012) and has 

killed more than 150 million m3 forest during the last 50 

years (Schroeder and Cocoş 2018). Bark beetles are 

naturally present in spruce forest and at lower population 

levels they only attack weakened trees that are 

comparatively easy to kill; but periodically, favourable 

conditions enable the populations to grow rapidly, 

enabling the bark beetles to also attack healthy trees, 

resulting in large outbreaks (Hlásny et al. 2021). Such 

outbreaks often occur after windstorms since storm-felled 

trees provide the bark beetles with breeding material that 

facilities population growth (Schelhaas et al. 2003). Bark 

beetle outbreaks can also be triggered by drought events 

as drought stress decreases the trees’ defense capacity 

(Jactel et al. 2012; Netherer et al. 2019). As an example, 

the drought that occurred during the summer of 2018 

triggered the largest recorded bark beetle outbreak in 

Sweden. 

With a warmer climate, more severe bark beetle attacks 

are projected, mainly due to higher temperatures and more 

frequent drought events (Jactel et al. 2012; Marini et al. 

2013); a relationship between increasing temperatures and 

forest mortality due to bark beetles has already been 

observed (Seidl et al. 2014; Hlásny et al. 2021). In 

addition to abiotic factors that influence the trees’ defense 

capacity, the bark beetles themselves are influenced by 

temperature. Northern regions commonly have one 

generation of bark beetles per year, but during longer and 

warmer summers the probability of bark beetles 

developing two generations further north increases, 

resulting in more rapid population growth (Jönsson et al., 

2012; Bentz et al. 2019).  

To prevent the beetle population build-up, e.g. by sanitary 

felling, it is important to detect infested spruce trees early, 

while the larvae are still inside the attacked trees (Jönsson 

et al. 2012; Hlásny et al. 2021). Several studies have been 

conducted to detect attacked trees in this so-called green 

attack stage with satellite based remote sensing. Abdullah 

et al. (2018) showed that using Sentinel-2 data resulted in 

higher detection accuracy (67%) than Landsat (36%) for 

the green attack stage. Fernandez-Carrillo et al. (2020) 

applied Sentinel-2 data to classify bark beetle damage into 
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severity classes and achieved high accuracy for areas with 

high damage but lower accuracy for areas with less severe 

damage. Huo et al. (2021) developed a new vegetation 

index, Normalized Distance Red & SWIR (NDRS), that 

performed better than other Sentinel-2 derived indices for 

early detection of stressed spruce trees. Dalponte et al. 

(2022) achieved an accuracy of 83% when applying a 

support vector machine classifier to Sentinel-2 data to 

detect early and late stages of bark beetle attacks. 

However, these studies have focused on the spectral 

properties of individual pixels and not on the spatio-

temporal development of bark beetle attacks over adjacent 

pixels. In this study we compute time-series of the 

coefficient of variation for windows of different sizes 

(3×3, 4×4 and 5×5 pixels) to explore if changes in the 

variability between pixels can be used for early detection 

of bark beetle attacks. The assumption is that the 

variability between pixels increases in a window with 

bark beetle attacked trees since the attacked trees at lower 

populations often are scattered or small groups of trees, 

and that the increase in variability might be detectable 

even if the change in a vegetation index is not sufficiently 

large for detection on pixel level. 

2 Methods and study area 

2.1 Study area 

The study area was an approximately 8×8 km large area 

located in Västervik municipality, Sweden (Fig. 1). The 

area is dominated by coniferous forest but contains some 

deciduous forest, agricultural fields and lakes. 

Figure 1. The Study area in Västervik municipality in South-

eastern Sweden with the neighbouring municipalities. 

Municipality data from Valmyndigheten (2012). 

2.2 Sentinel-2 data and processing 

Sentinel-2 L1C data was downloaded and processed to an 

analysis-ready data cube with the Framework for 

Operational Radiometric Correction for Environmental 

monitoring (FORCE; Frantz 2019) version 3.6.5. 

Wavelength bands with 20×20 m spatial resolution were 

resampled to 10×10 m by splitting a pixel into four 

without modifying the pixel values. Image-to-image 

registration within FORCE was utilized (Rufin et al. 

2021) to handle the geometric deviations between 

Sentinel-2a and Sentinel-2b. 

Four vegetation indices (VIs) were included based on 

literature and earlier tests (manuscript under review): 

Normalized Difference Vegetation Index: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
(Rouse et al., 1973) 

Normalized Difference Water Index: 

𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅1
(Gao, 1996) 

Chlorophyll Carotenoid Index: 

𝐶𝐶𝐼 =  
𝑔𝑟𝑒𝑒𝑛−𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛+𝑟𝑒𝑑
(Gamon et al., 2016) 

Normalized Distance Red & SWIR: 

𝑁𝐷𝑅𝑆 =  
𝐷𝑅𝑆−𝐷𝑅𝑆𝑚𝑖𝑛

𝐷𝑅𝑆𝑚𝑎𝑥+𝐷𝑅𝑆𝑚𝑖𝑛

𝐷𝑅𝑆 =  √𝑟𝑒𝑑2 + 𝑆𝑊𝐼𝑅22  

where DRSmax and DRSmin are maximum and minimum 

DRS for coniferous forest in a Sentinel-2 image 

respectively (Huo et al. 2021). 

2.3 Bark beetle data 

Harvester data was obtained from Sveaskog, the largest 

forest owner in Sweden, and consisted of coordinates of 

attacked trees derived from harvester machines when 

cutting the trees. The harvester data was rasterized to 

create a grid with the number of attacked trees per pixel 

that aligned with the FORCE grid (10×10 m). 

The bark beetle damage data only included attacked trees. 

Data over healthy pixels were derived with the aid of land 

cover data and forest estate data. The assumption was that 

in a forest estate with bark beetle attacked trees the forest 

manager would have marked all attacked trees for the 

harvester to cut since it is associated with high costs to 

bring the harvester. Hence, coniferous forests in the same 

estate as forests with harvested trees, but without 

harvester data, were considered healthy. The forest estates 

are relatively small and the trees were harvested in late 

stages of the attack so nearby attacked trees would have 
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been easily detected. For more details about the damage 

data see Müller et al. (2022). 

The date of attack was estimated from bark beetle 

swarming data published by the Swedish forest agency 

(Skogsstyrelsen, 2023). The swarming data gives the 

number of beetles caught in pheromone traps on a weekly 

basis. For 2018 the station with pheromone traps near the 

study area showed a distinct peak in the number of caught 

beetles in week 19 (second week of May), followed by 

weeks with low number of beetles. Hence, the trees were 

likely attacked during week 19 in 2018. 

2.4 Calculate coefficient of variation 

We identified windows of three sizes: 3×3, 4×4 and 5×5 

pixels. The windows were identified by iterating over the 

dataset with a moving window. This means that some 

windows overlap, and that a single pixel could 

theoretically be part of up to nine unique windows among 

the 3×3 pixel windows, up to 16 windows in the 4×4 pixel 

windows, and up to 25 in the 5x5 pixel windows. 

Two types of windows were identified for each window 

size: attacked windows, and healthy windows. Attacked 

windows are windows for which at least one pixel 

includes trees with confirmed bark beetle attack and 

where all pixels in the window are of the same land cover 

type (Fig. 2). The reason for including only windows 

where all pixels had the same land cover was to avoid a 

situation where changes in variability between pixels was 

caused by differences in phenology for different land 

cover types rather than bark beetle attacks. 

Figure 2. A 4×4 pixel window in blue (attacked window 4×4 

pixels #234) with the number of attacked trees per pixel (A) and 

land cover (B). This window had a total of 18 damaged trees 

spread over 4 pixels and located on land cover class 112 (spruce 

dominated forest), fulfilling both conditions for attacked 

windows. 

Healthy windows are windows for which all pixels are 

healthy and have the same land cover type (Fig. 3); only 

land cover with coniferous forests were included. 

Figure 3. A 4×4 pixel window in green (healthy window 4x4 

pixels #359) with healthy pixels (in black; A) and land cover 

data (B). This window was completely covered by healthy pixels 

and located entirely on land cover class 112 (spruce dominated 

forest), fulfilling both conditions for healthy windows. 

Mean (µ) and standard deviation (σ) were calculated for 

each window and VI for all available Sentinel-2 images in 

the time-series 2017-2019. The coefficient of variation 

(CV) was then calculated according to Equation 1.

𝐶𝑉 =
𝜎

µ
      (1.) 

The reason for calculating CV instead of working with 

standard deviation was to compensate for differences in 

phenology with generally higher VI, and hence, also 

higher standard deviation during the main growing 

season. Mean of µ and CV were calculated for attacked 

and healthy windows respectively, and for all window 

sizes, VIs and time periods. All calculations were done in 

Python. 

2.4 Data and Software Availability 

The authors are not allowed to share the bark beetle 

damage data. The Python scripts developed are available 

upon request and the land cover data are freely available. 

3 Results 

3.1 Comparison between vegetation indices 

CCI seems to be the most promising VI for early detection 

of bark beetle attacks with a rather stable mean CV for 

healthy windows during the summer and fall of 2018 

except for a single peak in early Augusts that is most 

likely noise. The attacked windows, on the other hand, 

show an increase in CV during the summer (Fig. 4). The 

main swarming was the second week of May, i.e. the trees 

were most likely attacked that week, and the results 

indicate that the CV starts increasing for attacked pixels 

in the later part of July. For NDVI, the results indicate that 

there is a slight increase in CV during the later part of the 

summer but there is a sharp increase in CV also for 

healthy windows from mid-July. For NDWI, CV 
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increases for both attacked and healthy windows from 

early summer and for NDRS, CV stays rather stable 

during the summer and for both attacked and healthy 

windows CV increase later in the summer. Hence, only 

CCI is included in the following results. 

Figure 4. Time-series of mean CV for CCI, NDVI, NDWI and 

NDRS for attacked and healthy windows during 2018. Window 

size is 4×4 pixels. The raw data (grey) are rather noisy and were 

hence smoothed with a 5-point rolling median to show the 

dominating pattern (black). 

3.2 Influence of window size on CV 

The time-series of mean CV for CCI behaves similarly for 

different window sizes with an increase from late July, 

and small differences between window sizes except for a 

period in August with high noise in the data (Fig. 5). The 

Pearson correlation between the attacked 3×3 and 4×4 

pixel windows is 0.81, between the attacked 3×3 and 5×5 

pixel windows 0.68 and between the attacked 4×4 and 5×5 

pixel windows 0.67. Before computing the Pearson 

correlation, CV values that deviated more than 1 standard 

deviation from the mean of the time-series, for each 

window size respectively, were considered outliers and 

removed. The outliers included both very high and very 

low deviation in CV for a single time-period (Fig. 5); such 

deviations are most likely due to noise.  

Figure 5. Mean CV of CCI during 2018 for attacked and healthy 

windows and the three window sizes. 

3.2 Influence of attack intensity on CV 

The number of attacked trees inside a window (here 

referred to as attack intensity) influences the change in 

mean CV (Fig. 6). For all attack intensities, CV starts to 

increase in late July but CV is highest for windows with 

eight or fewer attacked trees and lower for windows with 

16 or more attacked trees. The increase in CV is also 

lower for windows with at least 16 attacked trees. When 

including all windows with attacked trees the pattern is 

similar to windows with eight or fewer threes but with 

slightly lower CV.  
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Figure 6. Mean CV of CCI during 2018 for different levels of 

attack intensity. A window size of 4×4 pixels is used. 

4. Discussion

This study indicates that in-between pixel variability can 

be used to detect bark beetle attacks with CCI as the more 

promising VI. One reason for the better performance of 

CCI compared to NDRS and NDWI, which have 

performed well in earlier studies, might be that both 

NDRS and NDWI include a SWIR band that originally 

has a spatial resolution of 20×20 m. That means that even 

if data is resampled to 10×10 m the originally coarser 

resolution will result in lower variability. 

The results indicate that the window size has little 

influence on the variability. With a smaller window, a 

single pixel with attacked trees will have a stronger 

influence on the variability compared to a larger window. 

For scattered attacked trees it is more likely to have a 

larger number of attacked pixels with larger window 

sizes. It is also important to note that a larger window size 

will result in fewer windows, due to the limitation of one 

land cover type per window. Hence, we did not test with 

larger window sizes. In this study, the number of attacked 

windows were 709 for 3×3 pixel windows, 668 for 4×4 

pixel windows and 588 for 5×5 pixel windows. The 

number of healthy windows were larger.  

The results show that a lower number of attacked trees 

(<=8) (less intense attacks) results in higher variability 

and change in CV compared to windows with a larger 

number (>=16) of attacked trees. This might seem 

unexpected but a possible explanation is that with a higher 

number of attacked trees it is likely that a majority of the 

pixels in a window are attacked, and hence, the variability 

between pixels will be lower compared to a situation when 

only a few pixels are attacked.  

To conclude, the results of this study indicate that in-

between pixel variability provides information that could 

aid in early detection of bark beetle attacked trees. We did 

not compare the method with pure pixel-based methods 

since we see the method as a way of increasing accuracy 

in combination with pure pixel-based methods. When 

developing methods for early detection it is likely that 

variability can be used in combination with pure pixel-

based methods to include both VI values and variability 

in a classifier. If forest stand data are available it would 

also be possible to further develop the method to work 

with variability within forest stands rather than regular 

windows of fixed sizes. 
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