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Abstract. There is an increasing trend of applying AI-
based automated methods to geoscience problems. An
important example is a geographic question answering
(geoQA) focused on answer generation via GIS workflows
rather than retrieval of a factual answer. However, a repre-
sentative question corpus is necessary for developing, test-
ing, and validating such generative geoQA systems. We
compare five manually constructed geographical question
corpora, GeoAnQu, Giki, GeoCLEF, GeoQuestions201,
and Geoquery, by applying a conceptual transformation
parser. The parser infers geo-analytical concepts and their
transformations from a geographical question, akin to an
abstract GIS workflow. Transformations thus represent the
complexity of geo-analytical operations necessary to an-
swer a question. By estimating the variety of concepts and
the number of transformations for each corpus, the five
corpora can be compared on the level of geo-analytical
complexity, which cannot be done with purely NLP-based
methods. Results indicate that the questions in GeoAnQu,
which were compiled from GIS literature, require a higher
number as well as more diverse geo-analytical operations
than questions from the four other corpora. Furthermore,
constructing a corpus with a sufficient representation (in-
cluding GIS) may require an approach targeting a uniquely
qualified group of users as a source. In contrast, sampling
questions from large-scale online repositories like Google,
Microsoft, and Yahoo may not provide the quality neces-
sary for testing generative geoQA systems.
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1 Introduction

Geographic question-answering (geoQA) is gaining
ground (Mai et al., 2021; Chen et al., 2021). It provides
not only an Artificial Intelligence (AI) fuelled method for
easing the retrieval of geographic facts from documents
using natural language (such as “What are the countries
bordering Germany”), but also a method for specifying
geographic analysis in a way that makes sophisticated ge-
ographic information more accessible to potential users
(such as in “What is the amount of green space in Ams-
terdam”).

While the former task can be approached with common
QA methods, the latter goes beyond the standard match-
ing of questions to facts. Many geoQA approaches incor-
porate spatial query capacities for retrieval over knowl-
edge graphs (Punjani et al., 2018). Furthermore, to han-
dle the spatial component of geographic questions while
profiting from the flexibility of machine learning mod-
els, spatially explicit vector embeddings (deep learning)
have been recently proposed (Mai, 2021). However, geo-
analytical questions are not factoid based, and thus re-
quire finding indirect answers, i.e., answers that need to
be derived by transforming geodata sources with work-
flows (Kruiger et al., 2021). This challenge was called
geo-analytic question-answering by Scheider et al. (2021),
and interpreting questions in this way requires reasoning
over possible transformations of geo-analytical concepts
toward some goal.

Workflows are a common method for geo-analytical
question-answering by human experts. Fig. 1a shows an
example workflow constructed in ArcGIS for the 203rd
question in GeoAnQu, “What is the average Euclidean dis-
tance to parks for each PC4 area in Amsterdam?”. The
yellow nodes represent tools. The input and output datasets
are shown by blue and green nodes. Given a dataset of
parks within the extent of Amsterdam, Euclidean Distance
calculates the straight-line distance to the closest park for
each cell within the extent. Zonal Statistics As Table aggre-
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(a)
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Figure 1. (a) Example ArcGIS workflow for question 203 in
GeoAnQu and (b) the corresponding map visualizing the answer.

gates these distances by 4-digit postcode areas (PC4) and
calculates averages. Join Field merges the two datasets.
This final dataset is visualized as a map in Fig. 1b. The en-
tire workflow is a series of transformations of data from
one type to another, where each type represents some con-
cept (e.g. a layer of park objects, a distance field, etc.).
These transformations are discussed in more detail in sec-
tion 3.1.

Compared to its syntactic complexity, the semantic com-
plexity of a geographic question is usually very difficult
to quantify. Syntactically, e.g., the two questions “What
are the countries bordering Germany” and “What is the
amount of green space in Amsterdam” appear to be rather
similar (they are both "What" questions of similar gram-
matical complexity). Yet, conceptually, the first one asks
only about a topological relation between countries (ob-
jects), whereas the second one includes a conversion of a
landuse coverage to an amount defined using the location
of a city (object). In consequence, both, the kinds of data
sources and transformation steps needed to answer these
questions are likely to differ in complexity. Another im-
portant distinction is that answering the latter question re-
quires tacit expert knowledge, i.e., knowledge of the expert
solving the problem rather than knowledge of the prob-
lem specification itself (McQueen, 1998; Jia et al., 2022).
Such knowledge is not present in the question but comes

from a human expert interpreting the question. For exam-
ple, how green space could be quantified as an amount is
not specified but needs to be inferred by an expert. This
inference requires reinterpreting green space and amount
as geo-analytical concepts and choosing applicable opera-
tions for transforming the former into the latter.

The necessity of capturing tacit knowledge for GIS work-
flow construction is being increasingly recognized (Liu
et al., 2017; Kruiger et al., 2021). However, this raises
the question of whether existing geographical question
corpora are representative enough, as problem specifica-
tions, to train, test, and validate such systems (Mai et al.,
2021). Are they diverse enough concerning syntactic and
semantic constituents as well as the required tacit knowl-
edge? Recently, several new corpora were proposed in-
cluding GeoQuestion201 (Punjani et al., 2018), GeoAnQu
(Xu et al., 2020), and a subset of online geo-related queries
from MS MARCO (Nguyen et al., 2016). Using NLP meth-
ods, Xu et al. (2020) demonstrated that the three cor-
pora are syntactically and, to a limited extent, semanti-
cally different from each other. This was especially true for
GeoAnQu, which contains questions typically answered
with GIS workflows. Overall, the study suggested that the
three corpora are distinct, and each is not representative
enough by itself.

However, Xu et al. (2020)’s work can be improved by
incorporating more corpora that are preferably manually
constructed to ensure comparable quality. Most impor-
tantly, an NLP-based comparison method fails to cap-
ture the semantic complexity of questions concerning tacit
knowledge. It does not take into account that the syntactic
and terminological differences between the three corpora
may be of superficial significance. For example, “What is
the number of people in Amsterdam” and “What is the pop-
ulation of Amsterdam” are synonymous questions leading
to the same answer despite syntactic differences. In this
study, we aim to compare GeoAnQu and GeoQuestion201
not only with a wider range of manually-constructed cor-
pora but also by interpreting questions in a way that ig-
nores these superficial differences.

Which concepts are needed to interpret geographic ques-
tions on this level? Core concepts of spatial information
(Kuhn and Ballatore, 2015), including field, object, event,
and network, were proposed as principal ways of con-
ceptualizing the geographic environment. In geo-analytic
QA, questions specify transformations of core concepts
detailing how a question’s goal can be reached (Scheider
et al., 2021). Based on these insights, Xu et al. (2022) pro-
posed a grammar to parse geographic questions in terms of
core concept transformations forming the question inter-
face component of a geo-analytic QA system under devel-
opment (QuAnGIS). The underlying grammatical model
of geographic information incorporates not only sentence
structures but also tacit expert knowledge in GIS. This
allows measuring the semantic complexity of geographic
questions in terms of the complexity of transforming geo-
graphic information into an answer map.

AGILE: GIScience Series, 4, 10, 2023 | https://doi.org/10.5194/agile-giss-4-10-2023 2 of 10



In this paper, we use the core concept transformation
grammar (Xu et al., 2022) to compare the semantic com-
plexity of various geographic question corpora. In our
analysis, we will compare the semantic and syntactic com-
plexity of questions between 5 different corpora including.

2 Related Work

2.1 Manually Constructed Geo-Question Corpora

There are multiple manually constructed corpora for
testing geographical question answering over knowledge
graphs. The Geoquery corpus (Zelle and Mooney, 1996)
consists of a database of 1000 geographical facts (states,
cities, rivers, and mountains) about the United States, 880
natural language questions, and corresponding queries in
Prolog language. An example question is “What are the
major cities in North Carolina?”. Each question can be
answered with a fact from the database via a logical infer-
ence.

The Giki corpus includes 97 questions from the GikiP
2008 (Santos and Cardoso, 2008) and GikiCLEF 2009
(Santos and Cabral, 2009) tasks for answering ques-
tions requiring spatial reasoning with information from
Wikipedia. The GeoCLEF corpus contains 50 questions
generated from topics of the GeoCLEF 2005 (Gey et al.,
2005) and 2006 (Gey et al., 2006) tracks for cross-
language geographic information retrieval of the text. Geo-
CLEF is more focused on queries about geographical areas
(e.g., “Roman cities in Germany”) and events (e.g., “Oil
accidents in Europe”). Giki queries about a wider range of
entity types including food and people (e.g., “List the ba-
sic elements of the cassata”). Both corpora were designed
for testing methods based on information retrieval.

The GeoQuestions201 (Punjani et al., 2018) corpus con-
tains 201 questions that can be expressed as SPARQL or
GeoSPARQL queries over a linked dataset compiled from
DBPedia, OpenStreetMap, and Global Administrative Ar-
eas databases. The corpus mostly contains questions re-
quiring consideration of geospatial relation between two
geographical features: “Which counties border county Lin-
colnshire?”. These questions are more involved than the
Geoquery questions since answering them requires rea-
soning over geometry and distances but within the capa-
bility of GeoSPARQL.

GeoAnQu was collected to analyze the syntax and seman-
tics of geo-analytical questions in GIS (Xu et al., 2020).
Currently, GeoAnQu consists of 305 questions (Xu et al.,
2022) on various GIS analyses as shown in Table 1. Note
that multiple analysis types can be asked in one geo-
analytical question. For example, the answer to the ques-
tion “How many buildings are within 3 minutes of driv-
ing time from fire stations in Oleander?” requires network
analysis, overlay analysis, and summary statistics in GIS.

2.2 NLP-based Comparison of Corpora

Xu et al. (2020) compared the grammatical complexity
and general intents (E.g., what?, where?, when?) of ques-
tions in GeoAnQu, MS MARCO, and GeoQuestion201 cor-
pora. The comparison relied on descriptive statistics (e.g.,
word count), the bag-of-words methods (word clouds,
part-of-speech tagging, n-gram analysis), and semantic en-
coding of individual words (e.g., place type, date, entity,
activity). They found that GeoAnQu’s questions have more
complex syntactic structures than the others. Their analy-
sis remains superficial in that only general intents and lin-
guistic structures were analysed, not the geo-information
concepts that underlie the questions. Scheider et al. (2021)
claim that the automatic interpretation of geo-analytical
questions requires a distinctly different approach than the
automatic answering of factoid questions. Firstly, a set
of concepts dedicated to geo-information, such as those
by Kuhn (2012), is necessary to capture how question
phrases relate to analytical assumptions. Secondly, be-
cause answers need to be procedurally generated, the re-
quest needs to be related to available data. In this paper,
we thus address questions left unanswered by Xu et al.
(2020), namely how the corpora’s questions differ in terms
of geo-semantics and transformational complexity.

2.3 Core Concepts of Spatial Information

Kuhn and Ballatore (2015) described spatial information
and operations at a high-level view using five core content
concepts. Location is defined as a relation that relates en-
tities spatially. This relation can be expressed qualitatively
in the example "The Netherlands contains Amsterdam",
or quantitatively if you have the WGS84 coordinates of
Amsterdam. Therefore, location is used to answer where
questions. Fields represent entities that have continuous or
homogeneous attributes at any position, such as tempera-
ture and land cover. It can also be understood as a contin-
uous function between position and attribute. In practice,
analysts are interested in aggregating field values into cer-
tain regions or interpolating missing values from measure-
ments. Objects are individual entities that have their own
identities and spatial boundaries (e.g., cities and adminis-
trative regions). The properties and relations of an object
may be changed over time, but the identity remains. Net-
work expresses connections between objects. Networks
can tell whether two objects are connected, what the travel
cost is between them, or the volume and direction of some
flows between them. Event is a temporally bounded entity
distinguished by its own identity, such as hurricanes and
earthquakes. Fields, objects, and networks participate in
events and are often changed by events.

Although the core content concepts can interpret spatial
information in geo-analytical questions, to generate con-
crete transformations in practice, Xu et al. (2022) proposed
new concepts and sub-concepts based on the current the-
ory. The concept Amount quantify core concept or their
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Table 1. GeoAnQu corpus

Analysis type GeoAnQu question example

overlay analysis Which buildings were affected by tornadoes in Oleander?
proximity analysis What areas are within 300 meters of runways in Schiphol airport?
density analysis What is the point density of cycling destinations in the Metro Vancouver region in Canada?
network analysis What is the network distance to primary schools for children between 4 and 12 in Rotterdam?

geographic pattern analysis
Where are the clusters of fire alarms with similar priority for each 300-meter distance band
in Fort Worth?

areal interpolation What is the proportion of people over 65 for each PC4 area in Amsterdam?
location-allocation analysis Where is the best site for a new landfill in the UK?

qualities and it can be subdivided into two sub-concepts:
1) content amount counts the number of core concepts or
aggregates core concept and their quality via mean, sum,
median, etc. For example, the average temperature or me-
dian household income; 2) coverage amount measures the
spatial "coverage" of core concepts, including the size of
core concepts (e.g., area of parks) and spatial distributions
(e.g., a cluster of traffic accidents). The concept of Propor-
tion is defined as a ratio between quantity obtained from
amount. Based on the combinations of amounts and the
core content concepts involved, proportions can be further
subdivided. Table 2 summarizes the common sub-concepts
of proportion, as well as other common sub-concepts in-
troduced in Xu et al. (2022).

3 Parser Application

3.1 Concept Transformations Theory Underlying the
Parser

First, each geo-analytical tool can be annotated in terms of
concepts it takes as input and produces as output (Kruiger
et al., 2021). For example, Fig. 2a shows annotations of
the two tools from the workflow in Fig. 1a. Euclidean
Distance transforms an object into a field. Zonal Statis-
tics As Table requires field and object to output aggre.
These two tools used in conjunction imply a series of
transformations (Fig. 2b). Second, transformations of con-
cepts can be inferred from questions with the use of ex-
pert knowledge (Xu et al., 2022). Question 203 from
GeoAnQu is annotated as “What is the average(aggre)

Euclidean distance(field) to parks(object) for each PC4
area(object) in Amsterdam(extent)”. Consecutively, these
concepts can also be ordered into a sequence of trans-
formations (Fig. 2c). Here, aggre is the goal concept in
the question and also the final node in the transformation
graph. Concept-wise, transformations in Fig. 2c are the
same as in Fig. 2b. This way concept transformations in-
ferred from a question can be, at least in theory, matched to
transformations of different workflows to find a workflow
that can answer the question. Note that transformations in
Fig. 2c do not necessarily correspond one-to-one to actual
geo-analytical operations. A transformation is agnostic to

(a)

(b) (c)

Figure 2. (a) Concept-based annotations of inputs and outputs
for Euclidean Distance and Zonal Statistics as Table tools. (b)
Example of possible transformations of concepts with aggre as
the goal concept. (c) Transformations of the concepts from ques-
tion 203.

the exact geo-analytical operation that may implement it
and may require multiple operations.

3.2 Parser Implementation

Xu et al. (2022) proposed a grammar-based transforma-
tion parser for automatically annotating an English ques-
tion sentence with the concepts listed in Table 2 and de-
riving the order of transformation of these concepts. The
parser was extensively tested on the GeoAnQu corpus. For
example, the graph in Fig. 2c was produced by this parser.
Here, we briefly discuss relevant aspects of the parser and
refer to the original work for detailed review (Xu et al.,
2022). The parser employs the core concepts that are gen-
eral and applicable to a wide range of analytical resources
not limited to GIS or GeoAnQu. In conjunction with the
constituent parts of the question sentence, these concepts
encode the expert knowledge necessary to interpret and
decompress a question sentence into an abstract work-
flow, aka concept transformations. Hence, the parsed out-
come more closely reflects the analytical operations or
tools than the question sentence by itself. Applying this
parser to other corpora lets us compare these corpora with
GeoAnQu on a more analytical level than would have been
possible with NLP methods such as those used in Xu et al.
(2020). However, the implementation of the parser relies
on ANTLR-based grammar that is semantically expressive
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Table 2. Sub-concepts proposed by Xu et al. (2022)

Sub-concept Explanation Example

objconamount a content amount counted from objects population
eveconamount a content amount counted from events total votes

aggre
a content amount aggregated from fields, objects, networks,
events or their qualities

average walking distance

objconobjconpro a proportion between two objconamounts mortality rate
eveconobjconpro a proportion between an eveconamount and an objconamounts crime rate
objectquality quality of an object age
networkquality quality of a network walking distance
eventquality quality of an event wind speed
distfield a distance field generated from fields, objects, networks, events 50-meter buffer areas of schools
boolfield a Boolean field representing true or false value within 50 meters of schools

grid
a sub-concept of field, proposed for normalizing geography
in GIS analysis and visualization

100 by 100-meter grid

allocation a sub-concept of location, proposed for location-allocation questions the best site
distanceBand a cut-off distance for determining neighbors of each feature in cluster analysis 300-meter distance band

but with a limited set of syntactic patterns. This introduces
restrictions on the application of the parser as discussed in
the next subsection.

3.3 Applying the Parser to Corpora

To compare the geo-analytical complexity of the five cor-
pora, GeoAnQu, Geoquery, Giki, GeoCLEF, and Geo-
Questions201 (further referred to as Geo201), we applied
the transformation parser (Xu et al., 2022) on each ques-
tion to (1) identify the concepts within the question and (2)
generate a sequence of transformations of these concepts.

Beforehand, however, many questions in the Giki,
Geo201, GeoQuery, and GeoCLEF corpora were revised
for three reasons1. The first and main reason is mal-
formed question sentences found in three corpora except
for Geo201. Sentences without the interrogative pronouns
(Wh words), such as “Shipwrecks in the Atlantic Ocean”,
are common occurrences. These questions were revised to
have well-formed interrogate sentences. Other malformed
questions had imperative sentences instead of interroga-
tive sentences, such as “Count the states which have ele-
vations lower than what Alabama has” in GeoQuery. Such
sentences were revised to assume an interrogative form.

The second reason for the revision was the wordiness of
the questions. These are the questions that contained un-
necessary words or could have been expressed in a more
laconic way. For example, “How many people live in the
biggest city in New York state” can be rephrased into a
more compact form “What is the population of the biggest
city in New York state”.

The final reason for revision is the ambiguity of the ques-
tions. For example, the goal in the question “Rice im-
ports in Japan” (GeoCLEF) may refer to the absolute vol-

1To support reproducibility, the data distribution for this study
includes both the original and revised versions of the questions.
See section 4.2.

ume, the total price value, or the proportion relative to the
consumption. The construction of a workflow requires a
clearly stated goal in the question. Depending on this goal,
the resulting workflows can be very different. Therefore,
the goals in the ambiguous questions were concertized, for
example, “What is the volume of rice imports in Japan”.

After these revisions, all questions were parsed by the con-
cept transformation parser. A quality check revealed that
some questions were parsed incorrectly due to the parser’s
inability to recognize certain syntactic patterns and, con-
secutively, concepts within these structures. The parsing
results for 27, 17, and 241 questions were incorrect in
Geo201, Giki, and GeoQuery respectively. These ques-
tions were parsed manually to identify concepts and trans-
formations.

4 Statistical Methods

With the parser, we have identified the concepts within
the questions and the sequences of transformations of
these concepts. Consecutively. the corpora were compared
according to transformation complexity and diversity of
transformed concepts (Fig. 3). Transformation complex-
ity approximates the number of geo-analytical operations
needed to answer a question. If questions in one corpus
require more operations than questions in another corpus
then we consider the former corpus more analytically com-
plex. The diversity of transformed concepts is a proxy for
the types of geo-analytical operations involved. A corpus
that involves a wider range of geo-analytical operations is
considered more complex and representative than a corpus
that relies on repeated use of a limited set of operations.

4.1 Metrics for Geo-analytical Complexity

Two metrics were used for transformation complexity: the
number of transformations and the number of concepts.
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Figure 3. Metric used to evaluate the geo-analytical complexity
of the corpora.

For example, question 203 results in two transformations
and five concepts (Fig. 2c). A corpus is considered to be
geo-analytically more complex if it has, on average, a
higher number of transformations per question. Similarly,
a more complex corpus has on average a higher number of
concepts per question. As discussed, transformations do
not correspond one-to-one to actual geo-analytical oper-
ations. Therefore, the number of concepts is used as the
second proxy metric since a higher number of concepts
correlates with more operations. Nevertheless, the num-
ber of transformations is a preferred metric as a more di-
rect measure of geo-analytical operations (Kruiger et al.,
2021).

As described previously, a transformation of concepts
is agnostic to the exact geo-analytical operation(s) that
may implement the transformation. Consequently, a cor-
pus with a higher number of transformations may be lim-
ited to a few operations repeatedly used among the ques-
tions, while another corpus may involve fewer transforma-
tions per question but a higher variety of geo-analytical
operations between the questions. Therefore, we used the
diversity of transformed concepts as an indirect measure
of the diversity of geo-analytical operations. The diver-
sity of concepts of a corpus is represented by two met-
rics: (1) the frequency of distinct goal concepts in a cor-
pus and (2) the frequency of individual concepts per cor-
pus. Such frequency represents the number of questions
in which the concept occurs. A goal concept represents
the type of a question’s goal, the explicit intention of a
user stating the question. A corpus with a wider range of
goal concepts may reflect a wider range of user intentions
and operations. The second metric represents intermediary
concepts necessary for achieving the goal concepts and,
hence, the intermediary operations as well. Since the di-
versity of concepts is a function of both the number of
distinct concepts and the frequency of such concepts, each
metric is broken into three measures widely used for di-

versity estimation: richness, diversity index, and evenness.
Richness is the number of distinct concepts in a corpus.
Unlike richness, the Shannon-Wiener diversity index (aka
Shannon index) accounts for frequencies of distinct con-
cepts. The corpus with the higher index is the more diverse
corpus. The Shannon index is estimated according to Eq.
(1), where C is a set of distinct concepts in a corpus, pi
is a proportion of the concept i’s frequency relative to the
sum of frequencies of all concepts in C.

H ′ =−
C∑

i∈C

pi ln(pi) (1)

J ′ =H ′/ ln(S) (2)

Finally, we calculate the Pielou index for evenness to ob-
tain a more explicit measure of how much each corpus
is dependent on a dominant concept. The Pielou index
is calculated as in Eq. (2), where S is the size of C.
When all concepts in a corpus occur in an equal number
of questions, the index is equal to one. If a corpus mostly
depends on one dominant concept, the index approaches
zero. Therefore, a corpus with a higher Pielou index is pre-
ferred for diversity.

4.2 Data and Software Availability

The concept transformation parser was implemented
in Python and produces a JSON object for each
question it parses. This object lists the concepts
and corresponding transformations. Descriptive statis-
tics for the JSON objects are supplied to R code
for the further analysis reported in this study. All
source code and datasets used/produced by this code
are available on GitHub: https://github.com/quangis/
AGILE2023-Semantic-complexity-GeoAnQu. The repos-
itory also provides detailed instructions for replicating the
study.

5 Results

5.1 Transformation Complexity

Fig. 4 shows the mean numbers of concepts and transfor-
mations per question for each corpus. For example, a ques-
tion in the Giki corpus has, on average, three concepts
that result in one transformation, where two concepts are
likely inputs, and one concept is the output (also the goal)
of the transformation. The highest means of both concept
and transformation counts are observed in GeaAnQu. This
merits a more detailed analysis of the underlying distribu-
tions.

The normalized distributions as proportions of questions
are shown in Fig. 5. For both metrics, the distributions of
the GeoAnQu corpus demonstrate lower modes and longer
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Figure 4. Mean numbers (with standard errors) of concepts and
transformations per question.

positive skewness compared to the distributions of the
other corpora. For each metric, the five distributions were
analyzed for identicality with a Kruskal Wallis Test. This
test is an alternative to one-way ANOVA for cases with
non-normal distributions and uneven sample sizes. The
tests indicate significant differences between the distribu-
tions: H(4) = 162.35,p < .01 for the number of concepts
and H(4) = 74.12,p < .01 for the number of transforma-
tions.

We did a follow-up pairwise comparison of the distribu-
tions with Dunn’s test with the Holm–Bonferroni correc-
tion for multiple testing. The results are summarized in
Table 3. Column p.adj shows p-values after the correction.
In terms of the number of concepts, the GeoAnQu corpus
has significantly more concepts than the other four cor-
pora. No other pair of distributions have a significant ad-
justed p-value. A similar effect is observed for the number
of transformations. GeoAnQu has significantly more trans-
formations than any other corpora as strongly suggested by
the p-values.

Table 3. Dunn’s pairwise testing with the Holm–Bonferroni cor-
rection on distributions of numbers of concepts and transforma-
tions.

concepts transformations

corpus1-corpus2 z-test p.adj z-test p.adj

Geo201-GeoAnQu 7.61 < 0.01 6.36 < 0.01
Geo201-GeoCLEF -0.85 1 0.82 1
Geo201-GeoQuery -1.42 1 1.61 1
Geo201-Giki -2.39 0.17 -1.89 0.59
GeoAnQu-GeoCLEF -5.42 < 0.01 -2.94 0.03
GeoAnQu-GeoQuery -12.1 < 0.01 -6.80 < 0.01
GeoAnQu-Giki -8.48 < 0.01 -6.96 < 0.01
GeoCLEF-GeoQuery 0.17 1 -0.03 1
GeoCLEF-Giki -0.92 1 -2.09 0.37
GeoQuery-Giki -1.73 0.84 -3.36 < 0.01

5.2 Conceptual Diversity

5.2.1 Base Diversity of Concepts

First, we review the frequency of all concepts (goal and in-
termediate) that were identified in questions of each corpus
as shown by the distributions in Fig. 6. In each distribution,
the concepts are ordered by frequency. For comparability,
the frequencies are shown as the proportions of the ques-
tions in which the concept was identified. For example,
the concept event was identified in 46% of all questions of
the GeoCLEF corpus. However, these are not the propor-
tions used for calculating the Shannon index of diversity.
Nevertheless, these distributions provide a good context in
which we can interpret the measures of richness (R), di-
versity (H ′), and evenness (J ′) as shown by the top chart
in Fig. 7. The values in the figure are normalized with the
maximum value in each scale.

Several observations can be made from the distribu-
tions of richness. First, the GeoAnQu corpus demon-
strates the highest richness of concepts. Furthermore, ev-
ery concept that occurs in one of four corpora also oc-
curs in the GeoAnQu corpus. Next, not every concept
that occurs in the GeoAnQu corpus occurs in another
corpus. Following concepts occur only in the GeoAnQu
corpus: amount, eveconamount, distanceband, allocation,
network, grid, objconobjconpro, eveconobjconpro, even-
tquality, networkquality. On the other hand, only three
concepts, object, location, and conamount, occur in all five
corpora. Four other concepts, field, covamount, boolfield,
and objconamount occur in three corpora apart from
GeoAnQu.

According to the Shannon index, the GeoAnQu corpus has
a greater diversity of concepts (2.402) than any other cor-
pus even after taking into account the frequencies of the
concepts. The GeoQuery corpus has the second-highest di-
versity index (1.454), but it is still considerably lower than
for GeoAnQu. However, the Shannon index should be in-
terpreted with care since each distribution in Fig. 6 exhibits
the object as a dominant concept and a long tail of other
low-frequency concepts. According to Pielou indices, Giki
is the lowest-scoring corpus (0.37), while GeoAnQu still
has the highest degree of evenness (0.777). Regardless,
none of the corpora has an index close to one, which sug-
gests that all corpora are biased, to a different degree, to-
ward a few concepts with the object being the most domi-
nant one in all corpora.

5.2.2 Diversity of Goal Concepts

Fig. 8 depicts the proportions of the questions in which the
goal concept was identified. The three measures of diver-
sity are shown in the bottom chart in Fig. 7.

Richness is lower for all corpora. That is not all concepts
that are transformed occur as question goals. The Giki cor-
pus had the largest decrease in richness, down to 38% from
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Figure 5. Transformation complexity: distributions of the number of concepts (top) and the number of transformations (bottom) per
question in each corpus.

Figure 6. Frequency of all concepts as a proportion of questions
where the concept occurs.

all concepts, while the GeoQuery corpus had the least drop
in conceptual richness for goals. In the GeoAnQu corpus,
the following five concepts serve as intermediary concepts
only and do not occur as a goal: distfield, boolfield, grid,
amount, and distanceBand. Neither of these concepts oc-
curs as a goal in the four other corpora. Despite this drop
in richness, GeoAnQu still has the highest richness of goal
concepts among the corpora.

Figure 7. Diversity measures for (top) all concepts and (bottom)
goal concepts.

The Shannon index is also lower for the goal concepts for
four corpora. The GeoAnQu corpus is still the most diverse
corpus concerning the goal concepts (2.242). Furthermore,
it is the only other corpus with higher evenness (0.791)
than its base evenness (0.777). Fig. 8 shows the goal con-
cepts in GeoAnQu are more evenly distributed among the
questions. The distribution has a much smoother gradient,
and the object, as a goal concept, is much less promi-
nent in GeoAnQu. In contrast, the four other corpora are
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Figure 8. Frequency of goal concepts as a proportion of ques-
tions where the goal concept occurs.

still heavily biased toward the object concept. Overall, the
GeoAnQu corpus not only demonstrates higher richness
and diversity but also a more even representation of the
goal concepts in the questions.

6 Discussion

The overall results suggest that the GeoAnQu corpus is
considerably more complex than the other four corpora
from the perspective of geo-analysis. On average, a ques-
tion in the GeoAnQu corpus implies significantly more
geo-analytical concepts than the alternatives from the four
other corpora (Fig. 5 and Table 3). Similarly, the average
number of transformations of these concepts is signifi-
cantly higher than in any other corpus (Fig. 5 and Table 3).
Both metrics suggest that answering a question from the
GeoAnQu corpus requires more geo-analytical operations
than a question from other corpora would require.

The results of conceptual diversity analysis further sug-
gest that these geo-analytical operations are quite diverse
in GeoAnQu and not limited to a few repeatedly used ones
(Fig. 6 and Fig. 7). Since different concepts can be mapped
to different operations that either take these concepts as in-
put or produce them as output (Kruiger et al., 2021), these
concepts also reflect the diversity of geo-analytical oper-
ations required by the questions in GeoAnQu. In terms of
the richness of transformed concepts, the GeoAnQu corpus
involves ten more concepts that are not used in any other
corpus. Furthermore, the concepts from the long tail occur

in GeoAnQu with sufficient frequency to warrant the high-
est values for both the Shannon index of diversity and the
Pielou index of evenness. In other words, these concepts
and the question that employ these concepts do not seem
to be outliers or exceptions but have at least some rep-
resentational value. The same can be argued for the goal
concepts in GeoAnQu (Fig. 8 and Fig. 7). Furthermore, the
goal concepts also reflect the explicit intentions of users
postulating the questions. Therefore, it can also be argued
that GeoAnQu represents a wider range of user interests
than the other corpora.

By all metrics, GeoAnQu remains to be a more complex
corpus even after comparison with a pooled corpus with
questions aggregated from the four other corpora. This
points toward some systematic issues within these corpora.
The first issue is the syntactically different but semanti-
cally the same questions. For example, GeoQuery has five
questions all asking about the number of cities in the US
with slight variations in terminology and sentence struc-
ture. Second, some questions are syntactically the same
but also don’t vary much semantically. An example from
Giki is “Places where Goethe lived” and “Places where
Mozart lived”. Third, the compound questions can be sep-
arated into two or more same questions. GeoCLEF has the
following compound question “Shark attacks near Aus-
tralia and California”. An answer to such a question is the
same set of operations repeatedly applied to the extents of
Australia and California. Geo-analytical operations mostly
revolve around identifying a limited set of topological rela-
tions such as “A bordering B”, “A within B”, or “A crossing
B”. This especially applies to Geo201 and GeoQuery. Fi-
nally, Giki contains a sizeable number of questions that are
rather debatable as geographic questions. The most salient
examples are “List the basic elements of the cassata” and
“Name Portuguese-speaking Nobel prize winners”.

The results also reveal potential issues with GeoAnQu.
The uneven distribution of intermediary concepts (Fig. 6)
suggests bias in representing geo-analytical content. Al-
though to a lesser degree than in other corpora, the ques-
tions with just one transformation are also prevalent in the
GeoAnQu (Fig. 5). While these questions may still result
in workflows with two or more operations, it needs to be
verified explicitly. Otherwise, GeoAnQu may still be bi-
ased to “simpler” questions of those usually addressed by
GIS workflows. Finally, GeoAnQu includes only 305 ques-
tions. Considering, the number of distinct concepts it cov-
ers, this sample size may not be enough for its purpose of
building, testing, and validating geoQA systems.

7 Conclusion

Interpreting questions as concepts and their transformation
(Xu et al., 2022) offers a novel comparison method that al-
lowed us to take into consideration expert knowledge and
compare semantics at a level less susceptible to lexical and
syntactic variations. The results of this study complement
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previous results from NLP-based analyses. The GeoAnQu
corpus is distinct from other comparative corpora not only
concerning syntax and semantics within the questions, as
demonstrated in Xu et al. (2020), but also regarding tacit
expert knowledge required for answering the questions.
However, it should be noted that the higher complexity is
not evidence of GeoAnQu being a superior alternative to
the other corpora. Rather it is an indication that different
corpora, including GeoAnQu, should be used in conjunc-
tion to comprehensively test AI systems.

Overall, the study highlights the need for a more compre-
hensive corpus that can represent a wider range of geo-
analytical tasks that go beyond retrieval. Furthermore, it
also highlights an issue in the methodology of existing
corpora making them less representative of geo-analytical
tasks. We postulate that it is not just a matter of adding
more complex questions but finding the right knowledge
source for these questions such as researchers, data an-
alysts, and GIS experts. It is also an argument against
over-reliance on big data, such as MS MARCO (Nguyen
et al., 2016), to generate corpora or test geoQA systems.
Due to the nature of crowd-sourcing used to generate
big data (Aloteibi and Sanderson, 2014; Sanderson and
Kohler, 2004), it is questionable whether such data can
sufficiently represent expert groups interested in answer
generation. Instead, a more targeted and knowledge-driven
approach would be required to compile future corpora.
While GeoAnQu may be a good start, more effort for a
similar kind of research is needed.
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