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Abstract. Urban Green Spaces (UGSs) are recognized as
crucial parts of the human-nature ecosystem in densely
populated urban centers. Even though they have been in-
tensively studied, an ultimate list of all types of UGSs
in Europe still does not exist. This challenges decision
making on whether an area should be considered an UGS
or belong to another land-use class. Furthermore, the
means of precise identification of UGSs are dependent,
among others, on their type and semantics. Therefore, in
this paper, we investigate forests as UGSs and automati-
cally identify them using their distinct characteristics from
Sentinel-2 images as well as descriptive properties derived
from them, i.e., vegetation indices and texture metrics. We
enrich these properties with forest relevant features such
as minimum vegetation height and homogeneity. To assess
the reliability of the proposed workflow, we test our ap-
proach in two German cities and compare the results with
existing governmental land use data sets. With the imple-
mented approach we precisely identify over 90% of the
existing forests in the study areas. The main restriction of
the approach is the transferability of the thresholds of pre-
dictor variables such as homogeneity and dissimilarity.

Keywords. urban green spaces, forests, Sentinel-2, rule-
based classification

1 Motivation

The importance of Urban Green Spaces (UGSs) for hu-
man well-being is highly recognised. Research into their
benefits is hampered by diverging definitions of the un-
derlying types of UGSs. Definitions and types of UGSs
seem to be quite variable and highly case dependant. Ex-
isting Land Use and Land Cover (LULC) maps are not
helpful since they either eliminate certain UGS types due
to the minimum mapping unit or consider them as parts
of different LU classes. Therefore, in a previous study,
we proposed an ontology of UGSs where we defined
eight UGS types based on their dominant LC and LU
characteristics (Ismayilova and Timpf). These types in-
clude forests; parks; green corridors; urban gardens; provi-

sion for children and young people; cemeteries and other
burial grounds; amenity green space, and urban agricul-
ture. Since none of the existing LULC maps include those
defined classes as separate UGS categories, there is a need
to accurately map all the existing "green" in cities into
these new classes. Therefore, in this paper, we focus on the
first class of the ontology: forest, and attempt to develop
a methodological framework that would allow its accurate
identification using its semantic characteristics.
Defining Forest
"Forests, the goods and services they provide are essential
for human well-being" (Louman et al., 2009). But what
is a forest? Due to the complexity of the concept, there is
no universally agreed definition of forest. According to the
Food and Agriculture Organization (FAO), forest is "Land
with tree crown cover of more than 10 percent and area
of more than 0.5 hectares where trees should be able to
reach a minimum height of 5 meters at maturity in situ"
(FAO, 2000). In Germany, an area is considered a forest
if it is covered with forest plants, is at least 0.1 hectares
large and 10 meters wide. Moreover, areas within a for-
est that are temporarily not covered with trees (gaps, bare
land) are also considered part of a forest (BMEL, 2012).
In the existing LULC maps, forest definitions are also
not consistent. According to the Corine LC map, forests
are defined as areas "with a vegetation pattern composed
of native or exotic coniferous and/or broad-leaved trees,
which can be used for the production of timber or other
forest products". The forest trees under normal climatic
conditions should be higher than 5 m with at least 30%
of canopy closure (Bossard et al., 2000). OpenStreet Map
(OSM) defines forests as "natural or semi-natural area cov-
ered by trees, which may or may not be used to produce
forestry products such as wood and timber".
Changing definitions of forest makes the identification
process of forests extremely challenging. Therefore, there
is a need for harmonized definition of forests.
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2 Forest Mapping

A forest inventory is critical due to various reasons includ-
ing but not limited to planning, fire management and con-
servation. Inventorying forest through mapping is not an
easy task as forests can exhibit tremendous variability in
composition, volume, quality and topography (Kelly et al.,
2015). Initially, forest mapping hugely relied on man-
ual digitization of forest boundaries using aerial imagery.
Manual forest inventories are time consuming and expen-
sive, which makes their repetition at regular intervals very
difficult (Diedershagen et al., 2004). With an increase of
earth monitoring satellite missions, forest mapping prac-
tices became highly automated and cost efficient. Light
Detection and Ranging (Lidar) data is the most commonly
utilized forest mapping data source. For instance, using
aircraft borne lidar and SAR data in Howland, Maine,
USA, Sun et al. (2011) identifies forest biomass with over
70% accuracy. Other novel methods of forest mapping in-
clude the use of optical remote sensing (RS) imagery with
various machine learning (ML) or deep learning (DL) al-
gorithms. As such, Dorren et al. (2003) combines Land-
sat TM imagery with a digital elevation model (DEM) to
map forest tree stand types in steep mountainous terrain
and obtains high classification accuracy. However, sim-
ilar approaches heavily rely on the availability of train-
ing and ground validation data to achieve good classifi-
cation results. Providing high quality training data is labo-
rious as either manual and/or field work might be required.
Furthermore, these applications are computationally ex-
pensive and not intuitively understandable. An alternative
to these resource intensive methods is a traditional Rule-
Based Classification (RB). The RB classification is an ap-
proach to classify data sets with the help of a series of
“if-then” rules. This approach can combine different types
of data sets in the process similar to ML methods such as
Random Forest. However, a rule-based approach contains
semantic information in rule-sets and is simpler to under-
stand (Bolstad and Lillesand, 1992). Although RB classi-
fication is a well-known and frequently used approach for
LULC classification in general, it has not been intensively
used for the identification of a single class, such as forest.
Therefore, in this paper we use RB classification approach
in a combination with forest-relevant semantic parameters.

3 Case Study

In this study we define forests using a combination of sev-
eral existing definitions that are suitable for spatial anal-
ysis as well as for the selected study areas. Therefore,
forests (here) are areas that are comprised of woody vege-
tation growing in a very close proximity to each other. Fur-
ther, forest area should be at least 0.1 hectares large and be
covered with trees at least 2.8 meters high. Therefore, we
will identify forests in the selected study areas using the
following forest-specific characteristics:

• Forests appear as relatively large areas (more than
0.1ha)

• In heterogeneous urban areas, forests emerge as very
homogeneous and continuous areas

• Texture dissimilarity of forests is lower than of that
in e.g. built-up areas

• Forests can be differentiated from other green ho-
mogeneous urban areas (e.g. crop fields, vineyards)
based on a certain minimum vegetation height

Some of the selected parameters can be narrowed down
to precise numbers. As such, tall green crop plants such
as maize can reach up to 2.5-3 meters (Pereira and Lee,
1995), while vineyards can reach up to 1.8-2.7 meters.
Therefore, the minimum vegetation height of 2.8 meters
might be a good forest identifier. Other parameters, such
as homogeneity or dissimilarity are very scene dependent.
Therefore, we derive their thresholds using a rule-based
classification approach.

3.1 Study Areas

In order to build a reliable methodology and then test it
we consider two Southern German cities: Augsburg and
Wuerzburg. Vegetation can be spatially and spectrally dy-
namic and possess difficulties to separate the same veg-
etation types in two different areas. Therefore, we select
these two cities due to their relative similarity in terms of
vegetation coverage. Forests in the selected study areas are
populated mostly with spruce, pine, beech, and oak trees
(Welle et al., 2022).
With a total area of 146 km2, Augsburg accommodates
two major forests in the south-east and south-west of the
city which are called city forest (Stadtwald) and west-
ern forest (Westliche Wälder) accordingly. Further woody
vegetation is located alongside the rivers Wertach and
Lech. According to actual land use data ("Tatsächliche
Nutzung", TN), the forest covers 36km2 of the area of
Augsburg. The city of Wuerzburg encompasses around 88
km2, 14km2 of which, as per TN, constitute forest. Spa-
tially, forests are distributed in the south-western, north-
ern, and north-eastern parts of the city. Unlike Augsburg,
Wuerzburg accommodates approximately 2.5km2 of vine-
yards. These areas as well as crop fields appear similar to
forests and therefore must be handled carefully.

3.2 Data and Modelling

In this section we describe in detail the data pre-processing
steps as well as the implemented methodology. The overall
procedure utilized in this paper is depicted in Fig. 1.

To identify forests, we use single date Sentinel-2 imagery
as an input to derive relevant forest features. Sentinel-
2 data is freely available to download at the Copernicus
Sentinels Scientific Data Hub. With very high revisit fre-
quency and 13 spectral bands, Sentinel-2 is useful for a
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Figure 1. Workflow for identification and mapping of forests in
urban areas.

vast variety of application. For further analysis, we select
the 1C product as it provides radiometrically corrected and
orthorectified images.
The Sentinel-2 imagery of Augsburg is a Level-1C prod-
uct acquired by Sentinel-2B on the 30th of July, 2021. The
utilized imagery of Wuerzburg is also a 1C product but
collected by Seninel-2A on the 18th of July, 2021. We pre-
process these images, where we adjust their extents and
reproject the images to ETRS89 / UTM zone 32N. We uti-
lize the red, green, blue, and near-infrared bands of both
images, which have a spatial resolution of 10 meters. Se-
lected bands are used to derive indices and metrics that are
given in Table 1.
In order to delineate "green" areas from other surface ob-
jects we obtain the Normalized Difference Vegetation In-
dex (NDVI). NDVI values range from -1 to +1, where
positive values represent healthy vegetation and negative
values indicate an absence of or sparse vegetation (My-
neni et al., 1995). Forests can also be discriminated based
on their texture metrics. This is particularly relevant for
species with similar spectral characteristics but with dif-
ferent spatial patterns (Mohammadpour et al., 2022). Tex-
ture information can be calculated using the gray-level co-
occurrence matrix (GLCM) (Haralick et al., 1973). We uti-
lize homogeneity and dissimilarity metrics, since they are
shown to be particularly helpful for identification of tree
types in forests (Huechacona-Ruiz et al., 2020). Accord-
ing to Humeau-Heurtier (2019), the GLCM P (i, j|d,θ)
represents the relative frequency of the occurrence of the
same intensity value i (reference pixel) adjacent to a dif-
ferent intensity value j (neighbor pixel) in a specific spa-
tial relation at the distance d and direction of θ. Conse-
quently, homogeneity expresses the level of homogeneity
and is high when the same adjacent pairs of pixels are
found. Whereas heterogeneity expresses the level of het-
erogeneity and shows high values when the pixel pairs do
not mach. In this paper, we calculate texture metrics with a

windows size of 11x11, using the Probabilistic Quantizer
with 32 levels in SNAP version 8.0.

Table 1. Vegetation Indices & Texture Metrics derived from
Sentinel-2 imagery.

Vegetation Indices & Texture Metrics Formula

NDVI NIR−Red
NIR+Red

Homogeneity
∑N−1

i,j=0

iPi,j

1+(i−j)2

Dissimilarity
∑N−1

i,j=0 iPi,j |i− j|

NDSM DSM −DEM

We further calculate normalised digital surface model
(NDSM) to extract vegetation height information. We
use ALOS Global Digital Surface Model (DSM) (Tadono
et al., 2014) as well as a Digital Elevation Model (DEM).
ALOS DSM is a freely available data set with approxi-
mately 30 meters resolution (depending on latitude) pro-
duced by the Panchromatic Remote-sensing Instrument for
Stereo Mapping (PRISM) on board of the Advanced Land
Observing Satellite "ALOS". The DGM with 25 meters
spatial resolution is provided by the Agency for Digitisa-
tion, High-Speed Internet and Surveying of each Land in
Germany. We first resample the DSM and DGM data sets
to 10 meters and then calculate NDSM. NDSM is a deriva-
tive elevation product, calculated by subtracting DEM val-
ues from DSM, thus indicating the height of objects on the
earth surface.

3.2.1 Rule-Based classification & Accuracy
assessment

To identify forested and woody areas, we establish thresh-
old values for the selected variables. The best threshold is
often chosen based on known ground data. Thus, we utilise
forest polygons from TN data to extract values for the se-
lected variables. In total we use 206 pure training points to
train a classifier. The Partial Decision Tree based Classi-
fier (PART) developed by Frank and Witten (1998) is one
of the most straightforward rule-based classifiers. In order
to create a single rule, a pruned decision tree is built for the
current set of instances, the leaf with the largest coverage
is made into a rule and the tree is discarded.This model is
more time saving compared to e.g. the C4.5 model (Frank
and Witten, 1998). Rules extracted from PART are non-
compound and are straightforward to interpret.
We build three separate PART models for each study area
using the caret library in RStudio version 4.2.2. Each
model contains one predictor variable and one predicted
variable to avoid composite rules. The three predictor vari-
ables are NDVI(M1), homogeneity(M2) and dissimilar-
ity(M3). We do not include NDSM into the models as
we fix its threshold at 2.8 meters under forest definition.
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The predicted variable in all three models is the same:
forest/non-forest information that we extract from TN. To
train and test the models we use a 10-fold cross validation,
where every sample in the data set is used for training and
testing purpose. After we obtain rules for each variable,
we perform classification of the entire study areas. Result-
ing raster data sets is a binary data set.
We calculate the final forest locations using a logical AND
operation. We further use the clustering based Mean Shift
Segmentation (Comaniciu and Meer, 1999) to group the
single pixels into forest objects. Mean Shift is a non-
parametric iterative algorithm used for image segmenta-
tion where for each data point mean shift defines a win-
dow around it and computes the mean of the data points.
Then it shifts the center of window to the mean and re-
peats the algorithm till it converges. In case of raster data,
segments are formed by grouping adjacent pixels together
that have similar spectral and spatial characteristics. We
utilize ArcGIS Pro Version 2.3. to perform the Mean Shift
segmentation. We find suitable values for the segmenta-
tion parameters by trial and test and establish that spectral
detail of 15.50, spatial detail of 20 and minimum segment
size of 200 yield the most realistic results. Once we are
satisfied with the results of the segmentation we use TN
data to compare and validate our classification results.

3.2.2 Data and Software Availability

The rule-based classification can be replicated using
the R-code file here: https://doi.org/10.6084/m9.figshare.
22656451.v1. Some parameters, such as homogeneity and
dissimilarity can be separately calculated using SNAP
software.
The utilized Sentinel-2 images are free to downloaded
at the Copernicus Sentinels Scientific Data Hub (https://
scihub.copernicus.eu/dhus/#/home). Exact image tiles and
dates are described in the Section 3.2. The DSM data
can also be downloaded freely from the ALOS web
page (https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/
aw3d30_e.htm). We use the data provided under ver-
sion 3.2, where we extract DSM data for Augsburg from
the grid with N045E010_N050E015 coordinates and for
Wuerzburg from the grid with N045E005_N050E010 co-
ordinates. The Utilised DGM25 data, that is provided by
the Agency for Digitisation, High-Speed Internet and Sur-
veying, is currently not free of charge (https://www.ldbv.
bayern.de/produkte/3dprodukte/gelaende.html).

4 Results

The accuracy distribution of the utilised models is given
in Table 2. In the tested setup, most models reach predic-
tion accuracy above 97%. The models that contain homo-
geneity and dissimilarity as predictor variables in Augs-
burg show slightly lower accuracy and reach 84% and 92%
respectively.

Table 2. Accuracy distribution of utilised PART models in each
study area.

Models Accuracy

Augsburg Wuerzburg

M1 0.98 0.99
M2 0.84 0.97
M3 0.92 0.97

Table 3. Rule-sets extracted for forest classification for both
Augsburg and Wuerzburg using PART classification approach.

Variables Rule-sets

Augsburg Wuerzburg

NDVI > 0.55 > 0.57
Homogeneity > 1.5 > 0.66
Dissimilarity <= 3 <= 4.27
NDSM > 2.8 > 2.8

After we reach a satisfying prediction accuracy we extract
one single rule for each model/variable in both study areas.
The extracted threshold rules are given in Table 3. We ob-
serve similar rule thresholds, for some of the variables in
both Augsburg and Wuerzburg. As such, the thresholds of
NDVI 0.55 and 0.57 in Augsburg and Wuerzburg respec-
tively, whereas homogeneity exhibits comparably higher
divergence values in the two study areas: 1.5 and 0.66.
The threshold rule of NDSM remains constant at 2.8 me-
ters.

We estimate the final identification accuracy using the for-
est distribution from TN data as ground truth data. Accord-
ing to TN, forested areas cover 35.43 km2 of Augsburg,
while this number constitutes to 13.70 km2 in Wuerzburg.
Consequently, we identify 94% of the existing forests in
Augsburg which constitute to 33.29 km2. Whereas we
identify 93% of forest in Wuerzburg which makes up
12.66 km2. Figure 2 shows the identified forests based on
the proposed methodology as well as the reference TN
data. The map of the identified forests in Wuerzburg is
shown in Fig. 3.

When looking in greater detail at the identified and non-
identified areas we calculate 0.68 km2 of forest area in
Augsburg that is TN but has not been identified by the im-
plemented methodology. Moreover, 0.47 km2 of the area
were identified as forest that are not mapped as forest in
TN. Similarly, in Wuerzburg we compute 0.30 km2 of
forested areas that are in TN data but have not been identi-
fied with the selected methodology. Nearly the same area,
0.38 km2, is identified as forest while not being mapped as
forest in TN.
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Figure 2. Map of identified forests as well as forests according
to TN data in Augsburg.

5 Discussion and Conclusions

The main goal of this study is to map forests in urban ar-
eas in the context of UGSs. To achieve this, we use dis-
tinct characteristics of forests and extract minimum but ad-
equate number of modelling parameters from these char-
acteristics. As such, we choose to use NDVI to highlight
vegetated areas, homogeneity and heterogeneity metrics
to reduce all green areas to only "forest-like" areas and
finally use NDSM to extract "forest-like" areas that are
covered with exceptionally woody vegetation (and not e.g.
grass or bush). Furthermore, we utilize PART classifica-
tion model to derive rule-thresholds for all the selected pa-
rameters with an utmost goal of transferring the analysis
to new study areas.
The first explored parameter is NDVI. The threshold val-
ues that we extract based on the rule-based classification
vary only slightly in both study areas. The implemented
classifier sets NDVI thresholds at around 0.55 which is in
line with existing works, where vegetated areas fall below
a value of 0.19 and values ranging 0.5-1 representing a tree
class (Aryal et al., 2022).
We further study homogeneity and dissimilarity of vege-

Figure 3. Map of identified forests as well as forests according
to TN data in Wuerzburg.

tated areas to be able to tell whether an areas is a forest or
not. We observe that the threshold values derived from the
PART classifier vary greatly for both study areas. In Augs-
burg, homogeneity of higher than 1.5 and in Wuerzburg
higher than 0.6 represent forested areas. While dissimilar-
ity values below 4.2 in Wuerzburg describe forests, val-
ues below 3 are suitable for forest identification in Augs-
burg. This might be due to the high dependency of se-
lected metrics from the image quality (Huechacona-Ruiz
et al., 2020). Thus, homogeneity and dissimilarity are
not directly transferable across various study areas due to
the discussed dependencies. However, the incorporation
of texture indices increases the classification accuracy of
vegetation (Mohammadpour et al., 2022), which we can
clearly observe when examining our results. Since we de-
fine forest as areas covered with woody vegetation, we use
a NDSM threshold to distinguish "green" trees from the
rest of the available "green".
Implementation of rule-based classification approach
proves to be very useful in the case of forests identifica-
tion. This is especially valid, just like here, if only few pa-
rameters are taken into account. Nevertheless, we can still
spot areas that are not forests, yet are classified as such. We
eliminate this confusion by including tree-height threshold
similarly to Helber et al. (2019). However, this also results
in some forest areas to be abolished, where trees have not
yet reached the height of 2.8 meters. We accept this to be
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in line with our forest definition, where tree height is set to
minimum 2.8 meters.
Usage of only threshold-based classification might result
in over-prediction. We eliminate it by introducing segmen-
tation step into the analysis. Dorren et al. (2003) express
that for tree identification in forests, minimum segment
size is the most important parameter. The authors set this
parameter at 21.6 pixels. While this value might be suit-
able for single tree identification, we find it to be too fine
for forming large forest objects. Therefore, after testing
different sizes, we establish 200 pixels as a suitable patch
size in both study areas. This value can eliminate remain-
ing small green patches that are not forests, yet adequately
represent actual forests. Segmentation produces patches
with an area above 0.1 ha and therefore, once again, meets
the criteria set in our forest definition.
In conclusion, our results show that forests can be identi-
fied using minimum number of parameters that are closely
related to their semantic characteristics; height of trees,
close and homogeneous distribution of trees etc. However,
in terms of transferability of our analysis to other areas,
where forests might appear optically different as in South-
ern Germany, adjustments to the utilized variables or se-
lection of different variables might be necessary. As such,
within Southern Germany, NDVI threshold can be trans-
ferred to a new study area, homogeneity and heterogeneity
are strictly scene dependant and cannot be directly utilized
in new test sites. Therefore, in future works, we will test
further semantic characteristics of forests to find out the
most robust parameters, that can be used across study ar-
eas.
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