
Malaria in Kenya during 2020: malaria indicator survey and 

suitability mapping for understanding spatial variations in 

prevalence and risk

Caroline K. Kioko1 and Justine I. Blanford1 

1 Geo-Information Science and Earth Observation (ITC, University of Twente, Enschede, Netherlands) 

Correspondence: Caroline K. Kioko (c.k.kioko@utwente.nl) 

Abstract. Despite the availability of effective 

interventions malaria continues to be a major public 

health issue in Kenya, where young children and pregnant 

women are particularly vulnerable. In this study we 

examined the spatial distribution of malaria incidence and 

how this relates to the environmental conditions required 

for malaria in 2020. The Kenya Malaria Indicator Survey 

(N=11,549) for 2020 was used with the Local Indicators 

of Spatial Autocorrelation (LISA) method to determine 

spatial clusters of malaria and assess their significance as 

well as interventions in use. Climate data was used with a 

Fuzzy Overlay method to create malaria risk maps. The 

findings suggest that malaria incidence is not evenly 

distributed across Kenya, with some regions having 

higher rates of transmission and others having lower rates. 

High-rate clusters of malaria and high-risk areas of 

malaria transmission could benefit from increased vector 

control measures.  
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1 Introduction 

Malaria continues to be a major public health issue in 

many countries (Girum et al., 2019), including Kenya, 

where young children and pregnant women are 

particularly vulnerable (Girum et al., 2019). Despite the 

availability of effective interventions, such as indoor 

spraying and bed nets, malaria continues to pose a 

significant threat in many areas of Kenya, such as Western 

Kenya and the Coastal region. Kenya aims to reduce 

malaria mortality by 75% of 2016 levels by 2023 (Githure 

et al., 2022). If this is to be achieved, understanding the 

distribution of malaria and current control efforts are 

needed.  

1.1 Malaria Survey 

Malaria indicator surveys (MIS) provides valuable data 

on the current situation of malaria in the country (Guerra 

et al., 2019) as well as interventions that are in use (Guerra 

et al., 2019). The survey was designed to collect data on 

various socio-economic and demographic factors at a 

household level. MIS uses a two-stage stratified clustering 

sampling strategy to select county representative samples 

for accurate estimation of malaria prevalence, with a 

sample size of between 5,000 and 30,000 households. In 

2020, surveys were geolocated. 

1.2 Spatial Analysis of Malaria 

Geographic information system (GIS), statistical and 

spatial analysis methods have been widely used to map 

malaria. For example, (Craig et al., 1999) used a fuzzy 

logic model and (Blanford et al., 2013) used 

geocomputational methods with host-pathogen-

environment models to map areas suitable for malaria 

transmission to occur using temperature and rainfall 

information. (Hay et al., 2009) used Bayesian 

geostatistical methods with parasite prevalence 

information to map Plasmodium falciparum malaria 

endemicity while (Giardina et al., 2014) used similar 

methods to examine the effects of vector-control 

interventions on changes in risk of malaria parasitemia in 

sub-Saharan Africa. When risk surfaces are combined 

with population information, they are useful for assessing 

populations at risk. For example, in Africa it was 

determined that 53% of population live in high endemicity 

areas, 30% live in intermediate risk areas and 17% live in 

low stable risk areas (Hay et al., 2009). (Giardina et al., 

2014) used Bayesian geostatistical methods to examine 

the effects of vector-control interventions on changes in 
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risk of malaria parasitemia in sub-Saharan Africa. Lastly, 

(Warkaw et al., 2022) used Global and Local Moran’s I, 

and auto logistic spatial binary regression model to 

determine spatial patterns and predictors of malaria in 

Ethiopia. They found that house characteristics (e.g., floor 

and roof-type) was important in determining malaria risk 

(Warkaw et al., 2022). However, according to our 

knowledge no studies have used the 2020 Kenya MIS data 

to study malaria clusters and how this relates to 

environmental drivers of malaria. Thus, the purpose of 

this study was to examine the distribution of malaria in 

Kenya and how malaria prevalence from the surveys 

relates to the environmental conditions required for 

malaria. 

1.3 Study Area 

Kenya, a country in East Africa with a population of 

47,564,296 and has five malaria zones. The zones include 

coastal endemic along the East Coast (Mombasa and Taita 

Taveta), lake endemic region (Kisumu, Busia, Homa Bay, 

Bungoma and Kakamega), highland epidemic (Baringo, 

Trans-Nzoia, Uasin Gishu, and West Pokot), low risk 

areas (Nairobi, Nakuru, Nyandarua, Nyeri, and Turkana) 

and semi-arid and seasonal risk (Garissa, Mandera, 

Marsabit, Wajir, Bungoma, and Kakamega) (Gopal et al., 

2019). 

2 Methods 

2.1 Data 

2.1.1 Malaria Indicator Surveys (MIS)  

MIS was obtained from Demographic and Health Survey 

(Kenya, 2021). Kenya MIS uses a two-stage stratified 

clustering sampling strategy to select county 

representative samples for accurate estimation of malaria 

prevalence, with a sample size of between 5,000 and 

30,000 households (Figure 1). In each sampled household, 

children were tested for malaria using a rapid malaria 

diagnostic test (RDT), and RDTs is one of the initial 

malaria tests performed during the survey as it offers the 

possibility to expand the arrangement of exact malaria 

diagnosis to the region where microscopy services are not 

accessible (Gaston & Ramroop, 2020). GPS technology 

was used to record the geographical coordinates of each 

sample unit. The survey focused on school-aged children 

below 15 years old and interviewed women aged 15 to 49 

years old in each household. The survey also included 

questions about use of mosquito nets and knowledge 

about malaria. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spatial distribution of MIS household surveys 

conducted in 2020. 

2.1.2 Climate data  

Climate data for Kenya was obtained from the National 

Centres for Environmental Information (NOAA, 2020) 

for the months of August, September, and October 2020. 

These months coincided with when the MIS was 

conducted. Climatic variables included daily total 

precipitation (mm) and daily average temperature in 

degrees Celsius. Simple ordinary kriging method was 

used to create continuous temperature surfaces and 

rainfall surfaces. Surfaces were created for each month.  

2.2 Spatial distribution of malaria 

Rapid Diagnostic Test (RDT) result with categorical 

response “Positive” or “Negative” was used to map and 

measure malaria prevalence in Kenya. Prevalence for 

each geographical zone was calculated using the formula 

(Prevalence = Positive cases/Total number of children), 

and empirical Bayesian kriging (EBK) interpolation 

method was used to obtain continuous surface. EBK 

method performs better prediction than other interpolation 

methods (Krivoruchko & Gribov, 2019). ArcGIS Pro 

version 3.0 software was used to create malaria risk 

surfaces. 

2.3 Spatial clustering of malaria 

ArcGIS pro version 3.0 was used to perform cluster and 

outlier analysis (Anselin Local Moran’s I). This method 

was used to identify statistically significant hotspots 

(high-high clusters), cold spots (low-low clusters), and 

outliers (high-low or low-high clusters) (Anselin et al., 

2010). In summary, this method assess the malaria 

prevalence rates for each area with rates in surrounding 

areas at a fixed distance. In addition, the same method has 

been applied by (Fatima et al., 2021) to examine spatial 

clustering and outlier’s detection of Covid-19 incidence 

in 2020. 

2.4 Malaria Suitability Risk Analysis 

A fuzzy overlay method was used to create a malaria risk 

map for 2020. This method includes both ‘fuzzy 
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membership functions’ tool which allocates respective 

ratings for attribute values in a given thematic layer 

between 0 (unsuitable) and 1 (most suitable), and ‘fuzzy 

overlay’ tool, that merges multiple fuzzy membership 

results into the final map (Raines et al., 2010), (Joss et al., 

2007). To do so, the average temperature for each month 

and total precipitation (August, September, October) were 

first reclassified into malaria suitability layers. 

Temperature raster was reclassified into 4 categories 

where 1 = unsuitable; 2 and 3 = somewhat suitable; and 4 

as the most suitable. Precipitation greater or equal to 81 

mm was assigned suitable (4) and anything below was 

assigned unsuitable (1). The risk categories used for 

temperature and precipitation are summarized in Table 1. 

These are based on the host-pathogen-environment 

relationship of malaria as described in (Blanford et al., 

2013; Craig et al., 1999). Once each layer was classified, 

they were combined using the fuzzy overlay method 

(And) to create a malaria suitability risk map for Kenya 

for 2020. Thus, a spatial distribution malaria risk map was 

created by combining the temperature and precipitation 

map using the fuzzy AND operator. 

Table 1: Suitability Categories and associated 

temperature and precipitation ranges. 

Reclassified group and 

associated risk  

Temperature 

Range (℃) 

Precipitation 

range (mm) 

1 (Low risk) < 17, >30 < 81 

2 18 - 21  

3 26 - 30 

4 (High risk) 22 - 25 ≥ 81 

3 Results 

3.1 Malaria during 2020 in Kenya 

Over 11,549 children were tested for malaria and 10% 

were positive. Twenty percent of positive cases were from 

the lake endemic zone, followed by low risk, highland 

epidemic, coast endemic and seasonal zone (Table 2); 

whereby twenty two percent of children aged 5 to 14 years 

and 20.5% of children below 5 years were positive. 

Twenty one percent of children owning nets tested 

positive for malaria, while 22.3% of the children without 

nets tested positive. Twenty-five percent of children 

living in rural areas were positive compared with 11.3% 

living in urban areas. Twenty-one percent and 21.4% of 

male and female children, respectively tested positive for 

malaria. Twenty-five percent of children from poor family 

tested positive compared with 21.9% from middle class 

families and 12% from rich backgrounds (Table 3).  

 

 

Table 2: Proportions of positive cases from each malaria zone 

Malaria zone Percentage 

Coast endemic <1% 

Lake endemic 20.3% 

Highland epidemic 2.5% 

Low risk  4.0% 

Seasonal <1% 

Place of residence, and wealth index were significantly 

associated with malaria test results at 5% level of 

significance (Table 3). 

 
Table 3: Characteristics of children aged 6 months to 14 years 

from Lake endemic zone (N = 4,664), 2020 

Variable Categories Positive 

(n=984) 

P-value 

Age < 5 620 (20.5%) 0.1629 

5 – 14 364 (22.3%) 

Ownership of nets Yes 808 (20.9%) 0.3869 

No  176 (22.3%) 

Place of residence Urban  145 (11.3% < 0.0000* 

Rural  839 (24.8%) 

Gender Male 464 (20.8%) 0.6565 

Female 520 (21.4%) 

Wealth index Poor 611 (24.9%) < 0.0000* 

Medium 236 (21.9%) 

Rich 137 (12%) 

Monthly average temperature and total precipitation for 3 

months (August, September, October) were calculated in 

each zone. Lake Endemic zone experienced the highest 

rainfall, and coastal, seasonal had the highest temperature 

(Figure 2). 

 

 

 

 

 

 

 

Figure 2. Total precipitation (mm) and average temperature (℃) 

in each of the malaria zones 

3.2 Spatial distribution and risk of malaria during 

2020 

Children in the Western region were found to be at high 

risk of malaria compared to children from the Eastern-
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Central region. Results from the survey found that malaria 

prevalence was highest in the Lake Endemic region 

(Figure 3a). This coincided with environmental 

conditions conducive for malaria (Figure 3b). Overall key 

malaria hotspots were found in the Lake Endemic region 

(Figure 3c). 

 

3a. 

 

 

 

 

 

 

 

3b. 
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Figure 3. (a) shows spatial distribution of malaria in 2020, (b) 

shows suitable areas of malaria transmission, and (c) shows 

malaria clusters during 2020. 

4 Discussion  

The results showed spatial variation of malaria across 

Kenya. High rates were observed in the lake endemic 

zone, and low rates in the seasonal and low risk zones. 

The findings in this study were in line with previous 

findings (Noor et al., 2009) who also found high malaria 

transmission in lake endemic and coastal endemic zone 

and low transmission in low risk and seasonal zones. 

Based on the survey results and the climate risk maps, lake 

endemic and coastal endemic region climate are more 

suitable for vector survival resulting in higher risk of 

transmission. The proximity to Lake Victoria in Western 

Kenya is also believed to contribute to the high 

transmission risk. On the other hand, elevated 

temperatures experienced in Northern and Eastern regions 

are not suitable for vector development and transmission 

of malaria (Blanford et al., 2013). In addition, human 

mobility across the border may also be the reason for 

higher transmission in lake endemic zone (Wesolowski et 

al., 2012).  

According to this study, prevention programmes should 

target counties of highest risk, and people should be 

informed of the risk and ways to reduce the transmission 

before the next survey. For example, in Western Kenya, 

increased resources for vector control, malaria testing, 

and treatment can be directed to those areas to reduce the 

burden of malaria. On the other hand, areas at low risk, it 

may be necessary to maintain ongoing monitoring and 

control efforts to prevent an increase in malaria 

transmission. 

4.1 Limitation 

The survey was conducted after the rainy season; 

therefore, malaria risk estimates may not be accurate 

during the highest transmission period. 

4.2 Future research 

This study only examined one year of survey data. Future 

work will examine multiple layers of information to 

explore how risk changes each year. In addition, to 

environmental factors, the use of mosquito nets, mother’s 

malaria knowledge, the presence of mosquito species and 

the availability of health care services need to be 

examined further to ascertain the underlying causes of the 

spatial variation in malaria incidence in Kenya and 

determine what interventions measures are needed to help 

further reduce malaria. 

4.3 Conclusion 

The methods used here demonstrate how environmental 

data can be used to create real-time local seasonal risk 

maps. The maps can be used by government and malaria 

control programs to prioritize targeted intervention 

strategies in areas where high malaria transmission is 

likely. 

4.4 Acknowledgements 

Funding was provided by Ingenuity grant “Geospatial for 

health education and research.” CKK & JIB conceived the 

paper. CKK performed the analysis. JIB advised. CKK & 

JIB wrote the paper. 

AGILE: GIScience Series, 4, 31, 2023 | https://doi.org/10.5194/agile-giss-4-31-2023 4 of 5



References 

Anselin, L., Syabri, I., & Kho, Y. (2010). GeoDa: 

An Introduction to Spatial Data Analysis. 

Handbook of Applied Spatial Analysis, 73–89. 

https://doi.org/10.1007/978-3-642-03647-7_5 

Blanford, J. I., Blanford, S., Crane, R. G., Mann, M. 

E., Paaijmans, K. P., Schreiber, K. V., & Thomas, 

M. B. (2013). Implications of temperature 

variation for malaria parasite development across 

Africa. Scientific Reports 2013 3:1, 3(1), 1–11. 

https://doi.org/10.1038/srep01300 

Craig, M., Le Sueur, D., & Snow, B. (1999). A 

climate-based distribution model of malaria 

transmission in sub-Saharan Africa. Parasitology 

Today (Personal Ed.), 15(3), 105–111. 

https://doi.org/10.1016/S0169-4758(99)01396-4 

Fatima, M., Arshad, S., Butt, I., & Arshad, S. 

(2021). Geospatial Clustering and Hot Spot 

Detection. International Journal of Geospatial 

and Environmental Research, 8(1). 

https://dc.uwm.edu/ijger/vol8/iss1/4 

Gaston, R. T., & Ramroop, S. (2020). Prevalence of 

and factors associated with malaria in children 

under five years of age in Malawi, using malaria 

indicator survey data. Heliyon, 6(5), e03946. 

https://doi.org/10.1016/J.HELIYON.2020.E039

46 

Giardina, F., Kasasa, S., Sié, A., Utzinger, J., 

Tanner, M., & Vounatsou, P. (2014). Effects of 

vector-control interventions on changes in risk of 

malaria parasitaemia in sub-Saharan Africa: A 

spatial and temporal analysis. The Lancet Global 

Health, 2(10), e601–e615. 

https://doi.org/10.1016/S2214-109X(14)70300-6 

Girum, T., Shumbej, T., & Shewangizaw, M. (n.d.). 

Burden of malaria in Ethiopia, 2000-2016: 

findings from the Global Health Estimates 2016. 

https://doi.org/10.1186/s40794-019-0090-z 

Githure, J. I., Yewhalaw, D., Atieli, H., Hemming-

Schroeder, E., Lee, M.-C., Wang, X., Zhou, G., 

Zhong, D., King, C. L., Dent, A., Mukabana, W. 

R., Degefa, T., Hsu, K., Githeko, A. K., Okomo, 

G., Dayo, L., Tushune, K., Omondi, C. O., 

Taffese, H. S., … Yan, G. (2022). Enhancing 

Malaria Research, Surveillance, and Control in 

Endemic Areas of Kenya and Ethiopia. 

https://doi.org/10.4269/ajtmh.21-1303 

Gopal, S., Ma, Y., Xin, C., Pitts, J., & Were, L. 

(2019). Characterizing the spatial determinants 

and prevention of malaria in Kenya. 

International Journal of Environmental 

Research and Public Health, 16(24). 

https://doi.org/10.3390/ijerph16245078 

Guerra, C. A., Citron, D. T., García, G. A., & Smith, 

D. L. (2019). Characterising malaria connectivity 

using malaria indicator survey data. Malaria 

Journal, 18(1), 1–12. 

https://doi.org/10.1186/S12936-019-3078-

2/TABLES/1 

Hay, S. I., Guerra, C. A., Gething, P. W., Patil, A. 

P., Tatem, A. J., Noor, A. M., Kabaria, C. W., 

Manh, B. H., Elyazar, I. R. F., Brooker, S., Smith, 

D. L., Moyeed, R. A., & Snow, R. W. (2009). A 

World Malaria Map: Plasmodium falciparum 

Endemicity in 2007. 

https://doi.org/10.1371/journal.pmed.1000048 

Joss, B. N., Hall, R. J., Sidders, D. M., & Keddy, T. 

J. (2007). Fuzzy-logic modeling of land 

suitability for hybrid poplar across the Prairie 

Provinces of Canada. 

https://doi.org/10.1007/s10661-007-9880-2 

Kenya. (2021). Kenya Malaria Indicator Survey 

2020 Final Report Ministry of Health Division of 

National Malaria Programme Nairobi 

REPUBLIC OF KENYA MINISTRY OF 

HEALTH. www.nmcp.or.ke. 

Krivoruchko, K., & Gribov, A. (2019). Evaluation 

of empirical Bayesian kriging. Spatial Statistics, 

32, 100368. 

https://doi.org/10.1016/J.SPASTA.2019.100368 

National Centers for Environmental Information 

(NCEI). (n.d.). Retrieved 28 November 2022, 

from https://www.ncei.noaa.gov/ 

Noor, A. M., Gething, P. W., Alegana, V. A., Patil, 

A. P., Hay, S. I., Muchiri, E., Juma, E., & Snow, 

R. W. (2009). The risks of malaria infection in 

Kenya in 2009. https://doi.org/10.1186/1471-

2334-9-180 

Raines, Gary. L., Sawatzky, D. L., & Bonham-

Carter, G. F. (2010). fuzzylogic. 

Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. 

L., Noor, A. M., Snow, R. W., & Buckee, C. O. 

(2012). Quantifying the impact of human 

mobility on malaria. Science (New York, N.Y.), 

338(6104), 267. 

https://doi.org/10.1126/SCIENCE.1223467 

AGILE: GIScience Series, 4, 31, 2023 | https://doi.org/10.5194/agile-giss-4-31-2023 5 of 5




