
Predicting Pedestrian Counts using Machine Learning
Molly Asher, Yannick Oswald�, and Nick Malleson�
School of Geography, University of Leeds, UK

Correspondence: Nick Malleson (n.s.malleson@leeds.ac.uk)

Abstract. The study of urban population dynamics has
long been an important area of research. In particular, the
ability to accurately predict the number of pedestrians in a
place and time is critical for urban management, popula-
tion health, crime, and for quantifying the impacts of pub-
lic events. However, it can be extremely difficult to anal-
yse the size and characteristics of the ambient population
due to limited data availability and difficulties in captur-
ing non-linear relationships between pedestrian counts and
external factors. This paper reports on an ongoing project
that is using machine learning techniques to: (i) better un-
derstand the impact that the built environment and other
contextual factors, such as weather conditions, will have
on the size of the pedestrian population during the day
and; (ii) predict the number of pedestrians under differ-
ent conditions. The case study area is the city of Mel-
bourne, Australia, where abundant pedestrian count data
exist. Early results demonstrate that, broadly, the model
appears to perform sufficiently well to be useful, and that
modelling errors are not consistent across space or time
(some times/places are easier to predict than others).
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1 Introduction

The study of population dynamics has long been an impor-
tant area of research, with implications for fields ranging
from urban planning and transportation to public health
and safety. In particular, the ability to accurately predict
the size of the pedestrian or ambient population – de-
fined as the population “within a given geographical area
at a specific point in time, excluding individuals at their
place of residence and those utilising modes of trans-
port” (Whipp et al., 2021) – is critical for: urban manage-
ment; health, i.e. understanding the relationship between
pollution and individual exposure (Park and Kwan, 2017);
crime, i.e. quantifying the impacts of visitors and residents
on crime rates (Boivin and Felson, 2017); and for estimat-

ing the success of public events, i.e. measuring the ability
of particular events to draw crowds to cities.

Despite its importance for understanding urban dynamics,
it can be extremely difficult to analyse the size and char-
acteristics of the ambient, or “temporary” (Panczak et al.,
2020) population (Malleson and Andresen, 2016). There
are two main reasons for this. Firstly, whilst there are usu-
ally abundant data with information about the number and
characteristics of residents in an area from sources such as
household surveys and population censuses, similar data
do not usually exist for temporary/ambient populations.
Secondly, the relationship between the urban environment
and the behaviour of the ambient population is difficult to
model as many (inter)relationships between variables may
be non-linear. For example, a narrow, historical street may
deter pedestrians during weekdays as people use main
thoroughfares to move quickly between activities, but may
attract people at weekends when they might like to spend
time exploring the more unusual/interesting parts of a city.

This paper reports on an ongoing project that is using ma-
chine learning techniques to:

• better understand the impact that the built environ-
ment and other contextual factors, such as weather
conditions, will have on the number of pedestrians;

• predict the size of the pedestrian population under
different conditions.

The case study area is the city of Melbourne, Australia,
where abundant pedestrian data exist thanks to a large
number of sensors that have been installed by the local
government and reported on a publicly available open data
portal.

We will discuss the data and methods employed in Sec-
tions 2 and 3 respectively, with reproducibility addressed
in Section 4. We then present preliminary results in Sec-
tion 5 and draw conclusions in Section 6.

2 Data

Our case study area is the city of Melbourne, Australia.
The city has abundant high-resolution data openly avail-
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able at the City of Melbourne Open Data Portal (https:
//data.melbourne.vic.gov.au/pages/home/). This includes
hourly counts of pedestrians and a wealth of useful in-
formation about the built environment that can be used
to attempt to predict footfall. Separately the Melbourne
weather service also provides historic weather data (hourly
temperature, humidity, pressure, wind speed, and a binary
measure of the presence of rainfall).

The footfall data are from 82 sensors that detect the move-
ment of people and can be used to measure the ambient
population (City of Melbourne Open Data Portal, 2023).
The sensors are “ typically installed under an awning or on
a street pole to form a counting zone on the footpath be-
low” and record “movements”, although the precise mech-
anism for detecting pedestrians is not stated (City of Mel-
bourne Open Data Portal, 2023). Although some sensors
were reporting as far back as 2009, many of the sensors
were installed more recently. In addition, some sensors do
not have full count information throughout their entire pe-
riod of operation, as illustrated by Figure 1. Figure 2 illus-
trates the locations of all sensors at the time of writing.
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Figure 1. The number of records for each sensor over time. Each
sensor is represented with a different colour. There are 8,760
hours per year (excluding leap years), so sensors with fewer than
this number of records in a year are missing some counts. Note
that the apparent decrease in counts in 2022 is an artefact of the
date that the data were downloaded – August 2022 – that meant
2022 is incomplete.

To capture additional factors that will influence footfall,
we also extracted the day of week, week number, month,
season and year from the raw time of each pedestrian count
record.

Relevant data on the built environment that were used to
create explanatory variables include:

Pedestrian Footpath Network: we calculate the be-
tweenness – a measure that is typically used in space
syntax (Bafna, 2003) to quantify how well a link is
connected to the wider network – for the network of
roads and pedestrian footpaths to capture the level of
connectivity for each road, hypothesising that better

connected roads are likely to exhibit greater pedes-
trian traffic (Leccese et al., 2020);

Street Furniture: locations of benches, information pil-
lars, litter bins, street lights, etc;

Buildings: locations, types and sizes of different build-
ings (residences, shops, hospitals, leisure establish-
ments, etc.);

Landmarks: including places of worship, community
centres, etc.

A 100m radius was drawn around each sensor in order to
associate the sensors with the built environment data. For
the following features, a count of the number of objects
within each sensor radius was calculated: street furniture
items; lights; buildings; and landmarks. For betweenness,
the value of the footpath edge that was closest to the sen-
sor was taken. The average number of floors within the
sensor’s radius was also calculated and included as a vari-
able.

3 Methods

3.1 Model evaluation

As discussed in Section 1, a linear model is unlikely to
correctly capture the relationships between the pedestrian
count and the explanatory variables. Therefore we ad-
ditionally considered a number of machine learning al-
gorithms which can better capture non-linear relation-
ships in the data. The candidate models (linear regres-
sion, XGBoost and Random Forest) were evaluated us-
ing a 10-fold cross-validation procedure. K-fold cross
validation partitions the data into k equally sized sub-
sets, and iteratively uses k-1 subsets of the data to
train the model, holding out the final subset in or-
der to evaluate model performance. Ultimately the Ran-
dom Forest Regressor (RandomForestRegressor1 in
scikit-learn) was eventually selected for use as the
predictive model. A random forest is so-called because it
is built up from an ensemble of individual decision trees
(a commonly-used classification method) and, for a given
input, returns the average of the individual decision tree
predictions.

The model performance was evaluated through compari-
son of the counts-per-hour predicted by the model with the
real counts in the pedestrian data. We summarise perfor-
mance using the mean absolute error (MAE), the mean ab-
solute percentage error (MAPE) and the root mean squared
error (RMSE) which are calculated as follows:

MAE =
1

n

n∑
i=1

|ŷi − yi| (1)

1https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestRegressor.html
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Figure 2. Locations of the pedestrian sensors in the City of Melbourne. Map generated directly from the Melbourne Open Data Portal
(https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-sensor-locations/map/).

MAPE =
100

n

n∑
i=1

| ŷi − yi
yi

| (2)

RMSE =

√∑n
i=1(ŷi − yi)2

n
(3)

where ŷi is the model prediction for item i, yi is the actual
value and n is the total number of data points.

3.2 Feature Importance

A longer-term aim of the work is to better un-
derstand the impact that different contextual factors
(e.g. weather, built environment, etc.) will have on
the size of the ambient population. ‘Feature impor-
tance’ can reveal information about the features that
have the strongest impact on a prediction, and hence
which are the most important in driving changes in
the dependent variable. The ‘default’ feature importance
method for the RandomForestRegressor model in
scikit-learn is the ‘impurity-based’ method, but we
avoid this because it has been shown to artificially in-
flate the importance of numerical features2. Instead we
use ‘permutation importance’ which works by iteratively

2https://scikit-learn.org/stable/auto_examples/inspection/
plot_permutation_importance.html

removing particular features from the model and examin-
ing the loss in predictive power that results. Features that
have little impact on the quality of the model’s predictions
can be considered less important. (Note that the results of
the feature importance analysis will be reported in future
work).

4 Data and Software Availability

All of the data are publicly available on the Melbourne
Open Data Portal. In addition, the code to analyse the
data and build the model are available on GitHub (https:
//github.com/masher92/footfall/). At the time of writing
the code still requires some additional documentation and
testing before it can be considered ‘complete’ and fully
reproducible.

5 Results

5.1 Model evaluation

The Random Forest Regressor outperforms the linear re-
gression and XGBoost in terms of the MAE and the RMSE
(Table 1). It is thus selected as the most appropriate model
for use in the remainder of this analysis, and is hereafter re-
ferred to as the model. Figure 3 compares the model’s pre-
dicted counts-per-hour to the real counts in the pedestrian
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data for all data points. Although there is some natural
variation in the predicted values, most of the predictions
fall on the diagonal (x= y) or near it, so we can be con-
fident that the model is not biased towards large or small
counts.

Table 1. Error metrics calculated on the predicted values (counts
of pedestrians per hour) from 10-fold cross-validation of each
model against actual values from the sensor data

MAE RMSE
Linear Regression 268.40 370.54
Random Forest Regressor 89.88 179.62
XGBoost 121.35 207.40

Figure 3. Predicted values (counts of pedestrians per hour) plot-
ted against actual values from the sensor data.

Ultimately we intend to use the model to (i) explore the
impact that different factors will have on the size of the
ambient population and (ii) predict the size of the ambient
population under different conditions. There is insufficient
space to cover (i), so we report on the preliminary results
with regards to the model error (ii).

Whilst the preceding analysis has considered all data
points, it is highly likely that the prediction error will
vary both temporally and spatially, and so analysis of the
model’s prediction error is further broken down as such in
Section 5.2 and Section 5.3.

5.2 Temporal Variations in Prediction Error

The prediction error may vary depending on the time of
day and day of week. For example, perhaps the size of
the ambient population is easy to predict during the mid-
dle of the day on a weekday as many people take part in
their regular employment-related activities, but behaviour
on weekends or evenings may be much more sporadic.

To this end Figure 4 plots the mean pedestrian count per
hour over seven days (Monday - Sunday) from the obser-
vation data as well as the MAE and MAPE in the model
predictions.

The graphs of the mean count (from the real data) show a
typical pattern for a city centre; there are activity peaks in
the morning (commuting), midday (lunch time) and after-
noon (commuting) and visibly different patterns on Satur-
day and Sunday. As might be expected, absolute predic-
tions follow a similar pattern to the mean data; broadly the
larger the counts the larger the associated errors. Interest-
ingly, however, the mean absolute percentage error – that
should be relatively stable if the model was able to predict
all time periods equally well – is larger in the night-time
hours. This suggests that behaviour in these times is harder
to predict from the factors provided to the model (weather,
built environment, etc.), and implies that perhaps the envi-
ronment might not be driving pedestrian behaviour during
those hours in the way it does at other times.
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Figure 4. Temporal distribution in the mean number of pedestri-
ans per hour over an average week and associated errors.

5.3 Spatial Variations in Prediction Error

We might expect the model prediction error to be consis-
tent across all sensors, but this is not the case. Figure 5 il-
lustrates the mean count per hour (real data) and the MAE
and MAPE as per (1) and (2) respectively. The sensors in
the central and southern parts of the city centre clearly cap-
ture the largest pedestrian flows, but these sensors do not
necessarily exhibit higher or lower error as a percentage.
Interestingly there are sensors in the eastern and western
parts of the city centre that have particularly high percent-
age errors. In this case it is likely that their locations cause
unusual patterns in visitor behaviour. Although further in-
vestigation into the precise locations of these sensors is
needed before any conclusions can be drawn with regards
to the predictability of particular locations, the maps have
revealed interesting patterns that are worthy of further in-
vestigation.
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Figure 5. Spatial distribution in the mean number of pedestrians
per hour and associated errors.

6 Discussion and conclusions

This paper has presented ongoing work to build a ma-
chine learning model that is able to predict the number
of pedestrians at different locations of a city at different
times and therefore also sheds light on the contextual fac-
tors that might drive pedestrian behaviour and urban dy-
namics overall.

Our approach, which utilizes on-site sensors and machine
learning, presents an alternative to previous approaches
and potentially exhibits several advantages. For example,
previous work made use of mobile devices and location-
disclosure to estimate the ambient population and predict
crime (Kadar et al., 2017). In comparison, our approach
is less reliant on sensitive information and also not lim-
ited by the share of people who do not wish to disclose
their location data in the first place. Data characteristics
and privacy concerns are especially relevant for real-time
estimation of the ambient population such as during emer-
gency moments (e.g. floods) and special events (such as
festivals). Relying on public cameras/sensors may pro-
vide higher accuracy in real-time, while interfering less
with the privacy of citizens. Another approach to under-
stand and estimate the ambient population has been itera-
tive agent-based modelling of daily mobility patterns. For
example, agent-based models have been applied to dissect
footfall data by making minimal assumptions about who
constitutes the footfall (Crols and Malleson, 2019). While
an iterative agent-based model is of theoretical and ex-
planatory merit, it is computationally expensive and labo-
rious. In contrast, applying machine learning algorithms,
like random forest, to the open-source sensor data, does
not require myriad assumptions but directly derives a us-
able model from the data and highlights the most relevant
drivers of footfall which in turn also allows characteriza-
tion of the ambient population and their behaviour.

Of course our approach comes not without limitations. We
have seen that there are spatial and temporal variations in
prediction error. For instance, the error is generally larger
at night time. While this in part may be due to irregularity
of nightly events taking place, it might also suggest that
the sensor information is generally less reliable at night.
Constrained and varying visibility, due to darker light con-
ditions and other nightly interfering light sources, might
constitute a general issue with the sensor data, but this
speculation warrants further investigation. If true, how-
ever, other approaches such as the private device-based es-
timations discussed above, might be especially relevant to
make up for those shortcomings at night. Moreover it is
not fully clear if all the measurements taken by the sensors
are mutually exclusive or if there is overlap and double-
counting.

Further limitations arise from the choice of model and al-
gorithms. While it can be a strength of decision-tree based
models, such as random-forest and XGBoost, to arrive
at predictive models directly from the data, this also im-
plies dependence on specific data in our understanding of
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urban dynamics. For instance, without conducting more
case-studies across several cities we do not have sufficient
information on whether the structural and environmental
drivers of footfall and ambient population ascertained here
are Melbourne-specific or can be generalised to other ur-
ban environments.

Therefore, in terms of future research, we intend to apply
the model to alternative cities, where data are available,
to try to understand whether the influence of the different
contextual factors varies. Once sufficiently robust, we also
intend to evaluate the success of the model with respect to
special social events that should cause unusual patterns in
pedestrian activity, such as concerts or festivals.
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