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Abstract. Population mobility can change pollutants 

variability in domestic wastewater (DW). However, the 

implications of mobility on DW variability in small 

localities are rarely analyzed and visualized in space and 

time. Often, only limited mobility data is available for 

these types of areas. In this study, we investigate the 

implications of population mobility on DW variability 

using an Agent-Based model (ABM). The ABM simulates 

the spatiotemporal DW variability of chemical oxygen 

demand (COD) across the sewage network. Two scenarios 

are tested, one where inhabitants commute daily to school 

and work and the other when the population remains at 

home. In each scenario, the spatial variability of COD 

loads is mapped and analyzed at the sewage maintenance 

holes. Apparent changes are observed between these 

spatial patterns. The obtained maps show that DW loads 

vary across space, where substantial COD load differences 

exist between the two mobility scenarios. Population 

mobility implicates higher COD loads at some 

maintenance holes compared to a scenario with inhabitants 

remaining home. The spatial DW variability also gets 

higher upstream and lower downstream, implicating that 

mobility does not substantially generates variability at the 

wastewater treatment plant inflow. The preliminary results 

suggest that population mobility impacts the spatial DW 

variability across the sewage network, which requires 

further analysis with wider temporal coverage. 

Keywords. Agent-Based model, water quality, spatial 

pattern. 

1. Introduction

Population mobility in the sewage catchment can provide 

a relevant perspective to understand domestic wastewater 

(DW) variability. Inhabitants going out and returning to 

the sewage catchment area can influence the variability of 

wastewater pollutants (Atinkpahoun et al., 2018). Spatial 

heterogeneity applies to human and environmental 

interactions on the earth's surface (2015). Consequently, 

from population mobility and water usage, DW shows 

spatial heterogeneity properties that can be visualized 

through maps in DW pollutants such as Chemical oxygen 

demand (COD). 

COD is a commonly monitored pollutant used as an 

indicator in wastewater (Zhang et al., 2006) to prevent the 

degradation of the environment. In Mexico, our case study, 

the permissible limit of COD concentration for a 

wastewater discharge in rivers, ground, or agriculture 

fields is 210 mg/l (SEGOB, 2022). The consequences for 

higher COD concentrations lead to administrative and 

criminal sanctions depending on the damage generated and 

the offender's conditions (DOF, 2022). Analyzing the 

effects of population mobility impacting COD variability 

in space and time across the sewage plays a relevant role 

in further progress in protecting the environment. 

Although the link between population mobility and 

spatiotemporal COD variability is relevant, related studies 

are scarce when considering the COD spatial 

heterogeneity of DW (Zechman, 2011; Thomas et al., 

2017; Atinkpahoun et al., 2018). The impact of population 

mobility on DW variability can be simulated as a dynamic 

system that allows the further study of the spatial 

heterogeneity of COD in sewage networks. In this work, 

we use an Agent-Based Model (ABM) to evaluate the 

influence of population mobility on DW pollution of COD. 

ABMs have been used previously for studying water 

quality (Zechman, 2011). Specifically, we simulate the 

spatiotemporal DW variability and visualize how 

population mobility changes the DW pollutant loads at 

maintenance holes and wastewater treatment plants 

(WWTP) through maps. 
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2. Methods

2.1 Study area and materials 

The target locality is Santa Ana Atzcapotzaltongo, a small 

rural locality in Hidalgo, Mexico, which has a 

decentralized WWTP on the southwestern side (red areas 

in Figure 1). In Santa Ana live, 1678 inhabitants in the 

neighborhood blocks, with 323 students and 865 workers 

(INEGI, 2019), where an estimated 758 people on the 

southwestern side of the locality are connected to the 

WWTP. The national population and economic census 

(INEGI-DENUE, 2017; INEGI, 2020) suggest that in this 

area, wastewater is mostly generated by domestic 

activities. Industrial activities are not present, and 

economic activities are minimal, confirming that industrial 

wastewater does not exist, and wastewater from economic 

activities is relatively small compared to generated 

domestic wastewater. 

An ABM of the target locality is programmed in NetLogo 

6.1.1 and is used as the simulation software to execute the 

mobility scenarios. The ABM shows its stability after 25 

runs. The red areas in Figure 1 are linked to the targeted 

WWTP catchment area where the ABM can produce DW 

variability time series of pollutants loads. The additional 

data that is used in the ABM includes pollutants loads of 

water appliances from Almeida et al. (1999) and Rose et 

al. (2015) and the digitalization of the sewage based on the 

Drinking Water, Sewerage and Sanitation Manual 

(CONAGUA, 2019). 

2.2 Agent-based Model and mobility scenarios 

ABMs allow developing scenarios to test different 

conditions of a phenomenon as computational simulations 

based on agents that behave dynamically with adaptive 

behavior with several properties linked to their 

environment (McLane et al., 2011). The used ABM has the 

modelling components of DW production, population 

mobility, and DW motion across the sewage, as seen in 

Figure 2. 

In DW production, inhabitants use water appliances such 

as basins, kitchens, showers, toilets, and washing 

machines at their houses, following a regular schedule of 

activities and probabilities of accuracy each hour of the 

day. Every single water appliance generates a DW particle 

that contains pollutants loads based on the literature. 

The population mobility component simulates people 

going to school or work and returning home based on 

working and studying hours in the locality. The modeling 

components and information linked to mobility are listed 

in table 1, which are used to send inhabitants to specific 

school points and economic points considered as working 

places. For example, table 1 shows an inhabitant with a 

high school level, and the ABM will send the agent to the 

school point of high school. As data limitations exist on 

mobility, mobility is simulated inside the limits of the 

locality. In other words, the local population from Santa 

Ana does not leave the locality, and the external population 

from Santa Ana does not travel to Santa Ana. 

DW motion simulates the DW flow inside the sewage 

following the network connectivity. The ABM identifies 

maintenance holes in the sewage to store the data as 

timeseries of pollutants loads, providing the DW temporal 

variability. 

This study assesses the implications of population mobility 

in the spatiotemporal DW dynamics by testing two 

scenarios. The first scenario simulates active mobility, as 

described in the previous paragraph. The second scenario 

removes the mobility component. Maps are generated to 

capture the spatial DW variability of COD loads at the 

maintenance holes with a 1-hour resolution. The maps are 

described and assessed, demonstrating the impact of 

mobility on the spatiotemporal DW variability. 

After running the simulations (with and without mobility), 

a map shows changes in population density across 

locations (figure 3). Each simulation is run 25 times to get 

stable results where outcomes are averaged. To evaluate 

the two scenarios, we generate maps: 

• The first set of maps (see Figure 4) displays two

layers of the active and inactive population

mobility at 11:00 am when people have already

traveled to work and school (first scenario).

• The second set of maps (see Figure 5) displays

two layers of the effects of mobility at 7:00 and

11:00 am, which are the pair of hours before and

after the population travels to a school or

workplace (second scenario).
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Figure 1. Study area. Left red blocks are connected to the WWTP, where domestic wastewater variability is available. 
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Table 1. ABM components linked to mobility. 

Entity Variable Description Possible value 

Inhabitants Age Age category  18-24 

Study Attend school Yes 

School level School level Highschool 

Work Actively working Yes 

Gender Inhabitant gender Female 

CVEGEO Block location 1302700010105004 

Ind id Individual ID 01750 

Education level Education grade  2 

Houses House id House ID 304 

CVEGEO Block location 1302700010105004 

Economic points ID Economic point ID 7996840 

CVEGEO Block location 1302700010105004 

Avg. workers Average workers  3, 5, 15…. 

School exist School in this point High school 

Sewage network Node Maintenance hole Node 11 

Figure 2. Steps of the workflow for assesing the impact of mobility in domestic wastewater pollutants (COD). 
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3. Results and discussion

3.1 Change in population density 

Figure 3 shows the difference in population density in 

households when mobility is active (yellow circles) and 

inactive (red circles). It can be noticed that red circles are 

bigger in most cases, highlighting the density of people at 

home before mobility is executed. Due to active mobility, 

the smaller yellow circles show lower home population 

densities. The population mobility map indicates that the 

ABM simulates mobility as expected. 

Household circles fully in yellow (see figure 3.a) means 

that red circles are overlapped with the yellow circles 

(compare figures 3.b and 3.c) and describe the population 

in households that are not active. In this specific condition, 

inactive population mobility is defined by census 

information or the lack of data for linking economic points 

and inhabitants, which results in conditions that do not 

simulate population mobility in such households. 

The yellow circles that intersect with the school points 

demonstrate that students attend the schools. Red circles 

also indicate the number of inhabitants in households when 

the population is expected to be at home, i.e., at night hours 

when people sleep. The black circles in Figures 3.b and 3.c 

also show students' mobility into schools. 

3.2 Impact of population mobility on domestic 

wastewater variability 

Figure 4 shows how mobility can affect the DW variability 

at maintenance holes. The COD is mapped at 11:00 am 

after people move to work and school, showing two 

different layers. Figure 4.a represents a simulation of COD 

variability (red circles) considering the simulation of 

population mobility, and the second is a simulation 

without mobility (green circles). Locations of houses are 

indicated with brown squares to provide a perspective of 

the number of houses close to the maintenance holes. 

Figure 4.a highlights maintenance hole locations 

represented by green circles with red edges around them. 

In these locations, the COD loads increase, showing how 

mobility modifies pollutant loads (COD with mobility is 

frequently larger than without mobility). These locations 

are spread throughout the area (no particular pattern). It is 

relevant to notice that COD load ranges between 

simulating or not simulating mobility do not differ, 

reflecting the model's stability at 25 runs.  

Figure 4.a (supported by 4.b and 4.c) shows some dark 

green maintenance holes without visible red underneath. 

Such green circles exactly overlap red circles, meaning 

that there is no substantial change between the two layers. 

In Figure 4.a, very large red circles indicate that people 

moving from home substantially increase DW pollutant 

concentration. This trend can be explained because a few 

inhabitants can produce high pollutant concentrations 

(Dubois et al., 2022), i.e., feces and urination without 

dilution from other water appliances. This result 

corresponds with fewer populations related to higher 

temporal DW variability, and the spatial DW variability 

follows a similar trend. 

The black ellipses in Figure 4.a show that spatial DW 

variability between mobility and no mobility is higher at 

upstream locations in the network when comparing red and 

green circles. The ellipses are coherent, as one person 

producing DW can considerably impact the COD loads 

where there is no inflow from upstream. On the other hand, 

the blue ellipse (figure 4.a) shows that spatial DW 

variability is stable in the downstream associated with the 

sewage's main collector. 

No manhole from Figure 4 is fully green or red because, 

during one hour of simulation (11:00 am), at least one 

event of water appliance was simulated that was registered 

by the ABM, which is coherent. It is noted that economic 

activities occur in residential locations, no buildings are 

entirely designated for these activities, and no defined 

spatial patterns of COD load are detected. 

Figure 5 compares COD loads between 7:00 and 11:00 

hours when people commute; the same analysis applies as 

in Figure 4, showing similar results. A relevant difference 

between Figures 4 and 5 is that COD load ranges differ. 

Figure 5 shows brown circles at 7:00 am (602 to 1239 

COD mg/l) when few people generate high concentrations 

of DW pollutants compared to 11:00 am (852 to 2006 

mg/l). It is noticed that COD gets stable at the sewage 

collectors (see 5.a blue ellipse). 

4. Conclusions

This study analyzes the implications of population 

mobility in the spatiotemporal DW variability in a rural 

locality in Mexico, focusing on maintenance holes. An 

ABM is implemented to simulate the spatiotemporal COD 

load variability. The effects of mobility in COD loads are 

presented in two maps: i) when simulating population 

mobility or not (at 11:00 am), ii) a comparison before and 

after inhabitants go to school and work (7:00 and 11:00 

am). Furthermore, the results prove DW variability at the 

maintenance holes caused by mobility across the study 

area. COD loads show smaller pollutant concentrations 

without simulating mobility than with mobility. The DW 

loads also get higher variability upstream of the sewage, 

while downstream is the opposite. Further analysis with 

wider temporal coverage is suggested to show the DW 

spatial variability across time. 
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Figure 3. Differences between number of populations at households before and after executing mobility. a) The overlap of red and 

yellow circles allows comparing differences when mobility is simulated. b) Represent population per household without executing 

mobility. c) Represent population per household after executing mobility. Black circles in 2.b and 2.c highlight students staying at 

schools. 

a) 

b) c) 
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a) 

b) c) 

Figure 4. Differences of COD at manholes after starting working and school activities. a) Overlapping simulations with and without 

mobility. b) Red circles represent COD loads with population mobility, c) green circles refers to COD loads without simulating 

population mobility. The blue ellipse mark manholes of a collector. The black ellipsis mark examples of network upstream tips. 
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Figure 5. COD loads before and after school and working activities. a) Overlapping simulations before and after mobility executes, 

07:00 and 11:00 a.m. respectively. b) Red circles represent COD loads after the execution of mobility. c) brown circles refer to COD 

loads before mobility is executed. The blue ellipse mark manholes of a collector. 

b) c) 

a) 
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