
Classifying pedestrian trajectories by Machine learning using laser 
sensor data 
Hiroyuki Kaneko1 and Toshihiro Osaragi2 

1 Kajima Technical Research Institute, Tokyo, Japan 
2 School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan 

Correspondence: Hiroyuki Kaneko (kaneko-hiroyuki@kajima.com) 

Abstract. In the field of facility planning, the analysis of 
pedestrian trajectories using laser sensor-based behavior 
monitoring technologies is a proven way to improve our 
understanding of the behavioral features of foot-travelers. 
While these technologies can gather large volumes of 
trajectory data, the analysis of such data is a chaotic and 
complicated task and creates a large workload if it must be 
interpreted visually by human analysts. Hence, a method is 
needed for automatically extracting the features and their 
separate components from pedestrian trajectories and 
patterns. This study proposes just such a method based on 
a Restricted Boltzmann machine, a machine learning tool, 
to automatically extract and classify the latent features of 
pedestrian trajectories. Our method was applied to data 
taken in the outpatient waiting area of a hospital and the 
machine learning generated results were compared to those 
of visual classifications by human analysts. It was shown 
to be functional for classifying trajectories by orientation, 
stopping location and walking speed, and was considered 
effective for furnishing rough classifications resembling 
the intuition-based classifications of a human analyst. 

Keywords. pedestrian trajectories, laser sensor, Restricted
Boltzmann Machine (RBM), classification of trajectories  

1 Introduction 

1.1 Background of this study 

It is essential for facility planners to gain a deeper 
understanding of the behavioral features of people as they 
walk, in order to create plans that better fit natural lines of 
human movement. Conventionally, most research has 
relied on follow-up investigations or survey responses, but 
as information and communication technologies have 
spread in recent years, it has become possible to use the 

maturing technologies for behavioral measurement on 
highly precise and long-term data about the uses of and 
conditions in architectural spaces. Laser sensor-based 
behavior monitoring technologies (laser metrology) are 
among these measurement technologies. 

Previously, the authors have used data gained by this 
method in office spaces in order to observe what kinds of 
activities occur, where, and at what time of day, and to seek 
ways to visualize that information to be easy to understand 
(H.Kaneko and T.Osaragi, 2015). For example, we have 
recently proposed, as a bird’s-eye view of an entire space, 
a procedure for representing the features of spatio-temporal 
uses of a given space by analysing the contours of the user 
trajectories. 

In this study, we propose a procedure for classifying the 
behavioral patterns of facility users by extracting latent 
features of the trajectories of people as they walk through 
the facility. For example, by looking closely at pedestrian 
trajectory data in the outpatient reception area of a hospital, 
we have been able to identify the attributes of specific 
individuals (e.g., patient or medical staff) by observing, for 
example, whether they (a)came in through the entrance, 
waited at the return visit reception machine, and then 
approached the examination area;  (b) came from other 
buildings and proceeded briskly toward a patient wing; or 
(c) came from an examination area, submitted forms at the
cashier’s desk, and then sat in a waiting area. The aspects
used for these analyses included the orientation of
movement, i.e., from where to where the individual is
moving, locations where the individual is immobile, such
as a return visit reception machine or the cashier’s desk,
and the individual’s walking speed, which is
characteristically slow for aged persons.
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Fig.1 provides a layout of the locations of the laser sensors 
in the outpatient reception area of a certain hospital and 
Fig.2 shows the results of a visual classification of 157 
pedestrian trajectories. This classification effort focused 
mainly on the person’s orientation, where he/she stopped, 
and whether he/she sat down. Such information could be 
read from the person’s trajectory, but the trajectories that 
were actually observed were quite diverse, complicated, 
and even chaotic. 

If unusual trajectories that occurred for only one or two 
people each can be reasonably assigned to the “other” 
classification, we broadly divided the remaining 
trajectories into 13 classifications. However, classifying a 
large amount of trajectory data by behavioral features of 
diverse individuals by eye is a lengthy and cumbersome 
process. Additionally, when such tasks are drawn out in 
time, they are susceptible to irregularities in the 
classification standards, as well as differing standards 
among individual analysts. This indicates the need for a 
method that can be used to automatically extract and 
classify the key features describing a behavioral pattern 
seen in a person’s trajectory. 

1.2 Previous research and objective of this study 

The methods for classifying trajectory data can be broadly 
divided into supervised classification and unsupervised 
classification.  

Supervised classifications suggest methods for machine-
learning classification, such as support vector machines 
(SVM) and random forests, using data that analysts have 
already determined to classify. Papathanasopoulou (2019) 
tried the state classification of pedestrians (the state of 
being distracted by something as a cell phone.) using the 
pedestrian trajectory data of GNSS and the random forest. 
However, hand-made prior classification work is often 
time-consuming, so in this report, we would like to discuss 
unsupervised classification. 

Unsupervised classifications differ in terms of data 
granularity. For using GPS data, if the destination is a 
transition of discrete type state, unsupervised clustering 
can be achieved by using latent class analysis that assumes 
a categorical latent variable behind the observation data. 
By this method, Tanaka (2015) tried to classify walking, 
bicycle, bus, car, and train as means of transportation 
based on the moving speed component of GPS data. 

On the other hand, when laser sensor-based behavior 
monitoring data is used, three methods, detailed below, 
have been established for unsupervised classifying 
trajectory data:  

Method(1): Time series are examined in pairs for 
classification by their similarities; method(2): Classi-
fication after dimensional compression of a trajectory in a 
linear space; and method(3): Classification after 
dimensional compression of a trajectory in a non-linear 
space. 

Dynamic time warping (DTW; P.Senin, 2008) is one way 
to perform method (1). In this process, each of the points 
of two time series are compared with each other and the 
path providing the shortest distance between the two series 
is identified. Then, the trajectory group is classified with 
the length (DTW distance) matrix using K-means 

Figure１．Outline of pedestrian trajectory data 

Figure2．Result of visual classification by manual 
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clustering or some other method. Although this method has 
computational advantages even when the path lengths are 
different, since it compares for resemblance between all 
points of each path, it cannot identify which features, if 
any, are similar between the two paths. Other concerns are 
that stoppage times can be omitted, so information about 
stopping locations is discarded, and the method’s high 
calculation cost. 

Principal Component Analysis (PCA) provides a way to 
perform method (2). In the classification method using 
PCA   for abnormality detection (Ukai. 2007), all points are 
linearly interpolated in advance and dimensionalized 
(measurement points × 2) in order to make the data length 
equal. Since multidimensional data is easy to handle by 
dimensional compression, PCA is performed to classify 
trajectory data into low-dimensional spaces. This 
calculation process is easy but discards the walking speed 
information in the pre-processing step when the lengths of 
all data are set to a uniform value. 

Character recognition using a technique for generating text 
from handwritten characters is a technique suitable for 
method (3). One such technique is a restricted Boltzmann 
machine (RBM; Hinton. G. E. et al., 2006), in which a 
specific value for a shape in the image data of a character 
is copied into a nonlinear space for classification as a 
character.  

Since the trajectories are a time series data having position 
coordinates like characters, it is difficult to find the 
regularity of the point cloud connection using a clustering 
method such as a k-means with the distance of similarity. 
For this reason, it is advantageous to use a deep learning 
pre-training method that automatically discovers and 
learns the regularities. While there are deterministic pre-
trained “auto-encoder”, probabilistic pre-trained “RBM” is 
known to be more useful. 

It was thought that an RBM could be applied more directly 
to the problem of classifying pedestrian trajectories. 
Hence, in this paper, a procedure for automatically 
extracting and classifying the latent features of trajectories 
in input data was investigated, and a model was constructed 
to represent the orientation of the patients and the locations 
where they stopped. A classification calculation was then 
carried out using trajectory data collected in an actual 
hospital outpatient waiting area to validate the capability of 
the proposed method by comparing its results with those of 
visual assessments. 

2. Trajectory Classification Model Based on 
Restricted Boltzmann Machine 

2.1 Overview of restricted Boltzmann machine 

The RBM is a probabilistic graphical model capable of 
unsupervised learning of stochastic distributions in training 
data (C.M.Bishop,2006). It comprises a two-layer network: 
an input layer (visible layer) and a hidden layer. When 
learning proceeds such that the associated values 
representing the values in the hidden layer (which are 
generated from the data in the input layer and are returned 
to the original neuron in the input layer) resemble the 
original data as closely as possible, the patterns in the 
hidden layer data expressing their features in that layer are 
generated (Fig. 3). 

Stimuli from the input layer (multiplied by the weights of 
the input values and with a bias added) pass the activation 
function (the sigmoid function is used), and since a neural 
net generates the values to be output from the hidden layer, 
it is capable of non-linear classification. This task can be 
spread over as many levels as desired and is well known to 
provide representations of more complicated features. 
When a model contains two or more hidden layers, it is 
called a deep Boltzmann machine. In one approach to the 
learning method, teaching data, the solution, is also 
provided on the final layer. However, in this study, learning 
was “unsupervised”, without correct data during learning. 
Instead, classes were represented by differences in the 
patterns in the hidden layer patterns. 

2.2 Model for representing pedestrian’s trajectory 

In this study, we examine the problem of machine learning 
for classification of pedestrian trajectories in a hospital 
outpatient waiting area, as measured by laser metrology. 
The first step was viewed as an essential and fundamental 
capability, to automatically identify situations such as 
walking through the waiting area without stopping or 
stopping at specific locations such as the return visit 

Figure 3．Trajectory classification using RBM 
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reception machine. A model was then constructed to 
represent orientation and stopping locations. 

The lengths of trajectory data were found to be quite 
inconsistent with each other, primarily due to the distance 
and duration differences for stopping times. Therefore, 
since they cannot be handled as-is with trajectory IDs, 
times and x-y coordinates, time data were abstracted, and 
space data were converted to mesh data. 

The data processed in this study do not contain complicated 
trajectories with multiple destinations, so the data were 
sufficient to describe the orientation of a trajectory as 
essentially from the entrance toward the examination area 
or another location. Each trajectory was divided at the 
midpoint into the front and back layers, which consisted of 
spatial meshes. When it was necessary to handle a 
complicated motion, the trajectory itself needed to be 
sectioned into partitions, but as long as the key information 
to be described consisted simply of “from where to where”, 
two partitions sufficed. A third “staying layer” was added 
in order to describe stopping at particular locations such as 
the return visit reception machine. A detailed examination 
of the data shows that the ends of some of the trajectories 
are at “sitting down/leaving the seat”. These were also 
recognized as significant data, and a flag was added to 
indicate whether the “origin” or “disappearance” of the 
person had occurred at a seat. 

The actual procedure for creating the input data was as 
follows: 

(1)  The trajectory points were created at 1 s intervals on 
a 1×1 m two-dimensional mesh. The data were 
handled as one-dimensional in the RBM calculations, 
so the changes in the values were smoothed to make 
the trends easier to recognize. There are several 
methods for smoothing, but in this study, each 
trajectory point was mapped in a proportionately 
weighted fashion to the neighbouring mesh points 

falling within the 1×1 m square centred on the 
trajectory point (Fig.4-a,b). Fig.5 shows data 
distributions of walking speeds with and without 
smoothing. The reader can see that there is a risk that 
walking speeds, which are inherently continuous, are 
not correctly represented when handled in a discrete 
manner while location information is unprocessed for 
smoothing.  

(2)  Trajectory data are divided at the trajectory midpoint 
into the front layer and the back layer (Fig.4-c) to 
represent the orientation, that is, where the person 
came from and where he/she is going. 

(3)  In order to represent the location where a person 
stopped, the data from at least 1 s after smoothing was 
stopped is copied to the staying layer. If the stop lasts 
longer than 10 s, time values are normalized to 1.0. In 
other words, 

Front layer: 0 s to 1.0 s → 0 to 1.0; 

Back layer: 0 s to 1.0 s → 0 to 1.0; 

Staying layer: 1.0 s to 10 s → 0 to 1.0; ≥10 s → 1.0. 

(4)    In order to represent the action of sitting down, the 
initial and final time points of each trajectory are set to 
1 at both the time of sitting down and the time of 
leaving the seat, and all other time points are assigned 
the value of 0 at the seat layer. 

After the above process, the data sizes were as follows: 267 
front layers, 274 back layers, 292 staying layers, and 2 seat 
layers, for a total input layer data length of 835 (Fig. 4-d). 

Figure 4．Pedestrian trajectory model 

Figure 5．Comparison of data distribution by walking 
speed with and without smoothing processing 
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2.3 Issues in setting number of hidden neurons 

The number of hidden layers was set to 2, and the method 
of classifying trajectories by the patterns appearing in the 
second hidden layer was examined. 

(1) Number of neurons in the first hidden layer 

The method by which the number of hidden neurons is 
selected is important. Since Hinton, the originator of the 
deep belief network model, did not clearly state any way to 
select this (Hinton.G.E et al., 2006), it is up to the user to 
calibrate the method to the specific problem at hand. In this 
study, the number of neurons in the first layer was 
evaluated and specified on the basis of the following two 
standards: 

 Are the input values sufficiently consistent with the 
associated values? 

The discrepancies between the input and associated 
values and their correlations were examined to assess 
whether there are sufficient neurons. 

 Is there sufficient information entropy in the hidden 
layers? 

When the probability Pi (the mean value for each 
trajectory) of ignition of all the hidden neurons after 
learning is used, the information entropy H is given as 
follow 

 H = Σ i( Pilog2(Pi)+ (1-Pi)log2(1- Pi)）      Eq. (1) 

Using equation (1), it can be verified that the information 
entropy is efficiently increased by increasing the number 
of neurons. 

(2) Number of neurons in second hidden layer 

The way by which things are determined in the first hidden 
layer also determines the extent of inheritance of the 
features of the input values, and the way by which things 
are determined in the second hidden layer determines the 
classification sizes. If the number of classes expected by 
the analyst is Nc, then the number of neurons in the second 
layer could be set by either of the following: 

Proposal 1: Number satisfying (2number of neurons > Nc) 

Proposal 2: Number satisfying (information entropy 
of classification result > Log2(Nc)) 

Proposal 1 is effective for ideal cases in which there are no 
biases in the number of data in each class. However, the 
classes under consideration here show scatter. Therefore, 
Proposal 2 was selected as the method for determining the 
number of neurons in the second hidden layer. 

3 Evaluation Experiment and Results of 
Analysis 

3.1 Investigation of neuron number on hidden layers 

(1) Number of neurons in first hidden layer 

The number of hidden neurons was changed from 20 to 160 

and it was calculated whether the input values were 
sufficiently consistent with associated values. Fig.6-a, b 
shows the number of hidden neurons at intervals of 10,000 
and 30,000 learning cycles (epochs) and the final errors and 
correlation coefficients. The reader can see that the error 
dropped dramatically once the number of hidden neurons 
exceeded 40, and that the accuracy fell every time the 
number of parameters was increased after 10,000 learning 
cycles. There was also a tendency to obtain greater stability 
of results when using 30,000 learning cycles.  

Next, the number of hidden neurons was varied while 
observing how the information entropy in the hidden layers 
changed. Fig.7-a, b shows how the information entropy in 
the hidden layers and the information entropy per neuron 
varied with the numbers of hidden neurons. When that 
number was 160, the information entropy reached its 
maximum value (approximately matching information 
entropy in the input layer, and then stabilizing at that 

Figure6．Relation between number of hidden neurons and 
error-related indicators by Epoch. 

Figure7．Relation between number of hidden neuron and 
entropy 
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value). However, examination of the information entropy 
per neuron shows that this parameter stabilized at a high 
level in the 60 to 100 range but fell sharply at higher neuron 
numbers. As long as the information in the input layer is 
efficiently propagated, models with lower numbers of 
parameters stabilize. Thus, lower numbers of neurons are 
preferable. In this study, therefore, 100 neurons were 
placed in the first hidden layer, the number just before the 
sharp decrease in parameter efficiency.  

(2) Number of neurons in second hidden layer 

The number of neurons on this layer affects the size of the 
classifications to be calculated. Here, the number of 
classifications was set at 13, using the results of the 
previous visual assessment. Since log2(13) is 
approximately 3.7, the number of neurons was initialized 
at 4 and increased from there. The information entropy of 
the classification results exceeded log2(13) at 8 neurons, so 
this number was employed for the second hidden layer 
(Table 1). 

3.2 Outline of results of machine classification 

Trajectory data was learned using 100 neurons in the first 
hidden layer and 8 neurons in the second hidden layer 
(100×8 model). Analysis of this model indicated a 
correlation of 0.990 between the input values and 
associated values in the first hidden layer, and the 
correlation was 0.740 in the second hidden layer. Since the 
second hidden layer employed 8-byte data, theoretically, 28 
= 256 classifications were possible, but using RBM 
classification (machine classification), the trajectories 
were divided into 25 classifications. 

Fig.8-a provides representative diagrams of the classified 
trajectories (combining different actual individual 
trajectories that had been classed together). 

3.3 Comparison of machine and visual classification, 
observations 

Details of the machine and the visual classifications are 
examined for comparison here to confirm whether machine 
learning is a reliable tool capable of providing results 
similar to the intuition of a human analyst. 

Fig.8-b presents a matrix for comparing between the 
classifications by the machine 100×8 model and the visual 
classification. 

The mean information entropy (data entropy) of the 
classification results with respect to each axis is calculated 
as an index for the consistency of the data in order to make 

a qualitative assessment of agreement between the vertical 
axis (machine classification) and the horizontal axis (visual 
classification). The entropy ratio is then calculated as the 
fraction of the maximum information entropy (base 
entropy), which is determined by the number of 
classifications. A lower value indicates a greater agreement 
between the 100×8 model and the visual classification. 
Examination of the results in Fig. 9 shows that the entropy 
ratio in the visual classification was 0.6%, whereas that in 
the machine classification was 10.6%. The reader can see 
that the agreement in this model was superior to that of 
models with modified numbers of second hidden neurons, 
i.e., better than the 100×7 or 100×9 model. 

Thus, the entropy ratio of the horizontal axis (visual 
classification) was sufficiently low. Aside from one case, 
X25, the machine classification matched the several 
boundaries defined by the visual classification. The 
machine classification can be considered extremely close 
to that provided by an intuition of a human analyst. On the 
other hand, however, the entropy ratio on the vertical axis 
(machine classification) had a rather high value. The RBM-
defined classes tended to have low volumes of data; this 
was because the RBM tended to distinguish multiple 
classes within a single visual classification class. Each of 
the machine-generated classes, X1 through X25, was 
compared against the visual classifications in order to 
examine this in more detail. 

The machine-generated classes X1 to X4 correspond one-
to-one with the visually interpreted classes A1 to A4, 
which were designated for individuals who travelled 
directly between the entrance (upper right direction, Up-r) 
and the patient wing (Down). Every classification 
contained numerous data sets. Trajectory orientations (Up-
r ↔ Down) and splits in individual paths to identical 
locations (for example, bearing to the right when walking 
around the escalator) were separated into different classes. 
It was also possible to distinguish individuals who walked 
faster than the mean speed, which occurred in every class. 

The machine-generated classes X5 to X8 correspond to the 
visually interpreted class A5, defined as individuals who 
entered through the entrance, passed the return visit 
reception machine without stopping, and proceeded to the 
examination area (Left), and X9 and X10 correspond to 
A6, who entered through the entrance and stopped at the 
return visit reception machine before proceeding to the 
examination area. Although these trajectories are similar at 
first glance, they are classified according to whether the 
person stopped at the machine. For example, the “passed 
without stopping” visually interpreted class A5 
corresponds mostly to the machine-generated class X5 (4 
cases), but in addition, is also divided into three other 
classes (X6–X8) with low data counts. The reasons for this 
were the behaviors of pausing at Reception and again near 
the seats, entering through the main entrance but going to 

Table1. Number of 2nd Hidden Neurons 
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a different patient wing, and walking at a different speed 
Figure 8.  Result of analysis by 100×8 mode 
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from others. These behaviors were not considered by the 
authors during the visual classification but were carefully 
distinguished during the machine classification process. 

 In the same way, the “stopped at the machine” visually 
interpreted class A6 corresponds mostly to the machine-
generated class X9 (6 cases), but class X10 (1 case) is 
distinguished, due to a different walking speed. These 
classifications on the vertical axis show a high degree of 
consistency with the visual classifications from the 
viewpoints of both orientation and stopping locations. 
However, differences in walking speeds and other factors 
that were ignored by the analyst are considered in the 
classes on the vertical axis. Since these classes were 
identified as additional categories during machine learning, 
these reclassification reasons can always be examined 
afterward with reference to the diagrams of the trajectories, 
and the classes can be recombined as the analyst deems 
appropriate. 

The machine-generated classes X11 to X13 correspond to 
the visually interpreted class A7, defined as individuals 
who entered from the examination area and travelled 
toward the main entrance (Left side to Up-r), class X14 
corresponds to class A8, who entered from the examination 
area and travelled toward the patient wing (Down), and 
classes X15 and X16 correspond to class A9, who entered 
from the examination area, stopped at the cashier’s 
reception desk, and then, after some time, sat in the 
adjacent seating area. Patients returning from the 
examination area show some differences in behavioral 
patterns from medical staff heading toward the patient 
wing. The reasons for the splitting seen in these classes 
were behaviours such as searching for something and 
hesitating after entering the building, slow walking speed, 
and differences in lengths of waiting time at the cashier’s 
reception desk, which allowed differing interpretations. 

Classes X17 and X18 correspond to the visually interpreted  
class A10, defined as individuals who came from a patient 
wing (Up-r), stopped for some reason, and then sat in the 
waiting area seats, classes X19 to X22 correspond to class 

A11, who came from a patient wing (Down) and went to 
the examination area, classes X23 and X24 correspond to 
class A12, who came from a patient wing and went to the 
escalator, and class X25 corresponds to class A13, who 
came from an office and proceeded to a patient wing 
(medical staff). This assignment of features by machine 
classification was found to strongly reflect the orientation 
and stopping locations. Even though any given visually 
interpreted class was divided into multiple classes by the 
RBM, the reader can anticipate that the analyst could 
recombine them. 

Fig 8-c. shows the mean walking speeds of the various 
classes identified by the RBM. The statistical test (level of 
significance α=0.1) on the overall mean speed indicated 
upper and lower limits. There also existed classes that 
could be called significantly “fast” and “slow”, confirming 
that speed information was justifiable as a feature for 
classification. 

3.4 Visualization of characteristic patterns of the 
hidden layers 

What features actually were learned in the second hidden 
layer? In order to determine this, the first hidden layer was 
inversely estimated using the learned weighting data from 
the binary values in the second hidden layer. Then, the 
values in the input layer were inversely estimated. Fig.10 
is a visualization of the distributions of typical classes 
generated by the RBM on the inverse-estimated input 
layer. The characteristic patterns of orientation and 
stopping locations are clearly expressed on the front layer, 
back layer, and staying layer, and the interpretations of 
those combinations match well with the trajectories in Fig. 
8-a. The reader can see that the features latent in the input 
data were automatically extracted, without any teaching of 
the trajectory patterns from an exterior agent, and hidden 
neurons reacting to these patterns were generated. 

3.5 Results of classification using three hidden layers 

A model containing three hidden layers was created in 
order to find out what kind of learning takes place. The 
number of hidden neurons was set at 100 on both the first 
and second layers, and since the data entropy of the 
classifications of the third hidden layer was desired, a 
100×100×7 model was created, using 7 elements on the 
third hidden layer, as 7 is the integer higher than log2(13) 
(Table 2). Learning was conducted with the model and the 
results were compared with those from the 100×8 model. 

Table.2   Number of 3rd Hidden Neurons 

Figure9．Comparison of entropy ratio 
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Comparing the two entropy ratios, both ratios under visual 
classification are in the 1% to 2% range, closely resembling 
each other. However, the entropy ratio of the RBM-
classification results ranged approximately 11% to 19% 
(Fig. 11-a), and the number of classes had grown from 25 
to 33. In other words, the number of extracted features 
increased with the hidden layers, and the bases for 
classification became more detailed. Examining visually 
interpreted class A1 (entering from the top right and 
moving down), for example, the 100×8 model was biased 
with 27 cases vs. 1 case, while the 100×100×7 model 
reclassified it into three classes containing 21, 3, and 4 
cases, which indicates a small broadening of the 
distribution. The difference appeared in the mean walking 
speeds. In the 100×8 model, the majority of people walked 
slightly faster than mean speed (1.25 m/s), and there was 
one outlier who walked slowly (0.71 m/s). In the 
100×100×7 model, three people walked fast (1.42 m/s) and 
four people walked slowly (0.83 m/s), i.e., the walking 
speed classification became more finely divided (Fig. 11-
b). 

Thus, increasing the number of hidden layers increases, in 
turn, the number of features that can be extracted and used 
to lend precision to the objective of classification. From the 
point of view of whether machine learning can function 
as a device for forming rough classifications similar to 
those obtained by a human analyst, however, two hidden 
layers appear to be sufficient for this purpose. 

4. Conclusion  

While monitoring behavior with laser sensors is a 
convenient way to collect large amounts of data about the 
trajectories of people while walking, it is extremely 
difficult to classify these data into behavioral patterns by 
extracting common features from each trajectory. In this 
study, the classification of the features of pedestrians in the 
outpatient waiting area of a hospital was selected as an 
example. The input data indicating orientation and 
stopping locations are stored in three meshes and were 
applied in an RBM, which is machine learning tool. The 
latent features were automatically extracted and a method 
for classifying pedestrian trajectories was proposed. 

A comparison of those results with the visual 
classifications confirmed that this method is sufficiently 
functional for classifying foot-travelers in terms of 
orientation, stopping locations, and walking speed, and 
provides rough classifications resembling the intuitive 
judgement of a human analyst. These results also indicate 
that facility planning can make use of multi-agent 
simulations to validate designs from the viewpoint of 
pedestrian data (origin-destination traffic volume, 
behavioral pattern fractions, and temporal distributions of 
events). 

Figure 10.  Visualization of feature pattern 

 
Figure 11.  Result of the case of three hidden layers 
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Data and Software Availability 

The hospital survey was conducted under the condition that 
observation data was not made public, so data cannot be 
shared.  

The software developed in this study cannot be disclosed 
due to the limitations of Kajima's Intellectual Property 
Management Regulations. 
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