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Abstract. The validity of information collections can be
verified by their coherence, such as in the case of Volun-
teered Geographic Information. However, corresponding
coherence theories of truth do not readily apply to collec-
tions of data if these consist of non-interpreted or virtually
non-interpretable symbols, as is often the case with ma-
chine learning models and other black box systems. This
paper argues why data-driven geography requires coher-
ence theories, to then transfer the concept of coherence
theories from the information to the data level. Finally, the
relevant implications on the interpretation of data, espe-
cially in the context of black box systems and machine
learning, are discussed.
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1 Introduction

The discipline of geography studies anthropogenic and
physical structures and processes on the Earth’s surface.
For this purpose, information is collected in correspond-
ing studies, which then finds its way into the social and
natural science discourse. Corresponding data is generated
and statistically analysed, for instance, in scientific mea-
surement series and demographic surveys. In quantitative
geography, data are traditionally used primarily in their
function as an easily aggregated and summarized figure.
This role has changed in recent decades. Increasingly, vast
amounts of data are available and can be employed, in the
sense of big data, for investigations that were previously
impossible. In particular, improved data processing meth-
ods, including machine learning and artificial intelligence
methods, allow a high degree of automation, which in turn
enables analyses in previously unseen detail. These devel-
opments are not merely superficial but have far-reaching
impact on the epistemological convictions of the disci-
pline. The described development towards a data-driven

geography must therefore be seen as a new paradigm that
complements existing ones (Miller and Goodchild, 2015).

The success of the data-driven paradigm relies on sev-
eral factors. First, it seems important to establish an un-
derstanding of whether information inferred from data
is reasonable in the context of the geographical envi-
ronment and accurately describes it. Secondly, the data-
driven paradigm is challenged by human conceptualiza-
tion, which is difficult to capture formally. At the mo-
ment, however, data-driven geography retreats to formal
and easily comprehensible points of view. Thirdly, the
paradigm has yet to prove that it is capable of generating
deeper understanding, insights, and knowledge. This list
of challenges is by no means complete but outlines some
of the important factors related to the success of the data-
driven paradigm.

This paper deals with the first of the three factors men-
tioned: the question of whether data are reasonable in the
context of the geographical environment. The question is
of particular interest as geographical data are often dif-
ficult to check due to the large spatial extent of the ge-
ographies described; and they are very diverse in nature,
especially because they are usually contributed by a large
number of people (See et al., 2016; Mocnik et al., 2019),
which means that there is no general one-fits-all strategy
to verify the data. Initially, we fix a distinction between
the data and information concepts that we use in this pa-
per (Section 2), in order to then introduce coherence the-
ories of truth (Section 3) and apply them to the context of
data (Section 4). Finally, we discuss which consequences
the processing of data by black box systems, potentially
including machine learning techniques, have on the appli-
cation of corresponding coherence theories (Section 5).

2 Concepts of Data and Information

There exist a host different yet related concepts of what
data are (Zins, 2007). The conceptualization differs not
only between the relevant fields of study, but also within
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individual fields. In Geographical Information Science, for
instance, the demarcation of data to information is fuzzy
and unclear, as is the way in which data and information
refer to each other, that is, the dichotomy between data
and information. Floridi (2008) groups possible interpre-
tations of the concepts of data and information into four
classes, three of which we will distinguish and refer to in
this paper: the epistemic, the computational, and the infor-
mational interpretation.

The first of these classes refers to collections of propo-
sitions about the geographical environment, based on an
epistemic interpretation. These propositions make state-
ments about the environment, and they may or may not
be true. In some cases, it may be debatable or even unde-
cidable whether these propositions are true. Such propo-
sitions are generally comprehensible to humans because
they afford mental reasoning. They are cognitively acces-
sible and part of our perception and thought process, which
is why they do not necessarily have to be formally repre-
sented by symbols. Such concept needs to be distinguished
from a computational interpretation, which refers mainly
to the predominantly formal representation of proposi-
tions by means of symbols, such as those found in spatial
datasets. In the context of this paper, we refer exclusively
to such collections of symbols as data. That is, we do not
consider collections of propositions themselves to be data
but only the symbols that represent these. If, on the other
hand, these symbols are interpreted, we speak of informa-
tion. Following this definition, a collection of propositions
needs to be considered to be information, too, if they are
the result of interpreting data. Depending on how much
such propositions and information in general are mentally
processed and distilled, knowledge and wisdom can be
generated (e.g., Ackoff, 1989). In this sense, there exist
many types of information (including knowledge) other
than collections of propositions about the (geographical)
environment.

For the purposes of this paper, we will refer to collections
of propositions, data, and information in the way these
concepts have been characterized here.

3 Coherence Theories of Truth

Numerous research activities in Geographical Information
Science focus on the quality of information (e.g., Frank,
2007; Chrisman, 1984; Shi et al., 2002; Senaratne et al.,
2017; Ballatore and Zipf, 2015). At the core of such re-
search is the question of which of the propositions apply to
the geographical environment, and which do not. Regard-
less of what ‘apply’ means in the context of the natural and
social sciences, such an assessment presumes access to the
geographical environment (Mocnik et al., 2018). Classi-
cal correspondence theories thus attempt to determine the
truth of propositions through appropriate explicit compar-
isons to the environment (Patterson, 2003). Extrinsic qual-
ity measures serve as typical examples of such correspon-

dence theories because they are usually based on compar-
isons with information obtained from reference data.

Coherence theories of truth have been proposed as an al-
ternative to correspondence theories in philosophical dis-
course, since they take the intrinsic coherence of propo-
sitions among themselves as an indication of their ap-
plicability to the (geographical) environment and do not
rely on the often hard to achieve epistemic and immedi-
ate access to the environment (e.g., Cohen, 1978; Rescher,
1973). Consistency, that is, the absence of contradictions
in the propositions, is often assumed to be a prerequi-
site for coherence (e.g., Cohen, 1978; Stout, 1908). Co-
herence, however, goes beyond this in that it also as-
sumes the various propositions to be mutually related and
mutually supportive (e.g., Bartelborth, 1996; Blanshard,
1939; BonJour, 1985; Bradley, 1939; Petraschka, 2014).
Corresponding concepts of coherence refer to the num-
ber of contradictions, the confirmation of already assumed
propositions, the lineage of the propositions, explanatory
anomalies, the degree of interrelatedness of the proposi-
tions, and many further aspects (e.g., Bartelborth, 1996;
BonJour, 1985; Petraschka, 2014). Despite not having
been formulated in this way in Geographical Information
Science before, the use of intrinsic quality measures pre-
supposes coherence theories of truth (cf., Mocnik et al.,
2018). Such measures often refer to the lineage of the
data as well as the logical and geometric consistency (e.g.,
Senaratne et al., 2017). Perspectives that explicity refer to
coherence theories have already been considered in rela-
tion to maps (Mocnik, 2023).

4 Defining Coherence Theories for Data

Coherence theories of truth have been widely discussed
in the context of propositions about the environment. Yet,
this is not the case in the context of data when being under-
stood as a collection of symbols, in the sense of the com-
putational interpretation. Only a (mental) interpretation of
the data in the context of the geographical environment
yields propositions and possibly further information. That
is, data can only be understood in the context of the geo-
graphical environment if they are interpreted. Since coher-
ence theories of truth are, however, based on the coherence
of propositions and not on the coherence of symbols, they
do not apply to data per se.

The difference outlined between the coherence of symbols
and propositions is fundamental. This is aptly illustrated
by the example of a text written in a language we are not
familiar with. We cannot make sense of neither the sym-
bols nor the composition of the symbols. If the same sym-
bols are used repeatedly and if grammatical structures are
recognizable – think here of ‘subject, predicate, object’ as
an example – then this can be considered as an indica-
tion that the symbols are coherent to some extent. The text
does not appear arbitrary. Whether the text describes the
geographical environment of an existing place, originates
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from the author’s imagination, or even represents a col-
lection of symbols without any meaningful interpretation
is, however, independent of such structures within the text.
Involving a person who knows the language can, neverthe-
less, provide information about whether the propositions
about the geographical environment ‘contained’ in the text
are mutually supportive and even coherent.

Since data largely determine their possible interpretations,
it would be desirable to be able to apply coherence theories
to data as well. In the example mentioned above, a person
with corresponding linguistic proficiency will understand
the text in a similar way as other people with the same
linguistic proficiency. For the person who is able to inter-
pret data, the data might in many cases and to an extent be
synonymous with its interpretation. If one were to define
the coherence of data as the coherence of the propositions
arising from their interpretation, then this would constitute
the basis for a coherence theory for data.

As the example of remote sensing data however shows,
there exist multiple interpretations in many cases. Re-
mote sensing images can be interpreted visually; machine
learning approaches can automatically recognize objects
in these images; and remote sensing images can be used to
estimate live green vegetation by means of the normalized
difference vegetation index (NDVI), among others. These
interpretations can at times differ greatly. As an example,
a faulty red band would lead to potentially incorrect infor-
mation when using the NDVI, but at the same time still
allow for a meaningful visual interpretation of the image.

To circumvent these issues, a definition1 of the coherence
of data can be approached in the context of a single inter-
pretation ξ:

The ξ-coherence of data A is defined as the
coherence of the collection of all propositions
that emerge from the interpretation ξ.

Such definition can be applied independently of how co-
herence is conceptualized. In particular, it is meaningful
even if coherence is not conceptualized as a number but,
as in most cases, a complex quality.

Instead of focussing on single interpretations, this defini-
tion naturally extends to a collection Ξ of interpretations:

The Ξ-coherence of data A is defined as the
coherence of the collection of those proposi-
tions that emerge from at least one of the in-
terpretations ξ ∈ Ξ.

In case it is obvious from the context of the data A which
interpretations are ‘meaningful’2, the definition can even

1The definitions made here are to be understood as provi-
sional and should be examined in more detail for their usefulness
in further scientific discourse.

2The concept of meaningfulness is referred to here in con-
trast to arbitrariness. Only those interpretations are considered
meaningful that stand out as being more useful than other ones,
for instance, because they turn out to be of practical use. These
interpretations need to be distinguished from arbitrarily chosen

be made independent of a choice of interpretations. For
this purpose, the collection Ξ(A) of all possible ‘meaning-
ful’ interpretations will be considered, despite this collec-
tion sometimes being difficult to grasp and to potentially
only meaningfully exist in some cases. We define:

The coherence of data A is defined as the
Ξ(A)-coherence of A.

The last two definitions are interesting in that they pre-
suppose the concept of coherence to be applicable to col-
lections of propositions even if these propositions arise
from different interpretations. Although this is the case for
virtually all concepts of coherence as long as the consid-
ered interpretations are commensurable, it often does not
apply for corresponding operationalizations due to their
dependence on practical context. For example, many in-
trinsic quality measures are specific to the case of Open-
StreetMap and cannot be easily transferred to other use
cases (Senaratne et al., 2017; Mocnik et al., 2018). In case
that only one meaningful interpretation ξ exists, that is,
Ξ(A) = {ξ}, coherence and ξ-coherence are equal accord-
ing to their definitions.

The three definitions of coherence of data as provided here
induce coherence theories. These state, analogously to the
case of propositions, that data ‘apply’ to the geographical
context if they are coherent. It should be noted, however,
that ‘apply’ has a slightly different meaning here, because
data cannot not be assigned truth values in the same way
as is the case for propositions.

5 The Coherence of Data Used in Black Box Systems

The interpretation of data and thus the way from sym-
bols to propositions about the geographical environment
is potentially long and may involve machine processing of
the data. In some cases, this is accompanied by the fact
that the process of interpreting the data and the resulting
propositions can no longer be fully comprehended by hu-
mans. Instead, the data is in many cases first processed
and converted into new data before it is finally interpreted
by humans. Only this final step might be fully compre-
hensible to humans while previous steps elude human in-
sight. Machine learning-based methods are an example of
such processing that is not well comprehensible to hu-
mans, because their models ‘trained’ by sample data con-
sist of symbols that we cannot immediately comprehend.
The ‘predictions’ generated from the model, however, con-
sist of symbols that we ultimately can comprehend, such
as in the case of text generated through machine learning,
objects recognized in areal imagery, and categorizations of
land cover created by means of machine learning.

In such examples, the definitions made earlier in Section 4
come into play. Consider the example of building foot-
prints, which are represented by coordinates in the data.

ones, for which there are just as many reasons as for almost all
other interpretations.
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It can be argued that there is only one meaningful inter-
pretation of these coordinates. This interpretation is easily
comprehensible and might even suggest a direct transla-
tion mechanism between the coordinates and correspond-
ing propositions, such as what these coordinates refer to
in the geographical environment. Therefore, the difference
between data and information is in this case of a more se-
mantic nature. A distinction between the coherence of the
two seems thus practically not necessary. However, when
the interpretation of data involves black box systems, such
translation mechanisms no longer exist. Consider the ex-
ample of a model trained using machine learning. Such a
model is formed by a collection of symbols, which can be
used to generate data that can themselves be interpreted
in the context of the environment. While it is easily possi-
ble to determine which part of the generated data relate to
which proposition, this is no longer possible for the model
itself in many cases. It seems largely impossible to de-
termine which parts of the model (understood as data) a
proposition refers to, or even to understand which individ-
ual symbols of the model (and their combination) a propo-
sition generated through the application of the model and
subsequent interpretation refers to. The definition of the
coherence of data must therefore confine to the data in
their entirety in such cases.

The fact that only the coherence of the data as a whole can
be considered in many interpretations, such as those invol-
ving black box systems, limits the possibilities of a coher-
ence theory. On the level of propositions, coherence theo-
ries are often used to improve a set of propositions, such as
by checking how well a particular proposition fits into this
collection by contributing to the coherence of the collec-
tion. In case this one proposition does not contribute much,
it might be removed in order to strengthen the coherence of
the collection. Due to the lack of correspondence between
data and propositions, such removal of data is, however,
often not possible if the interpretation involves black box
systems. This poses problems, especially in the context of
ethical considerations, such as related to the removal of
unwanted bias (cf., Turilli and Floridi, 2009; Richardson,
2022; Zhou et al., 2022; Shrestha and Das, 2022).

6 Conclusion

The discourse of this paper has achieved three objectives.
First, we have argued that data-driven geography requires
coherence theories. Secondly, the concept of coherence
theories, which is usually only defined for collections of
propositions about the geographical environment, has been
translated to data. And thirdly, we touched upon the prob-
lems that such a concept poses in the context of black box
systems and machine learning.

The perspectives discussed demonstrate the need for fur-
ther research. For instance and most importantly, it seems
necessary to better understand how robustly the definitions
made here depend on the collection of meaningful inter-

pretations. That is, how much a slight variation of the col-
lection of meaningful interpretations – which interpreta-
tion is considered ‘meaningful’ can be judged differently
– influences the assessment of the coherence of the data.
Likewise, the role of the dichotomy between data and in-
formation should be better explored and conceptualized,
since only this dichotomy renders the definition of coher-
ence theories for data as presented in this paper necessary.

The epistemological consequences of the data-driven
paradigm in geography are still poorly understood. This
is partly due to the fact that the validity of propositions de-
rived from data is insufficiently understood. By exploring
the potential of coherence theories in relation to data in
more depth, it can be hoped to better elucidate the episte-
mological consequences. For example, examining the in-
fluence of the relationship between data and information,
which is defined by interpretation, on coherence theories
can shed light on the epistemological hurdles that exist in
the comprehensibility of the interpretation of data.

The systematic exploration of concrete examples can
help to better understand which particular characteris-
tics coherence theories have in case of geographical data.
This would enable a better assessment of data quality in
geography-related applications, as well as potentially lead
to a better understanding of the characteristics of geo-
graphical data themselves. Also, it can be hoped that in
this way, the implications of the impossibility of assess-
ing the coherence of smaller parts of the data can be dis-
closed in more detail. In particular, the ethical problems
arising from only assessing the coherence of the data in
their entirety could be further explored and possibly even
mitigated. The prospects of further research related to co-
herence theories seem manifold.
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